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Abstract

Microarrays and RNA Sequencing have become the most important tools in under-
standing genetic expression in biological processes. With measurments of thousands of
genes’ expression levels across several conditions, identification of differentially expressed
genes will necessarily involve data mining or large scale multiple testing procedures. To
the date, advances in this regard have either been multivariate but descriptive, or infer-
ential but univariate.

In this work, we present a new multivariate inferential method for detecting differen-
tially expressed genes in gene expression data implemented in the acde package for R (R
Core Team 2014). It estimates the FDR using artificial components close to the data’s
principal components, but with an exact interpretation in terms of differential genetic ex-
pression. Our method works best under the most common gene expression data structure
and gives way to a new understanding of genetic differential expression. We present the
main features of the acde package and illustrate its functionality on a publicly available
data set.

Keywords: differential expression, false discovery rate, principal components analysis, multiple
hypothesis tests.
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1. Introduction

Microarrays and RNA Sequencing have become the most important tools in understanding
genetic expression in biological processes (Yuan and Kendziorski 2006). Since their devel-
opment, an enormous amount of data has become available and new statistical methods are
needed to cope with its particular nature and to approach genomic problems in a sound
statistical manner (Simon, Korn, McShane, Radmacher, Wright, and Zhao 2003).

With measurements of thousands of genes’ expression levels across several conditions, sta-
tistical analysis of a microarray experiment necessarily involves data mining or large scale
multiple testing procedures. To the date, advances in this regard have either been multivari-
ate but descriptive (Alizadeh, Eisen, Davis, Ma, Lossos, Rosenwald, Boldrick, Sabet, Tran, Yu
et al. 2000; Ross, Scherf, Eisen, Perou, Rees, Spellman, Iyer, Jeffrey, Van de Rijn, Waltham
et al. 2000; Landgrebe, Wurst, and Welzl 2002; Jombart, Devillard, and Balloux 2010), or
inferential but univariate (Kerr, Martin, and Churchill 2000; Yuan and Kendziorski 2006;
Benjamini and Yekutieli 2001; Dudoit, Yang, Callow, and Speed 2002; Tusher, Tibshirani,
and Chu 2001; Storey and Tibshirani 2001; Taylor, Tibshirani, and Efron 2005)*.

As a result, multivariate-descriptive and univariate—inferential methods are the two pieces
still to be assembled into an integral strategy for the identification of differentially expressed
genes in gene expression data.

In this document we present a new strategy that combines a gene-by-gene multiple testing
procedure and a multivariate descriptive approach into a multivariate inferential method suit-
able for gene expression data. It is based mainly on the work of Storey and Tibshirani (2001,
2003) for the estimation of the FDR and on the construction of two artificial components —
close to the data’s principal components, but with an exact interpretation in terms of overall
and differential genetic expression. Although it was concieved as a tool for analysing microar-
ray data, this strategy can be applied to other gene expression data such as RNA sequencing
because no assumptions on variable distributions are required (Xiong et al. 2014).

The remainder of this work is organized as follows. In Section 2, we introduce the con-
struction of artificial components related to genetic expression, we give a brief overview of
multiple hypothesis tests and false discovery rates, and we present our strategy for the iden-
tification of differentially expressed genes. Also, towards the end of Chapter 2, we introduce
the phytophthora data set (Restrepo, Cai, Fry, and Smart 2005), included in the package.
In Section 3, we present the main functionalities of acde and illustrate step by step on the
phytophthora data set. In Section 4 we present the conclusions of our analysis. Finally, we
adress some technical aspects of the package in the Appendix.

'Recently, Xiong, Brown, Boley, Bickel, and Huang (2014) developed a method for testing gene differential
expression that represents the expression profile of a gene by a functional curve based in a Functional Principal
Components (FPC) space and tests by comparing FPC coefficients between two groups of samples. However,
being based on functional statistics, this method requires a very high number of replicates.
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2. Materials and Methods

In this section, we present the theoretical baseis of our strategy for identifying differentially
expressed genes in gene expression data. We begin by introducing the multivariate piece of
the puzzle: artificial components. We follow with a brief overview of multiple hypothesis
tests, define the false discovery rate (FDR) according to Benjamini and Hochberg (1995), and
provide the inferential piece of the puzzle with Storey and Tibshirani (2001)’s procedure for
estimating the FDR. Putting these two pieces together, we get the single time point analysis
from which derives most of acde’s functionality.

In this section, we also discuss the biological and technical assumptions required for our
method to work, we provide additional assessments both for the FDR control achieved and
for the validity of these assumptions, and we extend the single time point analysis for time
course experiments. We end this section presenting the phytophthora data set (included in
acde) from Restrepo et al. (2005).

2.1. Artificial components for differential expression

Let Z represent a n x p matrix where the rows correspond to the genes and the columns to the
replicates in a gene expression data set, z;; representing gene ¢ expression level in replicate j.
Also, let C be the columns and G be the rows of Z, genes in G being treated as the individuals
of the analysis. We first standardize Z with respect to its column’s means and variances for
obtaining a new matrix X suitable for a Principal Components Analysis (PCA) as follows:

Zz‘j — Zj

— i€g, jec,
s.e.(zj)

xij =

where z; is the j-th column of Z.

Usually, in a PCA of microarray data, the first principal component will mainly explain over-
all gene expression and the second one will mainly explain differential expression between
conditions. However, in order to perform multiple tests regarding genetic differential ex-
pression, we need new components that exactly capture the genes’ overall and differential
expression levels. We call these components artificial because they do not arise naturally
from solving a maximization problem as do the principal components in a PCA. Instead,
they are constructed deliberately to capture specific features of the data and, thus, have an
exact interpretation. Their construction is as follows.

For i =1, ..., n, let the overall, the treatment and the control means for gene 7 be
1 p 1 p1 1 p
X;. Z*ZSEU, iiTTZ*ZfEZj, Xic = — Z Tij,
Pi= Prim P2 iy

for p; treatment and py control replicates with p = p; + po. Define

P1(x4.) = 1 = /P X X4,
1
o(xi) = i = ﬁ% (%irr — %ic) - @)

Now, 1; is proportional to the mean expression level of gene ¢ across both conditions, so it
captures its overall expression level. Because the data has not been standardized by rows,
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1; > 14 implies that gene i has a higher overall expression level than gene i’ and, thus,
P, = (Y11, ..., Y1) provides a natural scale for comparing expression levels between the
genes in the experiment. In PCA’s vocabulary (Lebart, Morineau, and Piron 1995), 1, is a
size component.

On the other hand, 19; is proportional to the difference between treatment and control mean
expression levels, so it captures the amount to which gene ¢ is differentially expressed. We call
Py = (V21, ..., Y2,) a differential expression component. Large positive (negative) values of
19 indicate high (low) expression levels in the treatment replicates and low (high) expression
levels in the control replicates.

The multiplicative constants in (1) are defined so that 1, and 15 are the result of an orthog-
onal projection via unit projection vectors as in the PCA framework. Note that 1, and 4,
can also be computed as:

Py = Xvy, Py = Xvy, (2)
where vy = (1, ..., 1)/\/p, v2a = (p2, - , P2, =1, - -+ , —P1)/+/P1P2p, With pi positive entries
and ps2 negative entries, and both v; and v, are orthogonal and have unit norm. In particular,
ifpl = P2, V2 = (1, cey 1, —1, ey —1)/\/ﬁ and 1,[121' = (Xz'Tr — iiC) \/]3/2

Finally, interpretation of 11 and 15 is quite straightforward: large (small) values of ¥; indicate
high (low) overall expression levels; large positive (large negative) values of 15 indicate high
(low) expression levels only in the treatment replicates. Genes near the horizontal axis in the
artificial plane (1, vs 1p5) are those with no differential expression, and genes near the origin
have near—average overall expression levels.

2.2. A word on scale

As a rule, methods that control the FDR in microarray data (Benjamini and Yekutieli 2001;
Storey and Tibshirani 2001; Tusher et al. 2001) use test statistics of the form

XiTr — XiC

- - ; 3
s.e.(Xipr — Xic) + €o 3)

s(x;.) =

or monotone functions of s as p-values; ¢y being a convenient constant, usually zero. However,
when dividing by the standard error in (3), we lose the inherent genetic expression scale that
lies within the data. Consider the following two biological scenarios for gene expression data:

Biological Scenario 1: All genes among all replicates have true positive expression levels
when the sample is taken. Therefore, the major differences in scale between the genes are
due to external sources of variation.

Biological Scenario 2: Only a small proportion of the genes in each replicate has true
positive expression levels when the sample is taken and no systematic sources of variation
other than control/treatment effects are present in the experiment. Therefore, the major
differences in scale between the genes are due to whether a gene was actively transcribing
when the sample was taken.

If Biological Scenario 1 holds, there is no relevant information in the differences between
the scales of the rows in the data, and row standardization is in order. If, on the contrary,
Biological Scenario 2 seems more appropriate, the information contained in the differences
between the scales of the rows is relevant for it allows to asses which genes had actual positive
expression levels when the sample was taken.
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Also, if Biological Scenario 2 holds, the data for the genes that were not expressing themselves
is merely the result of external sources of variation. Those genes, having true zero expression
levels in both treatment and control replicates, cannot be classified as being differentially
expressed. However, because n is very large and there might be systematic sources of variation
(depending on the technology used for obtaining the data), it is very likely that a considerable
number of those genes with no expression will be identified as differentially expressed when
using statistics of the form (3).

We strongly believe that the first condition of Biological Scenario 2 is more reasonable in the
context of gene expression data. Additionally, there are several methods for normalization of
gene expression data that remove systematic sources of variation other than control/treatment
effects, without performing any kind of row standardization (Dudoit et al. 2002; Simon et al.
2003). These normalization procedures can be applied beforehand to assure the validity of
the technical part of Biological Scenario 2.

Summing up, row standardization should not be performed, in order to avoid identifying
genes with no expression as differentially expressed; this standardization eliminates natural
gene differences making all gene expression levels very similar. If a scenario in between seems
more likely, Biological Scenario 2 should be favoured.

Finally, it is of paramount importance to be able to asses which of the former biological
scenarios is more likely to hold for a given data set. Although a rigorous test is beyond the
scope of this work, we propose the following heuristic guidelines based on the results of Acosta
(2015):

Table 1: Heuristic guidelines for assessing the validity of Biological Scenario 2.

Biological Scenario 2 is likely to hold if:

1. The ratios Var(tp5)/A1 > 0.25 and [Var(w1) + Var(e2)]/(AM + A2) > 0.9 in
at least one time point, where A1 and A9 are the eigenvalues of the first two
principal components of X (see inertia ratios, Eq. (5), in Section 2.5.1).

2. Only a few genes lie far to the right from the origin in the artificial plane
and no genes lie far to the left.

3. All genes detected as differentially expressed lie to the right of the vertical
axis in the artificial plane.

Otherwise, Biological Scenario 2 is not likely to hold and univariate oriented
methods should be preferred.

2.3. Multiple hypothesis testing

Lets assume we want to test if a single gene, say gene i, is differentially expressed between
treatment and control conditions. Now the null hypothesis would be that of no differential
expression and we can express it as H; : Fj. = Fjo versus an alternative hypothesis Kj; :
t(Firr) # t(Fic), Firr and Fjo being the cumulative probability distributions for gene 4 in
treatment and control groups, respectively. Naturally, differences in the parameter ¢(F') are



6 The ‘acde’ Package

supposed to imply differential expression.

Let s(X;.) be a statistic with realization s(x;.) and cumulative distribution function G;, for
which large values imply strong evidence against H; and in favour of K;. Also, let §; be a
decision rule such that

Si(xi) = 1, s(xi.) >t — We reject Hj,
B0, s(x) <t — We don't reject H;.

As usual, a Type I Error consists in rejecting H; when it is true, and a Type II Error consists
in not rejecting H; when K; is true. Finally, the significance of the test using d; is

ay = P(“Type I Error”) = Py, (s (X;.) > t) =1 — Gg, (1),

where Py, refers to the probability measure in (2, F) and G, to the cumulative distribution
function of s(X;.) when H; is true. In the single hypothesis paradigm, one fixates a desired
significance level o and chooses t so that oy < a*.

When detecting differentially expressed genes, we deal with testing Hy, ..., H, simultane-
ously. Now, for fixed ¢ and rejection region [t,00), let Ry = {i € G : s(X;.) > t}, with
cardinality R(t) = R, be the set of genes for which the null hypothesis is rejected, and let
Vi ={i€G:s(X;) >t H;istrue} = Ry NH, with cardinality V(t) = V, be the set of
false positives, that is, the set of genes for which the null hypothesis is rejected despite being
true. Note that R and V are random variables with realizations r = #{i € G : s(x;.) > t}
and v = #{i € G : s(x;.) > t, H; is true}, respectively. The possible outcomes of testing
Hq, ..., H, for fixed t are depicted in Table 2. Here, W =n — Rand U =ng — V.

Table 2: Possible outcomes when testing n hypothesis simultaneously.

Hypothesis Accept Reject  Total
Null true U |4 ng
Alternative true W —-U R-V n—ng
Total w R n

Adapted from Storey (2002).

Now, the ideal (though generally unattainable) outcome in multiple hypothesis tests is W = U
and V' = 0, so that all the true alternative hypothesis are detected (no Type II Errors) and no
true null hypothesis are rejected (no Type I Errors). When detecting differentially expressed
genes, one is more concerned with false positives, and, hence, priority is given to control of
Type I Errors. However, Type II Error reduction may then be achieved by a judicious choice
of the test statistic (see Efron and Tibshirani 1994, p. 211).

False Discovery Rate

Benjamini and Hochberg (1995) defined the false discovery rate (FDR) as the expected pro-
portion of falsely rejected null hypothesis in the previous setup. For this, define the random
variable @ = V/R if R > 0 and @ = 0 otherwise. Then, the FDR is defined as

FDR=E(Q)=FE (‘};‘R> 0) P(R > 0),
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where the expectation is taken under the true distribution P instead of the complete null
distribution Py, where H : all null hypothesis are true. Two important properties arise from
this definition (Benjamini and Hochberg 1995):

1. If H is true, then F'DR equals the family wise error rate (FW ER). In this case, V = R
so FDR = E(1)P(R > 0) = P(V > 1) = FWER.

2. If H is not true (not all null hypothesis are true), then FDR < FWER. In this case
V < Rso I{V > 1} > Q. Taking expectations on both sides, we get FWER = P(V >
1) > E(Q) = FDR.

In general, then, FDR < FW ER, so while controlling the FW ER amounts to controlling
the FFDR, the opposite is not true. Then, controlling only the FDR results in less strict
procedures and increased power (Benjamini and Hochberg 1995).

2.4. Single time point analysis

Our method for identifying differentially expressed genes for a single time point, embeded in
the stp function of acde, consists of a specific application of Storey and Tibshirani (2001)’s
methodology, using a statistic that is well suited for gene expression data when Biological
Scenario 2 holds. It is based on the large sample estimator for the FDR, Q A(1), presented in
Storey and Tibshirani (2001) for multiple testing procedures, but uses [12(X;.)| as the test
statistic. Our method is presented in Algorithm 1.

Now, there are two distinct approaches in multiple hypothesis testing for controlling the
FDR: one fixating a desired F'DR level and estimating a rejection region, the other fixating
a rejection region and estimating its F'DR. Storey, Taylor, and Siegmund (2004) showed that
these two approaches are asymptotically equivalent. More specifically, define

ta(@) =inf {t: Qx(t) <a}, 0<a<l

Then, rejecting all null hypothesis with s(X;.) > ta(Q A) amounts to controlling the FDR at
level «, for n large enough (Storey et al. 2004). Consequently, the procedure in Algorithm 1
controls the FFDR at level .

Finally, the following observations about Algorithm 1 are in order:

1. Qx(t) is conservatively biased, i.e., E[Qx(t)] > FDR (Storey and Tibshirani 2001).

2. We only estimate the FDR for t € T because those are the values of ¢ for which the

number of rejected hypothesis actually changes. More specifically, let ¢, ..., 1}, be
the ordered values of 7. Then, using [t[;, o0) as the rejection region, produces k genes
identified as differentially expressed, for k =1, ..., n.

3. For computational ease, we set A = 0.5, following Storey et al. (2004), Taylor et al.
(2005) and Li and Tibshirani (2013). However, a more suitable A in terms of the Mean
Square Error of Q A(t) can be computed via bootstrap methods as shown in Storey and
Tibshirani (2001, Section 6).
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Algorithm 1: Identification of differentially expressed genes for a single time point.
1. Compute ¢9; = o(x;.) for i =1, ..., n from (1).
2. For each t in T = {|¢ho1], ..., [thon|} and B large enough, compute Qy(t)

as in Storey and Tibshirani (2001, p. 6) with A = 0.5 and using the test
statistic s(-) = |12(+)| from (1). That is:

2.1. Compute B bootstrap or permutation replications of s(x1.), ..., s(xy.),
obtaining s;, ..., sy, forb=1, ..., B.

2.2. Compute Eg(R(t)) as

where 75 (t) = #{sj, >t:i=1,..., n}.

2.3. Set [ty,00) as rejection region with ¢y as the (1 — A)-th percentile of the
bootstrap or permutation replications of step 1. Estimate mg = ng/n by

Ly wity)
To(A) = m7
where w(ty) = #{s(x;.) <trn:i=1, ..., n}.
2.4. Estimate FDR)(t) as
axip = TEHRE)

where r(t) = #{s(x;.) >t:i=1,..., n}.
3. Set a desired FDR level @ and compute t* = inf {t eT:Qos(t) < a}.
4. Idenfity the set of differentially expressed genes as:
Rt* == {’L : |’¢2(XZ)’ Z t*} .
The down-regulated and up- regulated sets of genes are:

Dy = {’L : ’(pg(X,:) < —t*}, Uy = {Z . ¢2(Xz‘.) > t*}7

respectively.

5. Estimate each gene’s g-value as in Algorithm 3 (see Section 2.4.2).

4. The estimation of Q0.5(t) in step 2 may be done by using permutation or bootstrap
estimates of the statistics’ null distribution (Dudoit and Van Der Laan 2008). Though
permutation methods are more popular (Li and Tibshirani 2013), we favor bootstrap
estimates of the null distribution for ease of interpretation (Dudoit and Van Der Laan
2008, p. 65). In any case, for large B, the results should be very similar (Efron and
Tibshirani 1994).

5. B = 100 should be enough for obtaining accurate and stable estimates of the FDR in
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step 2 (Efron and Tibshirani 1994). However, depending on the data and the shape of
the FDR, small changes in the estimated FDR may produce large changes in t* and,
hence, a much larger value of B may be needed to guarantee stability of the groups of
up and down regulated genes.

Further assessments

As B, n and p grow, QA approaches from above both the FFDR and the actual or realized
proportion of false positives among all rejected null hypothesis (Storey and Tibshirani 2001).
In practice, however, because B, n and p are finite, the control achieved using QA is only
approximate and, so, additional assessments are needed.

Storey and Tibshirani (2001) suggested the use of a bootstrap percentile confidence upper
bound for the F'D R to provide a somewhat more precise notion of the actual control achieved,
but concluded that percentile upper bounds were not appropriate as they under estimated the
actual confidence upper bound. We overcome this limitation by computing a bias-corrected
and acceleerated (BCa) upper confidence bound (Efron and Tibshirani 1994) for the FFDR as
shown in Algorithm 2. We find plots of Q A(t) and the FFDR’s upper confidence bound vs. ¢
to be very informative as to the actual F DR control achieved.

Now, technically, Q;[4] is a BCa upper ~ confidence bound for E[Q,(t)] > FDR(t). Because
Qx(t) is conservatively biased, Q;[4] is a v* confidence upper bound for FDR(t) with v* > 7,
and we say that Q:[y] is a conservative v confidence upper bound for FDR(t). Moreover, if
n is large, FDR ~ v/ max{1,r}, so Q¢[7] is also a conservative « confidence upper bound for
the actual proportion of false positives (Storey and Tibshirani 2001).

Still, Q¢[y] is only second order accurate (Efron and Tibshirani 1994), that is: P(E[Q(t)] <
Q:[7]) = v+ O(p~1), Qi[y] being the random variable and p the number of replicates in the
experiment. As p is usually small in gene expression data, the approximation error must be
kept in mind when analysing both Q5 (#) and Q;[y]. Fortunately, the fact that Qx(t) and Q;[4]
are conservatively biased compensates, to some extent, this approximation error. Naturally,
as p increases, the power of the multiple testing procedure, the precision of QA,\(t) and the
accuracy of Q:[v], all improve.

Finally, the following observations about Algorithm 2 are in order:

1. In steps 1 and 3, Q A and Q’)‘\ are functions of ¢ defined for t € T, where T is the set of
values for t computed in step 1.

2. In step 2, X ~ F, where F' is the empirical distribution of X.

3. The number of computations in Algorithm 2 is in the order of R X B X n so a com-
promise must be made between R and B for obtaining comfortable computation times.
For accurate bootstrap confidence intervals, R = 1000 should be enough (Efron and
Tibshirani 1994), so we recommend setting B = 100 and R = 1000. As n is usually
very large, Algorithm 2 may take require considerable computational effort.
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Algorithm 2: Computation of a BCa upper confidence bound for the FDR.

1. Compute Q) by applying steps 1 and 2 of Algorithm 1.

2. Compute a large number R of independent bootstrap samples
from X, X7, ..., X§, where X' = (X, -0y Xojpy s Xebyy « ooy Xy )
with (j1, ..., jp;) being a random sample with replacement from
{1, ..., p1} and (K1, ..., kp,) being a random sample with replace-
ment from {p; + 1, ..., p}.

3. Compute bootstrap replicates of Q)\, Qi(l), ceey QK(R), by applying
steps 1 and 2 of Algorithm 1 to X, r =1, ..., R, using the set T
from step 1.

4. For each t in 7 and the desired confidence level ~:
4.1 Compute z(t) as

L (#HEY ) < )
Zo(t) = 1 ( A R )

4.2 Compute a(t) as

_ S [Qjack(t) — Qe (D]
6{>"_1[Qjack (t) — Qqj) (H)]213/2”

a(t)

where Q(j)(t) is the mean of the bootstrap replicates Q;m (t) for
which the bootstrap indexes (ji, ..., jpi, k1, ..., kp,) in step 2 do
not contain j, and Qjacr(t) is just p~! Z§:1 Q) (1)

4.3 Compute the upper v confidence bound for the F DR as (Efron and
Tibshirani 1994):

where G; is the empirical cumulative distribution function of

A

Qi(l) (t), ..., Q:(R) (t), and z, is the  percentile of a standard normal
distribution.

20(t) + 24
T=00) (20(0) + )

Qi =G;! <<I> [ZO@) +

The g-value
For an observed statistic s(x;.), the g-value is defined as the minimum F DR that can ocurr
when rejecting all hypothesis for which s(x;.) > s(x;.),i = 1, ..., n (Storey 2002). More
specifically:

g-value(s(x;.)) = irtlf{FDR(t) s s(xq.) >t} (4)

Storey (2003) showed that the g-value can be interpreted as the posterior probability of
making a Type I Error when testing n hypothesis with rejection region [s(x;.), c0); and so it
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is the analogue of the p-value when controlling the F"DR in multiple hypothesis tests.

As Oy (t) is neither smooth nor necessarily decreasing in ¢, we estimate the g-values following
Algorithm 3 adapted from Storey (2002).

Algorithm 3: Estimation of the g-values for testing n hypothesis simultaneously.

1. Let s < spg) < -+ < sp,) be the ordered statistics for sp; = s(xm.),
fori=1,..., n.

2. Set Q(s[l]) = Q/\(S[l])-

3. Set C](SM) = min{@A(s[i]), ‘j(s[i—l])}’ fori=2,...,n.
Adapted from Storey (2002).

2.5. Time course analysis

It is often the case in gene expression data to have samples taken at different time points for
analysing the genetical behaviour of the replicates in different stages of the disease or factor
of interest. We propose two complementary extensions to the single time point analysis for
time course gene expression data. These two approaches are: active vs. supplementary time
points and groups conformation through time. For the rest of this section, suppose we have L
data sets X ..., X taken at time points 1, ..., L.

Active vs. supplementary time points

The first approach consists of supposing that there is a single group of genes that, at some
time point, become differentially expressed. The questions of interest, then, become which
time point is the more suitable for detecting the group of differentially expressed genes and
how do those genes behave through time.

In this setup one would expect that, as time passes, differential expression becomes more
acute and easy to identify. However, different experimental conditions may occur between
different time points and the signal to noise ratio may be lower in latter time points, so a
more quantitative assessment is needed. Presently, we can use inertia ratios as follows.

The amount of information about differential expression at time point / can be measured by
the inertia® projected on the differential expression component, Var(wgl)), where wgl) is the
result of applying (2) to X, I =1, ..., L. For it to be comparable between time points,
we divide it by the maximum inertia that can be captured by a single direction as in PCA,
obtaining the inertia ratios:

Var[yl!
(o = Yl (5)
AW
1
where )\gl) is the inertia projected onto the first principal component of X). Then, the data
set that contains more information concerning differential expression, say X ("), is the one
that maximizes TRW. We call I* the active time point in the analysis.

2 According to PCA terminology (Lebart et al. 1995).

11
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Once [* has been determined, Algorithms 1 and 2 can be applied to data set X ") obtaining
the respective groups of up and down regulated genes, ") and D). Then, plots of 1/11(“
vS. g ) can be made for each time point, coloring the genes in each group to see how the
differential expression process evolves through time.

Groups conformation through time

The second approach supposes that there may be different genes with differential expression
at different time points. The analysis here consists simply of applying Algorithms 1 and 2
to each data set X, ..., X&) and comparing the groups of up and down regulated genes
detected at each time point. Here, zpl(l) vs. 2 *) plots are also very useful.

In practice, we have found both approaches to work well and to provide complementary and
useful insights. If one expects to have a single group of up regulated and a single group of
down regulated genes as the final output of the analysis, we recommend taking &) and D)
from the first approach as reference, and assessing their behaviour through time using the
second approach. If one is interested in analysing the changes in the groups of differentially
expressed genes through time, the second approach is in order, and the first approach can be
used to get an additional idea of the intensity of the differential expression process at each
time point via inertia ratios.

2.6. Data — Phytophthora infestans

The acde package comes with the phytophthora data set, taken from the Tomato Expres-
sion Database website (http://ted.bti.cornell.edu/), experiment E022 (Restrepo et al.
2005)3. This data set contains raw measurements of 13440 tomato genes for eight plants
inoculated with Phytophthora infestans and eight plants mock-inoculated with sterile water
at four different time points (0, 12, 36 and 60 hours after inoculation).

This data set is a list with four matrices of 13440 x 16, one for each of the time points in the
experiment. A portion of data at 60 hai (phytophthoral[[4]]) is presented in Table 3.

Table 3: Data 60 hai from tomato plants inoculated with P. infestans.

Inoculated (I) Non-inoculated (NT)
Gene 11 2 13 --- 18 NI1 NI2 NI3 .-- NI8
1 3 30 43 --- 29 34 30 55 --- 25
2 300 158 159 --- 82 640 602 246 ... 187
3 39 31 37 --- 27 40 31 47 - 25
13440 64 49 152 --- 38 5863 81 --- 39

SRNA was extracted from each sample and then hybridized on a cDNA microarray, using the TOM1 chip
available at http://ted.bti.cornell.edu. For more details of the experimental design and conditions of the
study, see Cai, Restrepo, Myers, Zuluaga, Danies, Smart, and Fry (2013).
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3. An R session with acde: detecting differentially expressed genes

The acde package is designed to identify differentially expressed genes between two conditions
(treatment vs control, inoculated vs non- inoculated, etc.). All its functionality resides within
two functions, stp and tc, that perform single time point analysis and time course analysis,
respectively. For a correct usage, some care is needed in the organization of the data-related
arguments for both functions.

Here is the code that will be used in the remainder of this work. Before running it, please
consider that it may require a considerable time (see Appendix A.3). For a quick run, set
argument BCa in function stp to FALSE in order to skip lengthy BCa computations (note that,
in this case, Figure 1 won’t have the BCa confidence upper bound).

v

# Analysis of the phytophthora data set with acde
library(acde)

v

## Single time point analysis (36 hai)
dat <- phytophthoral[[3]]

des <- c(rep(1,8), rep(2,8))

### For a quick run, set BCa=FALSE
stpPI <- stp(dat, des, BCa=TRUE)

vV VvV Vv Vv Vv

v

stpPI
plot(stpPI)

v

## Time course analysis

desPI <- vector("list",4)

for(tp in 1:4) desPI[[tp]] <- c(rep(1,8), rep(2,8))
tcPI <- tc(phytophthora, desPI)

vV VvV Vv Vv

v

summary (tcPI)
tcPI
> plot (tcPI)

\

In the next sections, we present the usage of the acde functionality step by step, explaining
the results returned by the various functions in the previous code and interpreting them in
terms of genetic differential expression. We first describe the use of the stp function and
present a simple example with the phytophthora data set at 36 hai. Then, we describe and
apply the tc function to the whole time course of the phytophthora data set. For further
details on the internal workings of the package, please refer to the Appendix.

3.1. Single time point analysis — function stp

The function stp performs the single time point analysis presented in Section 2.4. It’s main
arguments are Z and design. These arguments represent the gene expression data to be
analysed. The first argument, Z, is a matrix of n x p that represents gene expression levels with
n genes in the rows and p replicates in the columns, p; of which correspond to the treatment
or the condition of interest (inoculation, presence of disease, etc.) and the rest being control
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replicates (mock-inoculated, healthy tissue, etc.). The second argument, design, is a vector
of length p with p; ones indicating the position of the treatment columns in Z, and twos
otherwise.

For performing a single time point analysis of the phytophthora data set at 36 hai, we use the
following code. Note that the first eight columns of phytophthoral[[.]] correspond to treat-
ment replicates, and the remaining eight to control replicates — which gives the construction
of argument des in this example.

> library(acde)

> dat <- phytophthoral[[3]]

> des <- c(rep(1,8), rep(2,8))

> stpPI <- stp(dat, des, BCa=TRUE)

In the single time point analysis, the artificial components of the genes, ¥; and ,, are
computed via the ac function (same arguments Z and design). Arguments alpha, lambda
and B correspond to the respective parameters in Algorithm 1. The argument PER specifies
whether permutation (PER=TRUE) or bootstrap (PER=FALSE, the default) replications are to
be used in step 2.1 in Algorithm 2.4 (see observation 4 in page 8). Argument th refers to the
set 7 of threshold values to be evaluated (the default is as specified in Algorithm 1).

Arguments BCa, gamma and R refer to the parameters of Algorithm 2 for the additional assess-
ments in the single time point analysis. If BCa=TRUE, a BCa gamma—confidence upper bound
for the FDR is computed. Due to the computational effort required, the default is BCa=FALSE.

Function stp returns an object of (S3) class ‘STP’, which is a list with various components stor-
ing the results of the single time point analysis. Of special interest are $dgenes (classification
of the genes), $astar (actual FDR control achieved Q(t*)), $tstar (¢*) and $qvalues.

Package acde comes with the respective print and plot methods for class ‘STP’. For printing
the basic results of the previous example, just type stpPI. In this case, 18 genes were identified
as up regulated, achieving an FDR of 1.4%. Note that the BCa 95% confidence upper bound
for the FDR is 3.7%, so good control is actually achieved?.

> stpPI

Single time point analysis for detecting differentially
expressed genes in microarray data.

Achieved FDR: 1.4Y%.
95% BCa upper bound for the FDR: 3.7%.
Warnings in BCa computation: 7398.

Inertia ratio: 4.04%.
tstar: 12.88, piO: 1, B: 100.

4The item Warnings in BCa computation in the printed results refers to the number of values in th for
which the function boot.ci from package boot returned a warning during BCa computations. These can be
seen by typing stpPI$bca$warnings or plot (stpPI, WARNINGS=TRUE).
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Differentially expressed genes:
no-diff. wup-reg.
13422 18

Results:
psil psi2 Q-value Diff. expr.

1-1-1.1.14.7 23.430 19.206 0.003 up-reg.
1-1-1.3.14.10 20.913 18.346  0.003 up-reg.
1-1-1.3.19.19 21.580 18.931  0.003 up-reg.
1-1-1.4.19.19 21.423 18.910 0.003 up-reg.
1-1-2.3.14.10 20.670 18.081  0.003 up-reg.
1-1-2.3.16.4 21.055 18.514 0.003 up-reg.
1-1-2.3.19.19 23.401 20.704 0.003 up-reg.
1-1-2.4.16.4 21.471 18.947 0.003 up-reg.
1-1-2.4.19.19 20.409 17.999  0.003 up-reg.
1-1-6.3.4.17 20.986 18.157  0.003 up-reg.
1-1-1.3.16.4 18.127 15.819 0.004 up-reg.
1-1-1.4.16.4 19.696 17.206  0.004 up-reg.
1-1-4.2.9.3  17.150 15.481  0.004 up-reg.
1-1-5.1.19.9 16.347 14.696 0.006 up-reg.
1-1-5.2.16.3 14.686 13.610 0.007 up-reg.
1-1-2.3.12.16 15.386 13.444 0.008 up-reg.
1-1-6.2.5.13 16.092 13.030 0.014 up-reg.
1-1-6.2.7.7 15.242 12.880 0.014 up-reg.
1-1-7.3.7.10 13.171 9.492 0.058  no-diff.
1-1-4.3.3.6 10.728 8.554 0.074  no-diff.
1-1-5.3.5.2  9.011 8.396 0.075  no-diff.
1-1-4.1.5.21 18.994 8.048 0.080  no-diff.
1-1-4.2.19.9  8.472 8.030 0.080  no-diff.
1-1-1.1.12.13 8.437 7.688 0.088  no-diff.
1-1-2.3.1.13 34.317 -6.708 0.126  no-diff.
1-1-6.2.20.15 31.587 -6.451 0.135  no-diff.
1-1-5.2.9.1  14.002 5.852 0.171  no-diff.
1-1-7.4.9.9 14.318 5.787 0.171  no-diff.

*More results are available in the objects:
$ac, $gvalues and $dgenes.

The instruction plot (stpPI) produces the two plots shown in Figure 1. The top plot shows
the estimated FDR as a function of multiple threshold values (with the corresponding BCa
confidence upper bounds when argument BCa=TRUE). The bottom plot shows the differentially
expressed genes on the artificial plane (¢, vs 15).

Here, the genes’ distribution in the plane is consistent with the expected behaviour when
Biological Scenario 2 holds (see Table 1). Indeed, most genes are close to the origin and only
a small proportion are far towards the right side of the plot, indicating that only a small
proportion of the genes were actually expressing themselves when the samples were taken.
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Note, also, that there are no genes far to the left of the plane.

Figure 1: plot(stpPI)
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3.2. Time course analysis — function tc

The function tc performs the time course analysis presented in Section 2.5. The two principal
arguments for the tc function are data and designs. These are lists of the same length with
the corresponding Z or design arguments for function stp at each time point. In other words,
data and designs are lists such that typing stp(datal[[tpl], designs[[tp]]) performs the
single time point analysis for time point tp. Also, note that time point names are taken from
names (data). Arguments alpha, lambda, B, PER, BCa, gamma and R are the same as in the
stp function.

The method argument specifies which of the active vs supplementary time points and groups
conformation through time approaches are to be performed (the default is both). If the former
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approach is performed, the default is to select the active time point via inertia ratios as in
Section 2.5. However, the user may set the active time point via the activeTP argument.

To perform a time course analysis for the phytophthora data set, use the following code.

> desPI <- vector("list",4)
> for(tp in 1:4) desPI[[tp]] <- c(rep(1,8), rep(2,8))
> tcPI <- tc(phytophthora, desPI)

The tc function returns an object of (S3) class ‘TC’, which is a list containing the results
from the selected methods in the method argument. Object $act contains the results from
the active vs supplementary time points approach; Object $gct contains the results from the
groups conformation through time approach.

Package acde comes with the respective print, plot and summary methods for class ‘TC’. The
summary method is the most concise way of printing a time course analysis’ results, as:

> summary (tcPI)

Time course analysis for detecting differentially
expressed genes in microarray data.

Inertia ratios (%):

hO hi12 h36 h60

0.2 0.13 4.04 65.95
Active vs complementary time points analysis:
Active timepoint: h60
Achieved FDR: 5 Y%.
Differentially expressed genes:
down-reg. mno-diff. up-reg.

94 13314 32

Groups conformation through time analysis:

Differentially expressed genes:

h36 vs h60
down-reg. no-diff. up-reg. Sum
no-diff. 94 13314 14 13422
up-reg. 0 0 18 18
Sum 94 13314 32 13440

Plots of the results from both approaches (via the plot (tcPI) command) are displayed in Fig-
ures 2, 3 and 4. We now analyse the results of the time course analysis for the phytohpthora
data set.

17
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Active vs complementary time points

The results of this approach on the phytophthora data set are presented in Figure 2. The in-
terpretation is quite straightforward: between 0 and 12 hai, the up regulated genes (green) lie
at the origin of the artificial plane so they have low or zero expression levels in all replicates®.
Between 12 and 36 hai, they move towards the top right corner and move even farther be-
tween 36 and 60 hai, presenting high expression levels only in the inoculated replicates. This
behaviour is consistent with that of defence genes that would normally have low expression
levels but become highly expressed as a reaction to the pathogen.

On the other hand, the down regulated genes (red) lie far to the right in the artificial plane
and very near to the horizontal axis between 0 and 36 hai, so they have high expression
levels for both inoculated and non inoculated replicates. Between 36 and 60 hai, the down
regulated genes’ expression levels drop drastically only in the inoculated replicates. This
behaviour is consistent with that of genes associated with primary metabolic functions that
would normally have high expression levels but fail to function as a result of the inoculation
with the pathogen.

Figure 2: Active vs complementary time points results from plot (tcPI).
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Groups conformation through time

In Figures 3 and 4, we present the estimated FDR and the corresponding groups of up and
down regulated genes detected when the single time point analysis is performed for each time
point separately. As expected, there are no differentially expressed genes at 0 and 12 hai.
At 36 hai, 18 up regulated genes and 0 down regulated genes are identified. At 60 hai, the
remaining 14 up regulated and 94 down regulated genes become differentially expressed.

® Assuming that Biological Scenario 2 holds.
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Note that the estimated functions FDR(¢) at each time point (Figure 3) are very informative
regarding this timeline for the differential expression process (as are the inertia ratios at
different timepoints in the output from summary (tcPI) above). At 0 and 12 hai, for example,
it is clear that there are no differentially expressed genes to be detected, whereas at 36 and 60
hai it is possible to attain reasonable FDR levels, which indicates the presence of differentially
expressed genes.

Figure 3: Groups conformation through time results from plot(tcPI). Estimated FDRs.
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Figure 4: Groups conformation through time results from plot (tcPI). Artificial components.
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3.3. Comparison with other methods

Cai et al. (2013) applied SAM® and a two factor (cultivar and time point) ANOVA to iden-
tify differentially expressed genes between the tomato plants in the phytophthora data set
and another near isogenic tomato line (M82). Although their main objectives were different
from ours, it is possible to extract the groups of up and down regulated genes only for the
phytophthora data set at 60 hai from their analysis”. We compare their results with our
findings in Table 4 and Figure 5.

Table 4: Comparison with Cai et al. (2013) for the phytophthora data set 60 hai.

acde Cai et al. (2013) Total
Up regulated Down regulated No diff. expr.
Up regulated 30 0 2 32
Down regulated 0 41 53 94
No diff. expr. 803 1127 11384 13314
Total 833 1168 11439 13440

Figure 5: Results from Cai et al. (2013) for the phytophthora data set 60 hai.
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While our method found 2 up regulated and 53 down regulated genes previously unidentified
by Cai et al. (2013), they still identified a much larger number of genes. This is a consequence
of row standardization as required by ANOVA and SAM and their corresponding univariate
point of view (see Section 2.2). Indeed, when row standardization is performed, the inherent
scale of genetic expression in the data is lost for further analysis.

To see this, note that a very large number of the genes identified by Cai et al. (2013) lie very

SSignificance Analysis of Microarray, see Tusher et al. (2001).
"Tables S2 and S3, and clusters 1, 2, 5-10 from table S1 in Cai et al. (2013).
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close to the origin of the artificial plane in Figure 5, which means that their overall expression
levels are very close to the average overall expression level in the experiment. If Biological
Scenario 2 holds, this is an important mistake because genes with no expression (those near
the origin) are being identified as differentially expressed. Thus, the value of a multivariate
point of view and the reason why our method should be preferred when Biological Scenario
2 is more likely to hold.

Finally, the fact that SAM and ANOVA identify more genes as differentially expressed than
acde does not imply that they have greater power as a multiple testing procedure. Instead,
these discrepancies arise from differences in the biological assumptions that underlie each
method (see Section 2.2) and the corresponding implied definitions of differential expression.

4. Conclusions

Throughout this work, we presented a multivariate inferential method for the identification
of differentially expressed genes in gene expression data and its implementation in the acde
package for R. While resting on a very general probabilistic model, the applicability of our
method lies upon the key biological and technical assumptions summarized in Biological
Scenario 2 from Section 2.2. If these assumptions hold, as is generally the case in gene
expression data, a multivariate approach is needed in order to avoid identifying non—expressed
genes as differentially expressed. Until now, no multivariate inferential approach appropriate
for Biological Scenario 2 had been proposed.

Our method is based on the work of Storey and Tibshirani (2001, 2003) for the estimation
of the FDR and on the construction of two artificial components that provide useful insights
regarding the extent to which Biological Scenario 2 holds and the behaviour of the differential
expression process. Also, comparison of inertia ratios and estimated FDRs between different
time points proved to be very valuable in this regard.

Additional assessments were proposed in order to gain more statistical assurance with respect
to the results obtained with our method. These were the complementary approaches for time
course analysis and the computation of a BCa confidence upper bound for the FDR. These
additional assessments constitute the final pieces of an integral strategy for the identification
of differentially expressed genes.

Our analysis of the phytophthora data set resulted in 32 defence related genes identified
as up regulated and 94 primary metabolic function related genes identified as down regu-
lated at 60 hai. After comparison with previous results (Cai et al. 2013), a large number
of genes identified as differentially expressed by more traditional methods lied close to the
origin of the artificial plane. It then became clear that when applying methods based upon
univariate statistics, genes with true zero expression levels may be wrongly identified as being
differentially expressed.

Finally, as a rule, univariate oriented methods will identify much more genes as being differ-
entially expressed. These discrepancies arise from differences in the biological assumptions
that underlie each method and the corresponding implied definitions of differential expression.
Therefore, these are not indicative of any method’s greater power as a multiple testing proce-
dure. Moreover, when the aim of the study is to perform an intervention upon differentially
expressed genes, our method may prove very valuable as it prevents it from being done upon
genes with no expression whatsoever.

21
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5. Session Info

e R version 3.2.0 (2015-04-16), x86_64-apple-darwinl3.4.0

e Locale: en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
o Base packages: base, datasets, graphics, grDevices, methods, stats, utils

e Other packages: BiocInstaller 1.18.1

o Loaded via a namespace (and not attached): tools 3.2.0
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A. Appendix: Technical details in acde

A.1l. Other functions in acde

While the main functionalities of the acde package reside in two functions, stp and tc,
the package includes several other functions for internal use and for additional or preliminary
assesments. Following the Prime Directive for developping thrustworthy software in Chambers
(2008), all functions (internal included) are exported in the namespace of the package and,
thus, are directly accessible to the user. Here, we briefly explain this other functions and
their role in the computations for the single time point and time course analyses.

The ac and ac2 functions compute the artificial components of gene expression data and are
used by functions tc, stp, £dr and bcaFDR. Their arguments, Z and design, are the same
as in the stp function. As a preliminary analysis, function ac may be useful for assessing
if Biological Scenario 2 holds, without the lengthy computations of stp and tc functions.
A simple way to do this is to verify that the genes’ distribution on the artificial plane is
consistent with Biological Scenario 2 following the heuristic guidelines in 1. To obtain a plot
of the artificial plane, just type plot(ac(Z, design)). Also, the inertia ratio for data set Z
can be directly computed with var(ac2(Z, des)) / eigen(cor(Z))$values[1].

Function fdr performs step 2 of Algorithm 1 and returns estimates of the FDR and the
parameter 7mg. Function bcaFDR performs steps 2 to 4 in Algorithm 2 to compute the BCa
confidence upper bound for the FDR. Both functions are called upon by function stp. Their
arguments are the same as in the stp function. Note that these functions are for internal use,
and, so, do not check for the validity of the arguments they recieve. These verifications are
made within the stp and tc functions when needed. Finally, the function qval computes the
genes’ Q-Values following Algorithm 3. Its arguments are the estimated FDRs (as object $Q
returned by fdr or stp) and the second artificial component (as returned by ac2).

With this in mind, the tc function makes calls to the stp function one or several times
(depending on the approach specified in the method argument) and the stp function, in turn,
makes calls to the ac, ac2, fdr, bcaFDR and gqval functions as needed.

A.2. Parallel computation

As both stp and tc functions use the boot function (package boot, Canty and Ripley 2015),
parallel computation is fairly straight forward for single time point and time course analyses.
The argument ‘...’ in both stp and tc functions refers specifically to parallel computation
related arguments in the boot function. A simple setup for computation in two clusters
is parallel="multicore", ncpus=2. For more details regarding parallel computation and
possible arguments specification, please refer to the help page of the boot function in R.
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A.3. Construction of this vignette

Because of the lengthy computations for obtaining the BCa confidence upper bound in Figure
1, the compilation of the code presented in this document requires considerable time. In order
to guarantee confortable installation times, this vignette® is constructed loading a workspace
session from the file resVignette.rda in the directory acde/vignettes in the source of the
acde package. However, the results can be replicated using the following code for obtaining
objects stpPI and tcPI.

## Object stpPI

set.seed (73, kind="Mersenne-Twister")

des <- c(rep(1,8), rep(2,8))

stpPI <- stp(phytophthoral[[3]], desPI[[3]], BCa=TRUE)

vV VvV Vv Vv

## Object tcPI

set.seed (27, kind="Mersenne-Twister")

desPI <- vector("list",4)

for(tp in 1:4) desPI[[tp]] <- c(rep(1,8), rep(2,8))
tcPI <- tc(phytophthora, desPI)

vV V Vv Vv V

When running this code with different random seeds, because of the shape of the estimated
FDRs (slopes approaching zero as ¢ increases in Figure 3), small changes in its estimates
(vertical displacements of the plots) can produce large changes in t* and, subsequently, in
the number of differentially expressed genes identified. While setting B = 100 is enough for
obtaining stable estimates of the FDR, a much larger B is needed in order to obtain stable
groups of differentially expressed genes.

A.4. Future perspectives

In future versions of the acde package, we hope to extend the previous analysis to include
a version of artificial components similar to the factors obtained from the correspondence
analysis framework (Lebart et al. 1995) instead of PCA, and which may be more suitable
when Biological Scenario 1 holds. Meanwhile, please enjoy the package and let us know of
any comments or suggestions for future improvements!
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8See the acde.Rwd file in source.
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