
Analysis of multi-channel cell-based screens

Ĺıgia Brás, Michael Boutros and Wolfgang Huber

October 26, 2021

Contents

1 Introduction 1

2 Assembling the data 2
2.1 Reading the raw intensity files 2
2.2 Annotating the plate results 3

3 Data preprocessing 5
3.1 Preprocessing work-flow for two-channel screens 6

4 Session info 10

1 Introduction

This techical report is a supplement of the main vignette End-to-end analysis
of cell-based screens: from raw intensity readings to the annotated hit list
that is given as part of the cellHTS2 package.

The report demonstrates how the cellHTS2 package can be applied to
the documentation and analysis of multi-channel cell-based high-throughput
screens (HTS), more specifically, dual-channel experiments. Such experi-
ments are used, for example, to measure the phenotype of a pathway-specific
reporter gene against a constitutive signal that can be used for normaliza-
tion purposes. Typical examples for dual-channel experimental setups are
dual-luciferase assays, whereby both a firefly and renilla luciferase are mea-
sured in the same well. In principle, multiplex assays can consist of many
more than two channels, such as in the case of flow-cytometry readout or
other microscopy-based high-content approaches.

We note that in this report we present a simple approach to analyse
data from dual-channel experiments, which can be expanded to experiments

1

with more than two reporters, taking the in-built normalization functions of
cellHTS2 as a template, and employing the extensive statistical modeling
capabilities of the R programming language. Moreover, such analyses should
be adapted to the biological system and to the question of interest.

This text has been produced as a reproducible document [1], containing
the actual computer instructions, given in the language R, to produce all
results, including the figures and tables that are shown here. To reproduce
the computations shown here, you will need an installation of R (version 2.3
or greater) together with a recent version of the package cellHTS2 and of
some other add-on packages. Then, you can simply take the file twoChan-
nels.Rnw in the doc directory of the package, open it in a text editor, run
it using the R command Sweave, and modify it according to your needs.

We start by loading the package.

> library("cellHTS2")

2 Assembling the data

Here, we consider a sample data of a dual-channel experiment performed
with D. melanogaster cells. The screen was conducted in microtiter plate
format using a library of double-stranded RNAs (dsRNAs), in duplicates.
The example data set corresponds to three 384-well plates. The purpose of
the screen is to find signaling components of a given pathway. In the screen,
one reporter (assigned to channel 1, and denoted here by R1) monitors cell
growth and viability, while the other reporter (assigned to channel 2 and
denoted here by R2) is indicative of pathway activity.

2.1 Reading the raw intensity files

The set of available result files and the information about them (which plate,
which replicate, which channel) is given in the plate list file. The first few
lines of the plate list file for this data set are shown in Table 1.

Using the function readPlateData, we can read the plate list file and all
of the intensity files, thereby assembling the data into a single R object that
can be used for subsequent analyses. First, we define the path for those files:

> experimentName <- "DualChannelScreen"

> dataPath <- system.file(experimentName, package="cellHTS2")

The input files are in the DualChannelScreen directory of the cellHTS2
package.

2

Filename Plate Replicate Channel
RA01D1.TXT 1 1 1
RA01D2.TXT 1 2 1
RA02D1.TXT 2 1 1
RA02D2.TXT 2 2 1
RA03D1.TXT 3 1 1

...

Table 1: Selected lines from the example plate list file Platelist.txt.

> x <- readPlateList("Platelist.txt", name=experimentName, path=dataPath)

> x

cellHTS (storageMode: lockedEnvironment)

assayData: 1152 features, 2 samples

element names: Channel 1, Channel 2

phenoData

sampleNames: 1 2

varLabels: replicate assay

varMetadata: labelDescription channel

featureData

featureNames: 1 2 ... 1152 (1152 total)

fvarLabels: plate well controlStatus

fvarMetadata: labelDescription

experimentData: use 'experimentData(object)'

state: configured = FALSE

normalized = FALSE

scored = FALSE

annotated = FALSE

Number of plates: 3

Plate dimension: nrow = 16, ncol = 24

Number of batches: 1

2.2 Annotating the plate results

Next, we annotate the measured data with information on the controls, and
flag invalid measurements using the information given in the plate configu-
ration file and in the screen log file, respectively. Selected lines of these files
are shown in Table 2 and Table 3. Morevoer, we also add the information

3

Wells: 384
Plates: 3

Plate Well Content
* * sample
* A01 geneA
* A02 geneB
* B01 geneC
* B02 geneD

Table 2: Selected lines from the example plate configuration file Plate-

conf.txt.

Plate Sample Channel Well Flag Comment
3 1 1 A05 NA contaminated
3 1 2 A05 NA contaminated

...

Table 3: Selected lines from the example screen log file Screenlog.txt.

contained in the screen description file, which gives a general description of
the screen.

> x <- configure(x, "Description.txt", "Plateconf.txt", "Screenlog.txt",

+ path=dataPath)

In this data set, instead of using the default names pos and neg for
positive and negative controls, respectively, we use the name of the gene
targeted by the probes in the control wells: geneA, geneB, geneC and geneD.
This is a more straighforward approach, since not all of these four controls
behave as controls for both reporters R1 and R2. Moreover, the two positive
controls have different strengths: geneC is expected to generate a weaker
effect than geneD. Thus, it is useful to define these controls separately at
the configuration step, in order to calculate the quality measures (dynamic
range and Z ′-factors) specific for each of them in the HTML quality reports
or by calling the function getDynamicRange and getZfactor.

Below, we look at the frequency of each well annotation in the example
data:

> table(wellAnno(x))

4

sample genea geneb genec gened

1140 3 3 3 3

3 Data preprocessing

We can take a first look at the data by constructing the HTML quality
reports using the writeReport function.

As mentioned above, the controls used in the screen are reporter-specific.
When calling writeReport, we need to specify to the function’s arguments
posControls and negControls which are the positive and negative controls
for each channel:

> ## Define the controls for the different channels:

> negControls <- vector("character", length=dim(Data(x))[3])

> # channel 1 - gene A

> negControls[1] <- "(?i)^geneA$"

> ## case-insensitive and match the empty string at the beginning and

> ## end of a line (to distinguish between "geneA" and "geneAB", for example.

> ## Although it is not a problem for the present well annotation)

>

> # channel 2 - gene A and geneB

> negControls[2] <- "(?i)^geneA$|^geneB$"

> posControls <- vector("character", length=dim(Data(x))[3])

> # channel 1 - no controls

> # channel 2 - geneC and geneD

> posControls[2] <- "(?i)^geneC$|^geneD$"

In the constitutive channel R1, there is one negative control, named ge-
neA, and no positive controls. In the pathway-specific reporter R2 there are
two different negative controls (geneA and geneB), and two diffferent posi-
tive controls (geneC and geneD). Each of the arguments posControls and
negControls should be defined as a vector of regular expressions with the
same length as the number of channels in slot assayData. These arguments
will be passed to the regexpr function for pattern matching within the well
annotation given in wellAnno(x).

Finally, we construct the quality report pages for the raw data in a
directory called raw, in the working directory:

> out <- writeReport(raw=x, outdir="raw",

+ posControls=posControls, negControls=negControls)

5

After this function has finished, we can view the index page of the report:

> if (interactive()) browseURL(out)

3.1 Preprocessing work-flow for two-channel screens

The preprocessing work-flow for two-channel RNAi screens using cellHTS2
package is shown below:

(a) (optional) Per-plate normalization of each individual channel to remove
plate and/or edge effects using function normalizePlates.

(b) Channel summarization: the per-plate raw or corrected intensities in
each channel are combined using summarizeChannels.

(c) (optional) Per-plate normalization of the channel summarized values to
remove plate and/or edge effects. This can be done using function
normalizePlates.

(d) Scoring of replicate measurements (for example, compute z-score values)
using the function scoreReplicates.

(e) Summarization of replicates (for example, take the median value) using
the function summarizeReplicates.

The per-plate normalization steps ((a) and (c)) are optional since they
depend on the type of the data and on the channels summarization method
to apply (step (b)). In particular, step (a) is more optional than step (c),
since for the simplest channels summarization case, where we take the ra-

tio R2
R1

(or log2

(
R2
R1

)
) between channels intensities, step (a) is not required.

However, this initial step (a) of per-plate correction prior to channels sum-
marization should be performed when we want to apply a more complex
summarization function that, for example, makes use of parameters esti-
mated based on overall (i. e. , across plates) intensities. Such case is illus-
trated for our data set, where we regard a small intensity measurement in
the constitutive channel R1 as a viability defect, excluding it.

For details about the normalization steps performed via the function
normalizePlates and the available normalization methods, please refer to
the main vignette accompanying this package.

In the above preprocessing work-flow, we apply step (d) before step (e) so
that the summary selected for replicate summarization has the same mean-
ing independently of the type of the assay.

6

Returning to our data set, in order to distinguish between changes in the
readout caused by depletion of specific pathway components versus changes
in the overall cell number, we summarize the channels intensities by normal-
izing the pathway-inducible readout (R2) against the constitutive reporter
(R1) - step (b). Since in this experiment, reporter 1 (R1) monitors cell vi-
ability, wells with low intensities in R1 should be masked: these cells are
not responding to a specific perturbation of the studied signaling pathway,
but show a more unspecific cell viability phenotype. There is no obvious
choice for a threshold for the minimum intensity R1 that we consider still
viable; here, we choose to set this cut-off as a low quantile (5%) of the overall
distribution of intensity values in R1 channel. To determine such intensity
threshold for R1 channel, we first need to remove the plate-to-plate varia-
tions (step (a)) and therefore make the distribution of intensities in the three
plates comparable. This is performed by applying plate median scaling to
each replicate and channel:

> xn <- normalizePlates(x, scale="multiplicative", method="median",

+ varianceAdjust="none")

Then, we define the intensity cut-off as follows:

> ctoff <- quantile(Data(xn)[,,1], probs=0.05, na.rm=TRUE)

Figure 1 shows the plate median corrected intensities in R2 versus R1

channels, together with the calculated threshold and the positive and nega-
tive controls of the pathway-inducible reporter R2. The wells with intensity
values below the calculated threshold are shown in grey and will be set to
”NA”.

The above procedure of data masking and channel summarization can
be carried out at once using the function summarizeChannels:

> xn1 <- summarizeChannels(xn, fun = function(r1, r2,

+ thresh=quantile(r1, probs=0.05, na.rm=TRUE))

+ ifelse(r1>thresh, r2/r1, as.numeric(NA)))

The summarized channel intensities are stored in the slot assayData. And
we can see that the obtained cellHTS object contains only one channel:

> dim(Data(xn1))

Features Samples Channels

1152 2 1

7

0.02 0.20 2.00

0.
05

0.
50

5.
00

R1 (log scale)

R
2

(lo
g

sc
al

e)

0.02 0.20 2.00

0.
05

0.
50

5.
00

R1 (log scale)

R
2

(lo
g

sc
al

e)

Figure 1: Scatterplot of the plate median corrected intensity values in the
signal-dependent channel (R2) against the plate median corrected intensity
values in the constitutive channel (R1) for replicate 1 (left) and replicate
2 (right). Masked values are shown in grey, while positive and negative
controls are shown in red and green, respectively.

8

After channel summarization, we apply step (b). In this particular case,
we take the log2 and re-apply plate median scaling (in this case, the plate
median correction consists of subtracting each plate value by the median
of values in that plate, since after log2 transformation the data are in an
additive scale):

> xn1 <- normalizePlates(xn1, scale="multiplicative", log=TRUE, method="median",

+ varianceAdjust="none")

Below, we call functions scoreReplicates and summarizeReplicates to deter-
mine the z-score values for each replicate (step (d)), and then summarize
the replicated z-score values by taking the average (step (e)).

> xsc <- scoreReplicates(xn1, sign="-", method="zscore")

> xsc <- summarizeReplicates(xsc, summary="mean")

The resulting single z-score value per probe are stored in the slot assayData
of xsc. The left side of Figure 2 shows the boxplots of the z-scores for the
different types of probes, while the right side of the figure shows the z-scores
for the whole screen as an image plot.

> par(mfrow=c(1,2))

> ylim <- quantile(Data(xsc), c(0.001, 0.999), na.rm=TRUE)

> boxplot(Data(xsc) ~ wellAnno(xsc), col="lightblue", outline=FALSE, ylim=ylim)

> imageScreen(xsc, zrange=c(-2,4))

Now that the data have been preprocessed, scored and summarized between
replicates, we call again writeReport and use a web browser to view the
resulting report. But first, we have to redefine the positive and negative
controls for the normalized data stored in xn1, because it now corresponds
to a single channel. The controls for the normalized data values are the
same as those of the raw data channel R2.

> ## Define the controls for the normalized intensities (only one channel):

> # For the single channel, the negative controls are geneA and geneB

> negControls <- "(?i)^geneA$|^geneB$"

> posControls <- "(?i)^geneC$|^geneD$"

> setSettings(list(platelist=list(intensities=list(include=TRUE)),

+ screenSummary=list(scores=list(range=c(-4,4)))))

> out <- writeReport(raw=x, normalized=xn1, scored=xsc,

+ outdir="logRatio",

+ map=TRUE,

+ posControls=posControls, negControls=negControls)

9

sample geneb gened

−
6

−
4

−
2

0
2

4
6

8

wellAnno(xsc)

D
at

a(
xs

c)

<
 −

4
−

2.
7

−
1.

3
0 1.
3

2.
7

>
4

Figure 2: z-scores for the screen. Left Panel: Boxplots of z-scores for the
different types of probes. Right Panel: Screen-wide image plot.

The quality reports have been created in the folder logRatio in the working
directory.

> if (interactive()) browseURL(out)

The quality reports have been created in the folder logRatio in the working
directory. Finally, we will save the scored and summarized cellHTS object
to a file.

> save(xsc, file=paste(experimentName, ".rda", sep=""))

4 Session info

This document was produced using:

> toLatex(sessionInfo())

� R version 4.1.1 (2021-08-10), x86_64-pc-linux-gnu

10

� Locale: LC_CTYPE=en_US.UTF-8, LC_NUMERIC=C, LC_TIME=en_GB,
LC_COLLATE=C, LC_MONETARY=en_US.UTF-8,
LC_MESSAGES=en_US.UTF-8, LC_PAPER=en_US.UTF-8, LC_NAME=C,
LC_ADDRESS=C, LC_TELEPHONE=C, LC_MEASUREMENT=en_US.UTF-8,
LC_IDENTIFICATION=C

� Running under: Ubuntu 20.04.3 LTS

� Matrix products: default

� BLAS: /home/biocbuild/bbs-3.14-bioc/R/lib/libRblas.so

� LAPACK:
/home/biocbuild/bbs-3.14-bioc/R/lib/libRlapack.so

� Base packages: base, datasets, grDevices, graphics, grid, methods,
stats, stats4, utils

� Other packages: AnnotationDbi 1.56.0, Biobase 2.54.0,
BiocGenerics 0.40.0, Category 2.60.0, GO.db 3.14.0, IRanges 2.28.0,
Matrix 1.3-4, RColorBrewer 1.1-2, S4Vectors 0.32.0, cellHTS2 2.58.0,
genefilter 1.76.0, hwriter 1.3.2, locfit 1.5-9.4, splots 1.60.0, vsn 3.62.0

� Loaded via a namespace (and not attached): BiocManager 1.30.16,
Biostrings 2.62.0, DBI 1.1.1, GSEABase 1.56.0,
GenomeInfoDb 1.30.0, GenomeInfoDbData 1.2.7,
KEGGREST 1.34.0, KernSmooth 2.23-20, R6 2.5.1, RBGL 1.70.0,
RCurl 1.98-1.5, RSQLite 2.2.8, Rcpp 1.0.7, XML 3.99-0.8,
XVector 0.34.0, affy 1.72.0, affyio 1.64.0, annotate 1.72.0,
assertthat 0.2.1, bit 4.0.4, bit64 4.0.5, bitops 1.0-7, blob 1.2.2,
cachem 1.0.6, colorspace 2.0-2, compiler 4.1.1, crayon 1.4.1,
digest 0.6.28, dplyr 1.0.7, ellipsis 0.3.2, fansi 0.5.0, farver 2.1.0,
fastmap 1.1.0, generics 0.1.1, ggplot2 3.3.5, glue 1.4.2, graph 1.72.0,
gtable 0.3.0, hexbin 1.28.2, httr 1.4.2, labeling 0.4.2, lattice 0.20-45,
lifecycle 1.0.1, limma 3.50.0, magrittr 2.0.1, memoise 2.0.0,
munsell 0.5.0, pillar 1.6.4, pkgconfig 2.0.3, png 0.1-7,
preprocessCore 1.56.0, purrr 0.3.4, rlang 0.4.12, rstudioapi 0.13,
scales 1.1.1, splines 4.1.1, survival 3.2-13, tibble 3.1.5, tidyselect 1.1.1,
tools 4.1.1, utf8 1.2.2, vctrs 0.3.8, xtable 1.8-4, zlibbioc 1.40.0

11

References

[1] Robert Gentleman. Reproducible research: A bioinformatics case study.
Statistical Applications in Genetics and Molecular Biology, 3, 2004. 2

12

	Introduction
	Assembling the data
	Reading the raw intensity files
	Annotating the plate results

	Data preprocessing
	Preprocessing work-flow for two-channel screens

	Session info

