
Codelink Legacy: the old Codelink class

Diego Diez

October 26, 2021

1 Introduction

Codelink is a platform for the analysis of gene expression on biological samples property of Applied
Microarrays, Inc. (previously was GE Healthcare and Amersham). The hybridization reagents are still
supplied by GE Healthcare.

The system uses 30 base long oligonucleotide probes for expression testing. There is a proprietary
software for reading scanned images, doing spot intensity quantization and some diagnostics. The
software assigns quality flags (see Table 1) to each spot on the basis of a signal to noise ratio (SNR)
computation (Eq: 1) and other morphological characteristics as irregular shape of the spots, saturation
of the signal or manufacturer spots removed. By default, the software performs background correction
(subtract) followed by median normalization. The results can be exported in several formats as XML,
Excel, plain text, etc. This library allows to read Codelink plain text exported data into R [3] for the
analysis of gene expression with any of the available tools in R+Bioconductor[1].

For storing the available data, a new class Codelink was designed. The now defunt exprsSet in
the Biobase package was not a convenient store class for Codelink data, because it didn’t allow probes
with duplicated names, as those names are stored as rownames in the expression matrix.

Currently there is experimental support for a ExpressionSet derived class that can accomodate
duplicated probe names in an AnnotatedDataFrame whereas the feature ids would be used for row
names when available.

Flag Description
G Good signal (SNR ¿= 1)
L Limit signal (SNR ¡ 1)
I Irregular shape
S Saturated signal
M MSR spot
C Background contaminated
X User excluded spots

Table 1: Quality Flag description. SNR: Signal to Noise Ratio.

SNR =
Smean

(Bmedian + 1.5 ∗Bstdev)
(1)

2 Reading data

Currently only data exported as plain text from Codelink software is supported. Unfortunately the
Codelink exported text format can have arbitrary columns and header fields so depending of what
you have exported you can read it or not. The suggestion is that you put on the files everything

1

Probe type Description
DISCOVERY Gene expression testing probes

POSITIVE Positive control probes
NEGATIVE Negative control probes
FIDUCIAL Grid alignment probes

OTHER Other controls and housekeeping gene probes

Table 2: Probe types for Codelink arrays.

you can, including Spot mean and Bkgd median values so you can do background correction and
normalization in R. In addition, Bkgd stdev is needed to compute the SNR. If you put Raw intensity
or Normalized intensity columns then you can also read it directly and avoid background correction
and/or normalization but this is not recommended. To read some Codelink files you do:

NOT RUN

library(codelink)

foo <- readCodelink()

summaryFlag(foo) # will show a summary of flag values.

NOT RUN

This suppose that your files have the extension “TXT” (uppercase) and that they are in your
working directory. If this is not the case you can specify the files to be read with the ’file’ argument.
The function readCodelink returns and object of Codelink similar to that:

data(codelink.example)

codelink.example

An object of class "Codelink"

$product

[1] "UniSet Human 20K I"

$sample

[1] "Sample 1" "Sample 2"

$file

[1] "T001-2006-12-25_Sample 1.TXT" "T002-2006-12-25_Sample 2.TXT"

$name

[1] "NM_012429.1_PROBE1" "NM_003980.2_PROBE1" "AY044449_PROBE1"

[4] "NM_005015.1_PROBE1" "AB037823_PROBE1"

20464 more elements ...

$type

[1] "DISCOVERY" "DISCOVERY" "DISCOVERY" "DISCOVERY" "DISCOVERY"

20464 more elements ...

$flag

1 2

1 "L" "L"

2 "L" "L"

2

3 "G" "L"

4 "G" "M"

5 "G" "G"

20464 more rows ...

$method

$background

[1] "NONE"

$normalization

[1] "NONE"

$merge

[1] "NONE"

$log

[1] FALSE

$snr

1 2

1 0.7920656 0.7856675

2 0.8160216 0.7862189

3 1.0744066 0.9331916

4 3.8865153 NA

5 4.6647164 1.7993536

20464 more rows ...

$logical

row col

1 1 9

2 1 10

3 1 11

4 1 12

5 1 13

20464 more rows ...

$Smean

1 2

1 49.0588 46.7304

2 48.6395 45.8333

3 65.0781 52.4917

4 243.3116 NA

5 267.6458 102.0803

20464 more rows ...

$Bmedian

1 2

1 43 42

2 42 42

3 42 40

3

4 44 NA

5 42 42

20464 more rows ...

Slot Description
product Chip name description
sample Sample names vector

file File names vector
name Probe names vector
type Probe types vector

method Methods applied to data
method$background Background correction method used

method$normalization Normalization method used
method$merge Merge method used

method$log Logical: If data is in log scale
flag Quality flag matrix

Smean Mean signal intensity matrix
Bmedian Median background intensity matrix

Ri Raw intensity matrix
Ni Normalized intensity matrix

snr Signal to Noise Ratio matrix
cv Coefficient of Variation matrix

Table 3: Description of Codelink object slots.

The Codelink-class is basically a list that stores information in several slots (see Table 3). The
chip type (product slot) is read from the PRODUCT field if found in the header of Codelink files. If
it is not found then a warning message is shown and product slot is set to ”Unknown”. If the product
is not the same in all the files the reading is canceled with an error message.

By default, all spots flagged with M, I, and S flags are set to NA. This can be controlled with the
flag argument of readCodelink. The flag argument is a list that can contain a valid flag identifier and
a value for that flag. For example, if you want to set all M flagged spots to 0.01 and let other spot
untouched you do:

foo <- readCodelink(flag = list(M = 0.01))

It is possible to find probes wit more that one flag assigned, i.e. CL for a probe labeled as C and
L, CLI for a probe labeled as C, L and I, and so on. A a regular expression is used to find flag types
in an attempt to to manage all the possible situations. When two user modified flags fall in the same
probe the more restricting (NA being the most) is assigned.

3 Background correction

If you have Spot mean values Bkgd median values the you can apply one of the several background
correction methos interfaced. This is done by the function bkgdCorrect. To see the different options
look at ?bkgdCorrect. For instance, if you want to apply half method you do:

foo <- bkgdCorrect(foo, method = "half")

4

The default method used is half and is based in the same method applied in the limma [4] package
to two channel microarrays. In this method, the median background intensity (Bmedian) is subtracted
from mean spot intensity (Smean) and any value smaller that 0.5 is shift to 0.5 to ensure no negative
numbers are obtained that would prevent to transform the data into log scale. Other available methods
are none that let the spot intensities untouched, subtract that is analog to the default method used in
the Codelink software and normexp and interface to the method available in the limma package.

4 Normalization

Normalization of the background corrected intensities is done by the wrapper function normalize. The
default method is quantile normalization that in fact call normalizeQuantiles() from limma package
(allowing for NAs). There is also the possibility to use a modified version of CyclicLoess from affy

[2] package that allow using weights and missing values. Finally, the median normalization allows to
normalize using a method analog to the default method in the Codelink software. To normalize you
usually do:

foo <- normalize(foo, method = "quantiles")

By default, normalize return log2 intensity values. This could be controlled setting the parameter
log.it to FALSE.

5 Plotting

There are some diagnostic plots available for the Codelink object. These are functions for producing
MA plots (plotMA), scatterplots (plotCorrelation) and density plots (plotDensities). All functions
use the available intensity value (i.e. Smean, Ri or Ni) to make the plot.

The functions plotMA and plotCorrelation can highlight points based on the Spot Type, which
is the default behavior or using the SNR values. The mode is controlled with argument label.
plotCorrelation requires arguments array1 and array2 to be set in order to select which arrays
are going to be plotted. For plotMA if only array1 is specified, the values are plotted againts a pseu-
doarray constructed with the mean of the probe intensities along all available arrays. M and A values
are computed following equations 2 and 3.

M = Array2 −Array1 (2)

A =
Array2 + Array1

2
(3)

plotMA(codelink.example)

5

6 8 10 12 14

−
1

0
1

2
3

4

A

M

Mean Array vs. Sample 1

DISCOVERY
POSITIVE
NEGATIVE
OTHER
FIDUCIAL

The function plotDensities plot the density of intensity values of all arrays. It can plot only a
subset of arrays if the subset argument is supplied.

plotDensities(codelink.example)

6

6 8 10 12 14

0.
0

0.
2

0.
4

0.
6

0.
8

N = 20255 Bandwidth = 0.1653

D
en

si
ty

Density Plot of Smean

Sample 1
Sample 2

When Logical row and Logical col columns are exported into they are stored into the logical slot.
This information stores the physical location of each probe in the array, and can be used to plot pseudo
images of the array intensities. To plot a pseudo image you should use:

imageCodelink(foo)

imageCodelink(foo, what = "snr")

It is possible to plot the background intensities (default), the spot mean, raw and normalized
intensities and the SNR values. This images are useful to identify spatial artifact that may be affecting
the analysis.

6 Miscellaneous

There are also some miscellaneous functions used in some analysis that could be useful for someone.

7

6.1 Export to file

The function writeCodelink exports a Codelink object to a file. The file will contain probe intensities
and, if specified flag = TRUE, probe quality flags.

6.2 Merging arrays

In case you want to merge array intensities the mergeArray function help on this task. It computes the
mean of Ni values on arrays of the same class. The grouping is done by means of the class argument
(numerical vector of classes). New sample names should be assigned to the sample slot using the names
argument. The function also returns the coefficient of variation in the cv slot. The distribution of
coefficients of variations can be checked with the function plotCV.

foo <- mergeArray(foo, class = c(1, 1, 2, 2), names = c("A", "B"))

plotCV(foo)

7 Problems reading data

Some updated version of the Codelink software changed the order in which probes are printed in the
exported text files. That makes files from these different software version impossible to be analyzed
together. The function readCodelink have a new argument check TRUE by default, that check the
Probe name columns to see if they have the same order in all the arrays at the cost is a little extra
loading time. This behaviour can be turn off by setting check to FALSE. If an ordering problem
is found, a warning message is print but the reading of data is not stopped, allowing the visual
examination of the data. In this case, the best option is to export the old files again using the updated
version of the software. If this is impossible for whatever reason, the codelink package can try to fix
the order of the files.

To the aim, a new argument fix = TRUE can be passed to readCodelink. The method will try to
order the probes using the Feature id column, which is a combination of Logical row and Logical col
and for this, a unique identifier of each probe. This is the optimal fix, and the new data should be
perfectly ordered. If that column is missing, the it will try to order the data using the Probe name
column. This is a sub-optimal solution because as the fiducial, control and some discovery probes have
duplicated Probe name, they may be end messed up. In this case, the best solution again, is to try to
export again the data with the updated version of the software.

foo <- readCodelink(fix = TRUE)

8 Future improvements

As the new classes in the Biobase package (eSet and ExpressionSet) allow more flexible data struc-
tures, a reimplementation of the Codelink-class based on ExpressionSet-class will be the next
major feature added to this package. This will allow a better integration with other tools available
through the Bioconductor project.

Right now, there is some experimental implementation of the new codebase. You need to use the
wrapper function readCodelinkSet.

foo <- readCodelinkSet()

8

References

[1] Robert C Gentleman, Vincent J. Carey, Douglas M. Bates, Ben Bolstad, Marcel Dettling, Sandrine
Dudoit, Byron Ellis, Laurent Gautier, Yongchao Ge, Jeff Gentry, Kurt Hornik, Torsten Hothorn,
Wolfgang Huber, Stefano Iacus, Rafael Irizarry, Friedrich Leisch Cheng Li, Martin Maechler, An-
thony J. Rossini, Gunther Sawitzki, Colin Smith, Gordon Smyth, Luke Tierney, Jean Y. H. Yang,
and Jianhua Zhang. Bioconductor: Open software development for computational biology and
bioinformatics. Genome Biology, 5:R80, 2004.

[2] Rafael A. Irizarry, Laurent Gautier, Benjamin Milo Bolstad, , Crispin Miller with contribu-
tions from Magnus Astrand ¡Magnus.Astrand@astrazeneca.com¿, Leslie M. Cope, Robert Gentle-
man, Jeff Gentry, Conrad Halling, Wolfgang Huber, James MacDonald, Benjamin I. P. Rubinstein,
Christopher Workman, and John Zhang. affy: Methods for Affymetrix Oligonucleotide Arrays,
2005. R package version 1.8.1.

[3] R Development Core Team. R: A language and environment for statistical computing. R Foundation
for Statistical Computing, Vienna, Austria, 2005. ISBN 3-900051-07-0.

[4] Gordon K Smyth. Limma: linear models for microarray data, pages 397–420. Springer, New York,
2005.

9

