STRINGdb Package Vignette

Andrea Franceschini

15 March 2015

1 INTRODUCTION

STRING (https://www.string-db.org) is a database of known and predicted protein-protein interac-
tions. The interactions include direct (physical) and indirect (functional) associations. The database
contains information from numerous sources, including experimental repositories, computational pre-
diction methods and public text collections. Each interaction is associated with a combined confidence
score that integrates the various evidences. We currently cover over 24 milions proteins from 5090
organisms.

As you will learn in this guide, the STRING database can be usefull to add meaning to list of genes
(e.g. the best hits coming out from a screen or the most differentially expressed genes coming out from
a Microarray/RNAseq experiment.)

We provide the STRINGdb R package in order to facilitate our users in accessing the STRING
database from R. In this guide we explain, with examples, most of the package’s features and function-
alities.

In the STRINGdb R package we use the new ReferenceClasses of R (search for "ReferenceClasses”
in the R documentation.). Besides we make use of the iGraph package (http://igraph.sourceforge.net)
as a data structure to represent our protein-protein interaction network.

To begin, you should first know the NCBI taxonomy identifiers of the organism on which you have
performed the experiment (e.g. 9606 for Human, 10090 for mouse). If you don’t know that, you can
search the NCBI Taxonomy (http://www.ncbi.nlm.nih.gov/taxonomy) or start looking at our species
table (that you can also use to verify that your organism is represented in the STRING database).
Hence, if your species is not Human (i.e. our default species), you can find it and their taxonomy identi-
fiers on STRING webpage under the 'organisms’ section (https://string-db.org/cgi/input.pl?input_page_active_form=orga
or download the full list in the download section of STRING website.

> library (STRINGdb)
> string_db <- STRINGdb$new(version="11", species=9606,
+ score_threshold=200, input_directory="")

As it has been shown in the above commands, you start instantiating the STRINGdb reference class.
In the constructor of the class you can also define the STRING version to be used and a threshold for
the combined scores of the interactions, such that any interaction below that threshold is not loaded in
the object (by default the score threshold is set to 400).

Besides, if you specify a local directory to the parameter input-directory, the database files will be
downloaded into this directory and most of the methods can be used off-line. Otherwise, the database
files will be saved and cached in a temporary directory that will be cleaned automatically when the R
session is closed.

For a better understanding of the package two other commands can be useful:

> STRINGdb$methods () # To list all the methods available.
[1] ".objectPackage" ".objectParent"
[3] "add_diff_exp_color" "add_proteins_description"
[5] "benchmark_ppi" "benchmark_ppi_pathway_view"
[7] "callSuper" "copy"
[9] "enrichment_heatmap" "export"

[11] "field" "getClass"

[13] "getRefClass" "get_aliases"

[15] "get_annotations" "get_bioc_graph"

[17] "get_clusters" "get_enrichment"

[19] "get_graph" "get_homologs"

[21] "get_homologs_besthits" "get_homology_graph"

[23] "get_interactions" "get_link"

[25] "get_neighbors" "get_paralogs"

[27] "get_pathways_benchmarking blackList" "get_png"

[29] "get_ppi_enrichment" "get_ppi_enrichment_full"
[31] "get_proteins" "get_pubmed"

[33] "get_pubmed_interaction" "get_subnetwork"

[35] "get_summary" "get_term_proteins"

[37] "import" "initFields"

[39] "initialize" "load"

[41] "load_all" "map"

[43] "mp" "plot_network"

[45] "plot_ppi_enrichment" "post_payload"

[47] "ppi_enrichment" "remove_homologous_interactions"
[49] "set_background" "show"

[61] "showi#envRefClass" "trace"

[53] "untrace" "usingMethods"

> STRINGdb$help("get_graph") # To visualize their documentation.

Call:

$get_graph()

Description:
Return an igraph object with the entire STRING network.
We invite the user to use the functions of the iGraph package to conveniently
search/analyze the network.

References:

Csardi G, Nepusz T: The igraph software package for complex network research,
InterJournal, Complex Systems 1695. 2006.
http://igraph.sf.net

See Also:
In order to simplify the most common tasks, we do also provide convenient functions
that wrap some iGraph functions.
get_interactions(string_ids) # returns the interactions in between the input proteins

get_neighbors(string_ids) # Get the neighborhoods of a protein (or of a vector of proteins).
get_subnetwork(string_ids) # returns a subgraph from the given input proteins
Author(s):

Andrea Franceschini

For all the methods that we are going to explain below, you can always use the help function in
order to get additional information/parameters with respect to those explained in this guide.

As an example, we use the analyzed data of a microarray study taken from GEO (Gene Expression
Omnibus, GSE9008). This study investigates the activity of Resveratrol, a natural phytoestrogen found
in red wine and a variety of plants, in A549 lung cancer cells. Microarray gene expression profiling after
48 hours exposure to Revestarol has been performed and compared to a control composed by A549
lung cancer cells threated only with ethanol. This data is already analyzed for differential expression
using the limma package: the genes are sorted by fdr corrected pvalues and the log fold change of the
differential expression is also reported in the table.

> data(diff_exp_examplel)
> head(diff_exp_examplel)

pvalue logFC gene
1 0.0001018 3.333461 VSTM2L
2 0.0001392 3.822383 TBC1D2
3 0.0001720 3.306056 LENG9
4 0.0001739 3.024605 TMEM27
5 0.0001990 3.854414 L0C100506014
6 0.0002393 3.082052 TSPAN1

As a first step, we map the gene names to the STRING database identifiers using the “map” method.
In this particular example, we map from gene HUGO names, but our mapping function supports several
other common identifiers (e.g. Entrez GenelD, ENSEMBL proteins, RefSeq transcripts ... etc.).

The map function adds an additional column with STRING identifiers to the dataframe that is passed
as first parameter.

> examplel_mapped <- string_db$map(diff_exp_examplel, "gene", removeUnmappedRows = TRUE)

Warning: we couldn't map to STRING 15% of your identifiers

As you may have noticed, the previous command prints a warning showing the number of genes
that we failed to map. In this particular example, we cannot map all the probes of the microarray that
refer to position of the chromosome that are not assigned to a real gene (i.e. all the LOC genes). If we
remove all these LOC genes before the mapping we obtain a much lower percentage of unmapped genes
(i.e. <6 %).

If you set to FALSE the "removeUnmappedRows” parameter, than the rows which corresponds to
unmapped genes are left and you can manually inspect them.

Finally, we extract the most significant 200 genes and we produce an image of the STRING network
for those. The image shows clearly the genes and how they are possibly functionally related. On the
top of the plot, we insert a pvalue that represents the probability that you can expect such an equal or
greater number of interactions by chance.

> hits <- examplel_mapped$STRING_id[1:200]
> string_db$plot_network(hits)

[1] "Parameter add_link not available in version 11.0 (please use 11.0b or later)"

proteins: 200
interactions: 392
expected interactions: 248 (p—value: 0)

ENSG00000173610 PNMALL

@ susos

LsR TSGAL0IP

/ ZNF385C
o e e

UFSPL ZNF155 CGREFL

o @ = e e
BEx2 M4 \
A N\ _ Tmasezo ZNF687 FAM212A sLCasALL
< - / e @ e
ke [y WDR63 CcPAS crez
MAGEB18
& L e @ e

GAL3ST4

Ao o ©
AR O 8" e~

_/
\ oz TN\
I S\ e
-, Y \

\
N |
i sERP\Nm\ |

i

VSTMzL

; 83

e N 2P1 LRRC69

o 2ZMATS “fF M \J \‘f;
S ® N PRI e
oM I !\; V=7 \ cs - cawzzts
— MYoT N\ A B 5 0y
=N : e ..

PEX11G

28

‘ PGLYRPL MGARE e
/ Lortats
/MY // C200r85

P

E TTG2

MMACHC

Coort174 @ e
e awts

[Eeen WFDC108 |

e e

Cxorf21

e

AN

ONE@C:

//\‘X

& N\

SPATAAS Cisorfs2

\ \ / N
"= / \
| /
5 /\
\ / \ \
RAETIE PTPRCAP.
-~
KLHL26 \
@ \
@REPMSZ) 2nFar7

\

OR10

2 PAYLOAD MECHANISM

This R library provides the ability to interact with the STRING payload mechanism. The payload
appears as an additional colored ”halo” around the bubbles.

For example, this allows to color in green the genes that are down-regulated and in red the genes
that are up-regulated. For this mechanism to work, we provide a function that posts the information
on our web server.

> # filter by p-value and add a color column

> # (i.e. green down-regulated gened and red for up-regulated genes)

> examplel_mapped_pvalO5 <- string_db$add_diff_exp_color(subset (examplel_mapped, pvalue<0.05),
+ logFcColStr="1o0gFC")

> # post payload information to the STRING server

> payload_id <- string_db$post_payload(examplel_mapped_pvalO5$STRING_id,

+ colors=examplel_mapped_pvalO5$color)

> # display a STRING network png with the "halo"

> string_db$plot_network(hits, payload_id=payload_id)

[1] "Parameter add_link not available in version 11.0 (please use 11.0b or later)"

proteins: 200
interactions: 392
expected interactions: 248 (p—value: 0)

Ceort174

e

ENSG00000173610

®

GALNTLS

\
. TMaSF20 E ZNF687
p WoRe3
//‘/
MAGEB18 S100a3

MPZ

- -
@

TAC4 / | cL1A
PKD2LL C \ /
“ @ A 3>
cbro
LEnGS @ s~ /
SPATA4S / \
PCOHBY 2ZNF257 / \
| RAETIE PTPRCAP.
|
| @ @
\ KLHL2S

e @

RBPMS2

)

ZNFa17

SR TSGAL0IP
ZNF155 CGREFL

SLC38ALL

E FAM212A E

cPas cTe2

@ 6

LRRC69

FAM2218

©

ENSG00000189367

)

KRTAPS-3

e — FAM214A

Cisorfs2

OR10

3 ENRICHMENT

We provide a method to compute the enrichment in Gene Ontology (Process, Function and Component),
KEGG and Reactome pathways, PubMed publications, UniProt Keywords, and PFAM/INTERPRO/SMART
domains for your set of proteins all in one simple call. The enrichment itself is computed using an hy-
pergeometric test and the FDR is calculated using Benjamini-Hochberg procedure.

> enrichment <- string_db$get_enrichment(hits)
> head(enrichment, n=20)

category term number_of_genes number_of_genes_in_background

1 Component GO.0005576 45 2505
2 KEGG hsa04115 6 68
3 Keyword KW-0732 59 3236
4 Keyword KW-0391 17 512
5 Keyword KW-0964 37 1814
6 Keyword KWw-1015 53 3284
7 Keyword KW-0325 66 4352
8 Keyword KW-0180 4 30
9 Keyword KW-0621 141 11708
10 Process G0.0006952 33 1234
11 Process G0.0052547 15 420
12 Process G0.0051707 28 1173
13 Process G0.0045861 14 349
14 Process G0.0010466 12 251
15 Process G0.0006950 55 3267

ncbiTaxonld
1 9606
2 9606
3 9606
4 9606
5 9606
6 9606
7 9606
8 9606
9 9606
10 9606
11 9606
12 9606
13 9606
14 9606
15 9606
1
2
3
4
5
6
7
8
9 9606.ENSP00000008938,9606.ENSP00000014914,9606 . ENSP00000195455,9606 . ENSP00000216286,9606 . ENSP0O000C

10

11
12
13
14
15
1
2
3
4
5
6
7
8
9 PGLYRP1,GPRC5A,C40rf6,NID2,MT4,PEX11G,CYP4F2,C5,TNNC1,RARRES1,TP5313,PRLHR,MYOT,C4BPB,MC3R,HIST1H1
10
11
12
13
14
15

p_value fdr description
1 1.20e-04 0.0432 extracellular region
2 1.00e-04 0.0189 p53 signaling pathway
3 4.17e-06 0.0011 Signal
4 2.88e-05 0.0039 Immunity
5 4.41e-05 0.0040 Secreted
6 3.80e-04 0.0223 Disulfide bond
7 3.30e-04 0.0223 Glycoprotein
8 3.70e-04 0.0223 Complement pathway
9 1.20e-03 0.0457 Polymorphism
10 5.05e-07 0.0014 defense response
11 3.88e-05 0.0221 regulation of peptidase activity
12 3.15e-05 0.0221 response to other organism
13 2.09e-05 0.0221 negative regulation of proteolysis
14 1.60e-05 0.0221 negative regulation of peptidase activity
15 9.46e-05 0.0326 response to stress

If you have performed your experiment on a predefined set of proteins, it is important to run the
enrichment statistics using that set as a background (otherwise you would get a wrong p-value !). Hence,
before to launch the method above, you may want to set the background:

> backgroundV <- examplel_mapped$STRING_id[1:2000] # as an example, we use the first 2000 genes
> string_db$set_background (backgroundV)

You can also set the background when you instantiate the STRINGdb object:

> string_db <- STRINGdb$new(score_threshold=200, backgroundV = backgroundV)

If you just want to know terms are assigned to your set of proteins (and not necessary enriched) you
can use “get_annotations” method. This method will output all the terms from most of the categories
(the exceptions are KEGG terms due to licensing issues and PubMed due to the size of the output)
that are associated with your set of proteins.

> annotations <- string_db$get_annotations(hits)
> head(annotations, n=20)

category term_id number_of_genes ratio_in_set species
1 Component GO:0000139 4 0.020 9606
2 Component G0:0000151 2 0.010 9606
3 Component G0:0000220 1 0.005 9606
4 Component G0:0000228 3 0.015 9606
5 Component G0O:0000307 1 0.005 9606
6 Component G0:0000323 9 0.045 9606
7 Component G0:0000502 1 0.005 9606
8 Component G0:0000785 3 0.015 9606
9 Component G0:0000786 3 0.015 9606
10 Component GO:0000788 1 0.005 9606
11 Component GO:0000790 3 0.015 9606
12 Component G0:0000791 1 0.005 9606
13 Component G0:0001533 1 0.005 9606
14 Component G0:0001650 1 0.005 9606
15 Component G0:0001669 2 0.010 9606
16 Component GO:0001725 1 0.005 9606
17 Component GO0:0001726 1 0.005 9606
18 Component G0:0001891 1 0.005 9606
19 Component GO0:0005576 45 0.225 9606
20 Component GO:0005577 1 0.005 9606
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

19 9606 .ENSP00000008938,9606 . ENSP00000216286,9606 . ENSP00000223642,9606 . ENSP00000243611,9606 . ENSPO000C
20

10

© 00N O WN -

=
= O

12
13
14
15
16
17
18
19 PGLYRP1,NID2,C5,C4BPB,C3,ISLR,SERPINF1,THSD1,EPYC,LGALS3BP,C6,CSTA,ZP1,PTH,TIMP4,S100P,DEFB1,CPA6,
20

description
1 Golgi membrane
2 ubiquitin ligase complex
3 vacuolar proton-transporting V-type ATPase, VO domain
4 nuclear chromosome
5 cyclin-dependent protein kinase holoenzyme complex
6 lytic vacuole
7 proteasome complex
8 chromatin
9 nucleosome
10 nuclear nucleosome
11 nuclear chromatin
12 euchromatin
13 cornified envelope
14 fibrillar center
15 acrosomal vesicle
16 stress fiber
17 ruffle
18 phagocytic cup
19 extracellular region
20 fibrinogen complex

4 CLUSTERING

The iGraph package provides several clustering/community algorithms: "fastgreedy”, "walktrap”, “sp-

inglass”, “edge.betweenness”. We encapsulate this in an easy-to-use function that returns the clusters
in a list.

11

vV Vv

+ + Vv Vv Vv

(1]
(1]
(1]
(1]

}

get clusters
clustersList <- string_db$get_clusters (examplel_mapped$STRING_id[1:600])

plot first 4 clusters
par (mfrow=c(2,2))
for(i in seq(1:4))1

string_db$plot_network(clustersList[[i]])

"Parameter
"Parameter
"Parameter
"Parameter

add_link
add_link
add_link
add_link

not
not
not
not

available
available
available
available

in
in
in
in

version
version
version
version

12

11.0 (please
11.0 (please
11.0 (please
11.0 (please

use
use
use
use

11.0b
11.0b
11.0b
11.0b

or
or
or
or

later)"
later)"
later)"
later)"

proteins: 142
interactions: 604

expected interactions: 226 (p—value: 0)

proteins: 133
interactions: 460

expected interactions: 142 (p—value: 0)

proteins: 54
interactions: 72
expected interactions: 7 (p—value: 0)

proteins: 68
interactions: 119

expected interactions: 10 (p—value: 0)

13

5 ADDITIONAL PROTEIN INFORMATION

You can get a table that contains all the proteins that are present in our database of the species of
interest. The protein table also include the preferred name, the size and a short description of each
protein.

> string_proteins <- string_db$get_proteins()

In the following section we will show how to query STRING with R on some specific proteins. In
the examples, we will use the famous tumor proteins TP53 and ATM .

First we need to get the STRING identifier of those proteins, using our mp method:

> tp53 = string_db$mp("tp53")
> atm = string_db$mp("atm")

The mp method (i.e. map proteins) is an alternative to our map method, to be used when you need
to map only one or few proteins.
It takes in input a vector of protein aliases and returns a vector with the STRING identifiers of those
proteins.

Using the following method, you can see the proteins that interact with one or more of your proteins:

> string_db$get_neighbors(c(tp53, atm))

It is also possible to retrieve the interactions that connect certain input proteins between each other.
Using the "get_interactions” method we can clearly see that TP53 and ATM interact with each other
with a good evidence/score.

> string_db$get_interactions(c(tp53, atm))

from to combined_score
1 9606.ENSP00000269305 9606 .ENSP00000278616 999
2 9606.ENSP00000269305 9606 .ENSP00000278616 999

STRING provides a way to get homologous proteins: in our database we store ALL-AGAINST-
ALL alignments within all 5090 organisms. You can retrive all of the paralogs of the protein using
"get_paralogs” method.

> # Get all homologs of TP53 in human.
> string_db$get_paralogs (tp53)

STRING also stores best hits (as measured by bitscore) between the proteins from different species.
”get_homologs_besthits” lets you retrieve these homologs.

14

> # get the best hits of the following protein in all the STRING species
> string_db$get_homologs_besthits (tp53)

.. or you can specify the species of interest (i.e. all the blast hits):

> # get the homologs of the following two proteins in the mouse (i.e. species_id=10090)
> string_db$get_homologs_besthits(c(tp53, atm), target_species_id=10090, bitscore_threshold=60)

6 CITATION

Please cite:

Szklarczyk D, Gable AL, Nastou KC, Lyon D, Kirsch R, Pyysalo S, Doncheva NT, Legeay M, Fang
T, Bork P, Jensen LJ, von Mering C. 'The STRING database in 2021: customizable protein-protein
networks, and functional characterization of user-uploaded gene/measurement sets.” Nucleic Acids Res.
2021 Jan 8;49(D1):D605-12

15

