
An Introduction to VariantTools

Michael Lawrence, Jeremiah Degenhardt

October 26, 2021

Contents

1 Introduction 2

2 Calling single-sample variants 2
2.1 Basic usage . 2
2.2 Step by step . 3
2.3 Diagnosing the filters . 4
2.4 Extending and customizing the workflow . 6

3 Comparing variant sets across samples 6
3.1 Calling sample-specific variants . 6

4 Exporting the calls as VCF 7

5 Finding Wildtype and No-call Regions 7

1

1 Introduction

This vignette outlines the basic usages of the VariantToolspackage and the general workflow for loading data,
calling single sample variants and tumor-specific somatic mutations or other sample-specific variant types
(e.g., RNA editing). Most of the functions operate on alignments (BAM files) or datasets of called variants.
The user is expected to have already aligned the reads with a separate tool, e.g., GSNAP via gmapR.

2 Calling single-sample variants

2.1 Basic usage

For our example, we take paired-end RNA-seq alignments from two lung cancer cell lines from the same
individual. H1993 is derived from a metastatis and H2073 is derived from the primary tumor.

Below, we call variants from a region around the p53 gene:

> library(VariantTools)

> bams <- LungCancerLines::LungCancerBamFiles()

> bam <- bams$H1993

> if (requireNamespace("gmapR", quietly=TRUE)) {

+ p53 <- gmapR:::exonsOnTP53Genome("TP53")

+ tally.param <- TallyVariantsParam(gmapR::TP53Genome(),

+ high_base_quality = 23L,

+ which = range(p53) + 5e4,

+ indels = TRUE, read_length = 75L)

+ called.variants <- callVariants(bam, tally.param)

+ } else {

+ data(vignette)

+ called.variants <- callVariants(tallies_H1993)

+ }

In the above, we load the genome corresponding to the human p53 gene region and the H1993 BAM file
(stripped down to the same region). We pass the BAM, genome, read length and quality cutoff to the
callVariants workhorse. The read length is not strictly required, but it is necessary for one of the QA
filters. The value given for the high base quality cutoff is appropriate for Sanger and Illumina 1.8 or above.
By default, the high quality counts are used by the likelihood ratio test during calling.

The returned called_variants is a variant GRanges, in the same form as that returned by bam_tally in
the gmapR package. callVariants uses bam_tally internally to generate the per-nucleotide counts (pileup)
from the BAM file. Note that gmapR is only supported on UNIX-alikes (Linux, Mac OS X), so we load
the precomputed tallies on other platforms. The result is then filtered to generate the variant calls. The
VCF class holds similar information; however, we favor the simple tally GRanges, because it has a separate
record for each ALT, at each position. VCF , the class and the file format, has a single record for a position,
collapsing over multiple ALT alleles, and this is much less convenient for our purposes.

We can post-filter the variants for those that are clustered too closely on the genome:

> pf.variants <- postFilterVariants(called.variants)

We can subset the variants by those in an actual p53 exon (not an intron):

> subsetByOverlaps(called.variants, p53, ignore.strand = TRUE)

VRanges object with 3 ranges and 17 metadata columns:

seqnames ranges strand ref alt

<Rle> <IRanges> <Rle> <character> <characterOrRle>

2

[1] TP53 1012459 * G C

[2] TP53 1013114 * T C

[3] TP53 1014376 * G C

totalDepth refDepth altDepth sampleNames

<integerOrRle> <integerOrRle> <integerOrRle> <factorOrRle>

[1] 8 0 8 <NA>

[2] 4 0 4 <NA>

[3] 4 0 4 <NA>

softFilterMatrix | n.read.pos n.read.pos.ref raw.count.total

<matrix> | <integer> <integer> <integer>

[1] | 8 0 8

[2] | 4 0 4

[3] | 3 0 4

count.plus count.plus.ref count.minus count.minus.ref

<integer> <integer> <integer> <integer>

[1] 6 0 2 0

[2] 0 0 4 0

[3] 1 0 3 0

count.del.plus count.del.minus read.pos.mean read.pos.mean.ref

<integer> <integer> <numeric> <numeric>

[1] 0 0 64.125 NaN

[2] 0 0 49.750 NaN

[3] 0 0 31.500 NaN

read.pos.var read.pos.var.ref mdfne mdfne.ref count.high.nm

<numeric> <numeric> <numeric> <numeric> <integer>

[1] 990.984 NA 17 NA 8

[2] 2435.938 NA 17 NA 4

[3] 1363.750 NA 14 NA 4

count.high.nm.ref

<integer>

[1] 0

[2] 0

[3] 0

seqinfo: 1 sequence from TP53_demo_3.2.2 genome

hardFilters(4): nonRef nonNRef readCount likelihoodRatio

The next section goes into further detail on the process, including the specific filtering rules applied, and
how one might, for example, tweak the parameters to avoid calling low-coverage variants, like the one above.

2.2 Step by step

The callVariants method for BAM files, introduced above, is a convenience wrapper that delegates to
several low-level functions to perform each step of the variant calling process: generating the tallies, basic
QA filtering and the actual variant calling. Calling these functions directly affords the user more control
over the process and provides access to intermediate results, which is useful e.g. for diagnostics and for
caching results. The workflow consists of three function calls that rely on argument defaults to achieve the
same result as our call to callVariants above. Please see their man pages for the arguments available for
customization.

The first step is to tally the variants from the BAM file. By default, this will return observed differences
from the reference, excluding N calls and only counting reads above 13 in mapping quality (MAPQ) score.

3

There are three read position bins: the first 10 bases, the final 10 bases, and the stretch between them (these
will be used in the QA step).

> if (requireNamespace("gmapR", quietly=TRUE)) {

+ tallies_H1993 <- tallyVariants(bam, tally.param)

+ }

Unless one is running a variant caller in a routine fashion over familiar types of data, we highly recommend
performing detailed QC of the tally results. VariantTools provides several QA filters that aim to expose
artifacts, especially those generated during alignment. These filters are not designed for filtering during
actual calling; rather, they are meant for annotating the variants during exploratory analysis. The filters
include a check on the median distance of alt calls from their nearest end of the read (default passing cutoff
>= 10), as well as a Fisher Exact Test on the per-strand counts vs. reference for strand bias (p-value cutoff:
0.001). The intent is to ensure that the data are not due to strand-specific nor read position-specific artifacts.

The qaVariants function will soft filter the variants via softFilter. No variants are removed; the filter
results are added to the softFilterMatrix component of the object.

> qa.variants <- qaVariants(tallies_H1993)

> summary(softFilterMatrix(qa.variants))

<initial> mdfne fisherStrand <final>

88 16 83 11

The final step is to actually call the variants. The callVariants function uses a binomial likelihood
ratio test for this purpose. The ratio is P (D|p = plower)/P (D|p = perror), where plower = 0.2 is the assumed
lowest variant frequency and perror = 0.001 is the assumed error rate in the sequencing (default: 0.001).

> called.variants <- callVariants(qa.variants)

The callVariants function applies an additional set of filters after the actual variant calling. These are
known as “post” filters and consider the putative variant calls as a set, independent of the calling algorithm.
Currently, there is only one post filter by default, and it discards variants that are clumped together along
the chromosome, as these often result from mapping difficulties.

2.3 Diagnosing the filters

The calls to qaVariants and callVariants are essentially filtering the tallies, so it is important to know,
especially when faced with a new dataset, the effect of each filter and the effect of the individual parameters
on each filter.

The filters are implemented as modules and are stored in a FilterRules object from the IRanges package.
We can create those filters directly and rely on some FilterRules utilities to diagnose the filtering process.

Here we construct the FilterRules that implements the qaVariants function. Again, we rely on the
argument defaults to generate the same answer.

> qa.filters <- VariantQAFilters()

We can now ask for a summary of the filtering process, which gives the number of variants that pass each
filter, separately and then combined:

> summary(qa.filters, tallies_H1993)

<initial> mdfne fisherStrand <final>

88 16 83 11

Now we retrieve only the variants that pass the filters:

4

> qa.variants <- subsetByFilter(tallies_H1993, qa.filters)

We could do the same, except modify a filter parameter, such as the p-value cutoff for the Fisher Exact
Test for strand bias:

> qa.filters.custom <- VariantQAFilters(fisher.strand.p.value = 1e-4)

> summary(qa.filters.custom, tallies_H1993)

<initial> mdfne fisherStrand <final>

88 16 83 11

To get a glance at the additional variants we are discarding compared to the previous cutoff, we can subset
the filter sets down to the Fisher strand filter, evaluate the old and new filter, and compare the results:

> fs.original <- eval(qa.filters["fisherStrand"], tallies_H1993)

> fs.custom <- eval(qa.filters.custom["fisherStrand"], tallies_H1993)

> tallies_H1993[fs.original != fs.custom]

VRanges object with 0 ranges and 17 metadata columns:

seqnames ranges strand ref alt

<Rle> <IRanges> <Rle> <character> <characterOrRle>

totalDepth refDepth altDepth sampleNames

<integerOrRle> <integerOrRle> <integerOrRle> <factorOrRle>

softFilterMatrix | n.read.pos n.read.pos.ref raw.count.total

<matrix> | <integer> <integer> <integer>

count.plus count.plus.ref count.minus count.minus.ref count.del.plus

<integer> <integer> <integer> <integer> <integer>

count.del.minus read.pos.mean read.pos.mean.ref read.pos.var

<integer> <numeric> <numeric> <numeric>

read.pos.var.ref mdfne mdfne.ref count.high.nm count.high.nm.ref

<numeric> <numeric> <numeric> <integer> <integer>

seqinfo: 1 sequence from TP53_demo_3.2.2 genome

hardFilters: NULL

Below, we demonstrate how one might add a mask to e.g. filter out variants in low complexity regions,
where mapping errors tend to dominate:

> if (requireNamespace("gmapR", quietly=TRUE)) {

+ tally.param@mask <- GRanges("TP53", IRanges(1010000, width=10000))

+ tallies_masked <- tallyVariants(bam, tally.param)

+ }

We can also diagnose the filters for calling variants after basic QA checks.

> calling.filters <- VariantCallingFilters()

> summary(calling.filters, qa.variants)

<initial> nonRef nonNRef readCount

11 11 11 3

likelihoodRatio <final>

11 3

Check how the post filter would perform prior to variant calling:

5

> post.filters <- VariantPostFilters()

> summary(post.filters, qa.variants)

<initial> avgNborCount <final>

11 11 11

What about if we preserved the ones we have already called?

> post.filters <- VariantPostFilters(whitelist = called.variants)

> summary(post.filters, qa.variants)

<initial> avgNborCount <final>

11 11 11

2.4 Extending and customizing the workflow

Since the built-in filters are implemented using FilterRules, it is easy to mix and match different filters,
including those implemented externally to the VariantTools package. This is the primary means of extending
and customizing the variant calling workflow.

3 Comparing variant sets across samples

So far, we have called variants for the metastatic H1993 sample. We leave the processing of the primary
tumor H2073 sample as an exercise to the reader and instead turn our attention to detecting the variants
that are specific to the metastatic sample, as compared to the primary tumor.

3.1 Calling sample-specific variants

The function callSampleSpecificVariants takes the case (e.g., tumor) sample and control (e.g., matched
normal) sample as input. In our case, we are comparing the metastatic line (H1993) to the primary tumor
line (H2073) from the same patient, a smoker. To avoid inconsistencies, it is recommended to pass BAM files
as input, for which tallies are automatically generated, subjected to QA, and called as variants vs. reference,
prior to determining the sample-specific variants.

Here, we find the somatic mutations from a matched tumor/normal pair. Since we are starting from
BAM files, we have to provide tally.param for the tally step.

> if (requireNamespace("gmapR", quietly=TRUE)) {

+ tally.param@bamTallyParam@indels <- FALSE

+ somatic <- callSampleSpecificVariants(bams$H1993, bams$H2073,

+ tally.param)

+ } else {

+ somatic <- callSampleSpecificVariants(called.variants, tallies_H2073,

+ coverage_H2073)

+ }

This can be time-consuming for the entire genome, since the tallies need to be computed. To avoid repeated
computation of the tallies, the user can pass the raw tally GRanges objects instead of the BAM files. This
is less safe, because anything could have happened to those GRanges objects.

The QA and initial calling are optionally controlled by passing FilterRules objects, typically those re-
turned by VariantQAFilters and VariantCallingFilters, respectively. For controlling the final step,
determining the sample-specific variants, one may pass filter parameters directly to callSampleSpecific-

Variants. Here is an example of customizing some parameters.

6

> calling.filters <- VariantCallingFilters(read.count = 3L)

> if (requireNamespace("gmapR", quietly=TRUE)) {

+ somatic <- callSampleSpecificVariants(bams$H1993, bams$H2073, tally.param,

+ calling.filters = calling.filters,

+ power = 0.9, p.value = 0.001)

+ } else {

+ called.variants <- callVariants(tallies_H1993, calling.filters)

+ somatic <- callSampleSpecificVariants(called.variants, tallies_H2073,

+ coverage_H2073,

+ power = 0.9, p.value = 0.001)

+ }

4 Exporting the calls as VCF

VCF is a common file format for communicating variants. To export our variants to a VCF file, we first
need to coerce the GRanges to a VCF object. Then, we use writeVcf from the VariantAnnotation package
to write the file (indexing is highly recommended for large files). Note that the sample names need to be
non-missing to generate the VCF. Also, for simplicity and scalability, we typically do not want to output all
of our metadata columns, so we remove all of them here.

> sampleNames(called.variants) <- "H1993"

> mcols(called.variants) <- NULL

> vcf <- asVCF(called.variants)

> writeVcf(vcf, "H1993.vcf", index = TRUE)

5 Finding Wildtype and No-call Regions

So far, our analysis has yielded a set of positions that are likely to be variants. We have not made any claims
about the status of the positions outside of that set. For this, we need to decide, for each position, whether
there was sufficient coverage to detect a variant, if one existed. The following call carries out a power test to
decide whether a region is variant, wildtype or is unable to be called due to lack of coverage. The variants
must have been called using the filters returned by VariantCallingFilters. The algorithm depends on the
filter parameter settings, so it is possible and indeed required for the user to pass filter object used for calling
the variants. This requirement is an attempt to ensure consistency and will be made more convenient in the
future. To request the calls for a particular set of positions, one can pass a GenomicRanges (where all the
ranges are of width 1) as the pos argument. When pos is specfied, each element of the result corresponds
to an element in pos.

> called.variants <- called.variants[!isIndel(called.variants)]

> pos <- c(called.variants, shift(called.variants, 3))

> wildtype <- callWildtype(bam, called.variants, VariantCallingFilters(),

+ pos = pos, power = 0.85)

The returned object is a logical vector, with TRUE for wildtype, FALSE for variant and NA for no-call. Thus,
we could calculate the fraction called as follows:

> mean(!is.na(wildtype))

[1] 0.5

7

Sometimes it is desirable for the wildtype calls to be returned as simple vector, with a logical value for
each position (range of width one) in bamWhich. Such a vector is returned when global = FALSE is passed
to callWildtype. This is the same as extracting the positions from the ordinary Rle return value, but it is
implemented more efficiently, at least for a relatively small number of positions.

8

	Introduction
	Calling single-sample variants
	Basic usage
	Step by step
	Diagnosing the filters
	Extending and customizing the workflow

	Comparing variant sets across samples
	Calling sample-specific variants

	Exporting the calls as VCF
	Finding Wildtype and No-call Regions

