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Introduction
Pharmacogenomics holds much potential to aid in discovering drug response biomarkers and developing
novel targeted therapies, leading to development of precision medicine and working towards the goal of
personalized therapy. Several large experiments have been conducted, both to molecularly characterize
drug dose response across many cell lines, and to examine the molecular response to drug administration.
However, the experiments lack a standardization of protocols and annotations, hindering meta-analysis
across several experiments.

PharmacoGx was developed to address these challenges, by providing a unified framework for downloading
and analyzing large pharmacogenomic datasets which are extensively curated to ensure maximum
overlap and consistency. PharmacoGx is based on a level of abstraction from the raw experimental data,
and allows bioinformaticians and biologists to work with data at the level of genes, drugs and cell lines.
This provides a more intuitive interface and, in combination with unified curation, simplifies analyses
between multiple datasets.

To organize the data released by each experiment, we developed the PharmacoSet class. This class
efficiently stores different types of data and facilitates interrogating the data by drug or cell line. The
PharmacoSet is also versatile in its ability to deal with two distinct types of pharmacogenomic datasets.
The first type, known as sensitivity datasets, are datasets where cell lines were profiled on the molecular
level, and then tested for drug dose response. The second type of dataset is the perturbation dataset.
These types of datasets profile a cell line on the molecular level before and after administration of a
compound, to characterize the action of the compound on the molecular level.

With the first release of PharmacoGx we have fully curated and created PharmacoSet objects for three
publicly available large pharmacogenomic datasets. Two of these datasets are of the sensitivity type.
These are the Genomics of Drug Sensitivity in Cancer Project (GDSC) (Garnett et al. 2012) and the
Cancer Cell Line Encyclopedia (CCLE) (Barretina et al. 2012). The third dataset is of the perturbation
type, the Connectivity Map (CMAP) project (Lamb et al. 2006).

Furthermore, PharmacoGx provides a suite of parallelized functions which facilitate drug response
biomarker discovery, and molecular drug characterization. This vignette will provide two example
analysis case studies. The first will be comparing gene expression and drug sensitivity measures across
the CCLE and GDSC projects. The second case study will interrogate the CMAP database with a
known signature of up and down regulated genes for HDAC inhibitors as published in [Glaser et al.
(2003)}. Using the Connectivity Score as defined in (Lamb et al. 2006), it will be seen that known
HDAC inhibitors have a high numerical score and high significance.

For the purpose of this vignette, an extremely minuscule subset of all three PharmacoSet objects are
included with the package as example data. They are included for illustrative purposes only, and the
results obtained with them will likely be meaningless.

Installation and Settings

PharmacoGx requires that several packages are installed. However, all dependencies are available from
CRAN or Bioconductor.

if (!requireNamespace("BiocManager", quietly=TRUE))
install.packages("BiocManager")

BiocManager::install('PharmacoGx')

Load PharamacoGx into your current workspace:
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library(PharmacoGx)

Requirements

PharmacoGx has been tested on Windows, Mac and Cent OS platforms. The packages uses the core
R package parallel to preform parallel computations, and therefore if parallelization is desired, the
dependencies for the parallel package must be met.

Downloading PharmacoSet Objects
We have made the PharmacoSet objects of the curated datasets available for download using functions
provided in the package. A table of available PharmacoSet objects can be obtained by using the
availablePSets() function. Any of the PharmacoSets in the table can then be downloaded by calling
downloadPSet, which saves the datasets into a directory of the users choice, and returns the data into
the R session.

availablePSets()
GDSC <- downloadPSet("GDSC")

Downlading Drug Signatures

The package also provides tools to compute drug perturbation and sensitivity signatures, as explained
below. However, the computation of the perturbation signatures is very lengthy, so for users’ convenience
we have precomputed the signatures for our perturbation PharmacoSet objects and made them available
for download using the function downloadPertSig().

Case Study

(In)Consistency across large pharmacogenomic studies

Our first case study illustrates the functions for analysis of the sensitivity type of dataset. The case
study will investigate the consistency between the GDSC and CCLE datasets, recreating the analysis
similar to our Inconsistency in Large Pharmacogenomic Studies paper (Haibe-Kains et al. 2013). In
both CCLE and GDSC, the transcriptome of cells was profiled using an Affymatrix microarray chip.
Cells were also tested for their response to increasing concentrations of various compounds, and form this
the IC50 and AUC were computed. However, the cell and drugs names used between the two datasets
were not consistent. Furthermore, two different microarray platforms were used. However, PharmacoGx
allows us to overcome these differences to do a comparative study between these two datasets.

GDSC was profiled using the hgu133a platform, while CCLE was profiled with the expanded hgu133plus2
platform. While in this case the hgu133a is almost a strict subset of hgu133plus2 platform, the expression
information in PharmacoSet objects is summarized by Ensemble Gene Ids, allowing datasets with
different platforms to be directly compared. The probe to gene mapping is done using the BrainArray
customCDF for each platform (Sabatti et al. 2002).

To begin, you would load the datasets from disk or download them using the downloadPSet function
above. In the following example, we use the toy datasets provided with the package to illustrate the
process, but to recreate the full analysis the full PharmacoSets have to be downloaded.
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We want to investigate the consistency of the data between the two datasets. The common intersection
between the datasets can then be found using intersectPSet. We create a summary of the gene expression
and drug sensitivity measures for both datasets, so we are left with one gene expression profile and
one sensitivity profile per cell line within each dataset. We can then compare the gene expression and
sensitivity measures between the datasets using a standard correlation coefficient.

library(Biobase)
library(SummarizedExperiment)
library(S4Vectors)
library(PharmacoGx)
data("GDSCsmall")
data("CCLEsmall")
commonGenes <- intersect(fNames(GDSCsmall, "rna"),

fNames(CCLEsmall,"rna"))
common <- intersectPSet(list('CCLE'=CCLEsmall,

'GDSC'=GDSCsmall),
intersectOn=c("cell.lines", "drugs"),
strictIntersect=TRUE)

GDSC.auc <- summarizeSensitivityProfiles(
common$GDSC,
sensitivity.measure='auc_published',
summary.stat="median",
verbose=FALSE)

CCLE.auc <- summarizeSensitivityProfiles(
common$CCLE,
sensitivity.measure='auc_published',
summary.stat="median",
verbose=FALSE)

GDSC.ic50 <- summarizeSensitivityProfiles(
common$GDSC,
sensitivity.measure='ic50_published',
summary.stat="median",
verbose=FALSE)

CCLE.ic50 <- summarizeSensitivityProfiles(
common$CCLE,
sensitivity.measure='ic50_published',
summary.stat="median",
verbose=FALSE)

GDSCexpression <- summarizeMolecularProfiles(common$GDSC,
cellNames(common$GDSC),
mDataType="rna",
features=commonGenes,
verbose=FALSE)

CCLEexpression <- summarizeMolecularProfiles(common$CCLE,
cellNames(common$CCLE),
mDataType="rna",
features=commonGenes,
verbose=FALSE)

gg <- fNames(common[[1]], 'rna')
cc <- cellNames(common[[1]])

ge.cor <- sapply(cc, function (x, d1, d2) {
stats::cor(d1[ , x], d2[ , x], method="spearman",

use="pairwise.complete.obs")
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## TO DO:: Ensure all assays are name so we can call by name instead of index
}, d1=assay(GDSCexpression, 1), d2=assay(CCLEexpression, 1))
ic50.cor <- sapply(cc, function (x, d1, d2) {

stats::cor(d1[, x], d2[ , x], method="spearman",
use="pairwise.complete.obs")

}, d1=GDSC.ic50, d2=CCLE.ic50)
auc.cor <- sapply(cc, function (x, d1, d2) {

stats::cor(d1[ , x], d2[ , x], method="spearman",
use="pairwise.complete.obs")

}, d1=GDSC.auc, d2=CCLE.auc)

w1 <- stats::wilcox.test(x=ge.cor, y=auc.cor,
conf.int=TRUE, exact=FALSE)

w2 <- stats::wilcox.test(x=ge.cor, y=ic50.cor,
conf.int=TRUE, exact=FALSE)

yylim <- c(-1, 1)
ss <- sprintf("GE vs. AUC = %.1E\nGE vs. IC50 = %.1E",

w1$p.value, w2$p.value)

boxplot(list("GE"=ge.cor,
"AUC"=auc.cor,
"IC50"=ic50.cor),

main="Concordance between cell lines",
ylab=expression(R[s]),
sub=ss,
ylim=yylim,
col="lightgrey",
pch=20,
border="black")
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Query the Connectivity Map

The second case study illustrates the analysis of a perturbation type datasets, where the changes in
cellular molecular profiles are compared before and after administering a compound to the cell line.
Of these datasets, we have currently curated and made available for download the Connectivity Map
(CMAP) dataset (Lamb et al. 2006).

For this case study, we will recreate an analysis from the paper by Lamb et al., in which a known
signature for HDAC inhibitors (Glaser et al. 2003) is used to recover drugs in the CMAP dataset that
are also known HDAC inhibitors. For this example, the package includes this signature, already mapped
to the gene level, and it can be loaded by calling data(HDAC\_genes).
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Once again, we load the dataset, downloading it if needed using downloadPSet . We then recreate drug
signatures for each drug using the function drugPerturbationSig to preform statistical modelling of
the transcriptomic response to the application of each drug. We then compare the observed up-regulated
and down-regulated genes to a the known HDAC signature, using the GSEA connectivity score to
determine the correlation between the two signatures.

library(PharmacoGx)
library(pander)
data(CMAPsmall)
drug.perturbation <- drugPerturbationSig(CMAPsmall,

mDataType="rna",
verbose=FALSE)

data(HDAC_genes)

res <- apply(drug.perturbation[,,c("tstat", "fdr")],
2, function(x, HDAC){

return(connectivityScore(x=x,
y=HDAC[,2,drop=FALSE],

method="fgsea", nperm=100))
}, HDAC=HDAC_genes)

rownames(res) <- c("Connectivity", "P Value")
res <- t(res)
res <- res[order(res[,1], decreasing=TRUE),]
pander::pandoc.table(res,

caption='Connectivity Score results for HDAC inhibitor gene signature.',
style = 'rmarkdown')

Table 1: Connectivity Score results for HDAC inhibitor gene signature.

Connectivity P Value

vorinostat 0.9449 0.006397
alvespimycin 0.8831 0.01026

acetylsalicylic acid 0 1
rosiglitazone -0.714 0.07042
pioglitazone -0.7335 0.0606

As we can see, the known HDAC inhibitor Varinostat has a very strong connectivity score, as well as a very high significance
as determined by permutation testing, in comparison to the other drugs, which score poorly.

This example serves as a validation of the method, and demonstrates the ease with which drug perturbation analysis can
be done using PharmacoGx. While in this case we were matching a drug signature with a drug class signature, this method
can also be used in the discovery of drugs that are anti-correlated with known disease signatures, to look for potential new
treatments and drug repurposing.

Estimating Drug Sensitivity Measures
PharmacoGx includes functions to calculate estimated AUC (Area Under drug response Curve) and IC50 values from drugs
dose response experiments that measure cell viability after applications of varying concentrations of drug. Additionally,
these measures are recomputed for every sensitivity PharmacoSet we create and included alongside any measures published
with the original data. The AUC measures originally published are labelled as auc_published, while the recomputed
measures are labelled as auc_recomputed, and likewise for the IC50.

While the PharmacoSets already contain the recomputed data, the AUC and IC50 can be calculated for arbitrary data
using the computeIC50 and computeAUC functions. The AUC can be calculated using either the area under the curve
defined by the actual points recorded, or the area under the curve fitted to the data.
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Curve Fitting
While AUC can be numerically calculated without curve fitting, to estimate the IC50 a drug dose response curve must be
fit to the data.The dose-response curves are fitted to the equation

y = E∞ + 1 − E∞
1 + ( x

IC50 )HS

where the maximum viability is normalized to be y = y(0) = 1, E∞ denotes the minimum possible viability achieved by
administering any amount of the drug, IC50 is the concentration at which viability is reduced to half of the viability
observed in the presence of an arbitrarily large concentration of drug, and HS is a parameter describing the cooperativity
of binding. HS < 1 denotes negative binding cooperativity, HS = 1 denotes noncooperative binding, and HS > 1 denotes
positive binding cooperativity. The parameters of the curves are fitted using the least squares optimization framework.
The fitting of these curves to arbitrary points is implemented by the logLogisticRegression function.

Plotting Drug-Dose Response Data
Drug-Dose response data included in the PharmacoSet objects can be conviniently plotted using the drugDoseResponseCurve
function. Given a list of PharmacoSets, a drug name and a cell name, it will plot the drug dose response curves for the
given cell-drug combination in each dataset, allowing direct comparisons of data between datasets.

Gene-Drug Association Modelling
PharmacoGx provides methods to model the association between drugs and molecular data such as transcriptomics, genomics
and proteomics.

Sensitivity studies allow the discovery of molecular features that improve or inhibit the sensitivity of cell lines to various
compounds, by looking at the association between the expression of the feature and the response towards each compound.
This allows the selection of drugs to be tailored to each specific patient based on the expressed known sensitivity biomarkers.
The function drugSensitivitySig models these associations.

Perturbation studies on the other hand look at the molecular profiles of a cell before and after application of a drug,
and therefore can characterize the action of a drug on the molecular level. It is hypothesized that drugs which act to
down-regulate expression of known disease biomarkers would be effective in reversing the cell from a diseased to healthy
state. The function drugPerturbationSig models the molecular profiles of drugs tested in a perturbation dataset.

Sensitivity Modelling
The association between molecular features and response to a given drug is modelled using a linear regression model
adjusted for tissue source:

Y = β0 + βiGi + βtT + βbB

where Y denotes the drug sensitivity variable, Gi, T and B denote the expression of gene i, the tissue source and the
experimental batch respectively, and βs are the regression coefficients. The strength of gene-drug association is quantified
by βi, above and beyond the relationship between drug sensitivity and tissue source. The variables Y and G are scaled
(standard deviation equals to 1) to estimate standardized coefficients from the linear model. Significance of the gene-drug
association is estimated by the statistical significance of βi (two-sided t test). P-values are then corrected for multiple
testing using the false discovery rate (FDR) approach.

As an example of the efficacy of the modelling approach, we can model the significance of the association between two
drugs and their known biomarkers in CCLE. We examine the association between drug 17-AAG and gene NQO1, as well
as drug PD-0325901 and gene BRAF :

library(pander)
data(CCLEsmall)
features <- fNames(CCLEsmall, "rna")[

which(featureInfo(CCLEsmall,
"rna")$Symbol == "NQO1")]
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sig.rna <- drugSensitivitySig(object=CCLEsmall,
mDataType="rna",
drugs=c("17-AAG"),
features=features,
sensitivity.measure="auc_published",
molecular.summary.stat="median",
sensitivity.summary.stat="median",
verbose=FALSE)

sig.mut <- drugSensitivitySig(object=CCLEsmall,
mDataType="mutation",
drugs=c("PD-0325901"),
features="BRAF",
sensitivity.measure="auc_published",
molecular.summary.stat="and",
sensitivity.summary.stat="median",
verbose=FALSE)

sig <- rbind(sig.rna, sig.mut)
rownames(sig) <- c("17-AAG + NQO1","PD-0325901 + BRAF")
colnames(sig) <- dimnames(sig.mut)[[3]]
pander::pandoc.table(t(sig), style = "rmarkdown", caption='P Value of Gene-Drug Association' )

Table 2: P Value of Gene-Drug Association

17-AAG + NQO1 PD-0325901 + BRAF

estimate 0.601 0.8252
se 0.05368 0.1339
n 492 472

tstat 11.2 6.161
fstat 125.3 37.95

pvalue 6.034e-26 1.613e-09
df 469 449
fdr 6.034e-26 1.613e-09

Perturbation Modelling
The molecular response profile of a given drug is modelled as a linear regression model adjusted experimental batch effects,
cell specific differences, and duration of experiment to isolate the effect of the concentration of the drug applied:

G = β0 + βiCi + βtT + βdD + βbB

where G denotes the molecular feature expression (gene), Ci denotes the concentration of the compound applied, T the
cell line identity, D denotes the duration of the experiment, B denotes the experimental batch, and βs are the regression
coefficients. The strength of feature response is quantified by βi. Unlike the sensitivity signatures, the G and C variables
are unscaled. Significance of the gene-drug association is estimated by the statistical significance of βi, calculated using an
F-test on the improvement in fit after the inclusion of the term. P-values are then corrected for multiple testing using the
false discovery rate (FDR) approach.

Connectivity Scoring
The package also provides two methods for quantifying the similarity between two molecular signatures of the form returned
by drugPerturbationSig and drugSensitivitySig, or a set of up and down regulated genes as part of a disease signature. The
two methods are the GSEA method as introduced by Subramanian et at (Subramanian et al. 2005), and GWC, a method
based on a weighted Spearman correlation coefficient. Both methods are implemented by the connectivityScore function.
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GSEA
The GSEA method is implemented to compare a signature returned by drugPerturbationSig with a known set of up and
down regulated genes in a disease state. For the disease signature, the function expects a vector of features with a value,
either binary (1, -1) or continuous, where the sign signifies if the gene is up or down regulated in the disease. The names of
the vector are expected to be the feature names, matching the feature names used in the drug signature. The function then
returns a GSEA score measuring the concordance of the disease signature to the drug signature, as well as an estimated
P-Value for the significance of the connectivity determined by permutation testing.

GWC
The GWC method (Genome Wide Correlation) is implemented to compare two signatures of the same length, such as
two drug signatures returned by drugPerturbationSig. The score is a Spearman correlation weighted by the normalized
negative logarithm significance of each value. The normalization is done so that datasets of different size can be compared
without concern for lower p-values in one dataset due to larger sample sizes.

More precisely, take Xi and Yi to be the ranks of the first and second set of data respectively, and Pxi, Pyi to be the
p-values of those observations. The weight for each pair of observations is:

Wxi = − log10(Pxi)∑
i
− log10(Pxi)

Wyi = − log10(Pyi)∑
i
− log10(Pyi)

Wi = Wxi +Wyi

If we further define the weighted mean as follows:

m(X;W ) =
∑

i
WiXi∑
i
Wi

Then the weighted correlation is given by:

cor(X,Y,W ) =

∑
i

Wi(Xi−m(X;W ))(Yi−m(Y,W ))∑
i

Wi√
(
∑

i
Wi(Xi−m(X;W ))2∑

i
Wi

)(
∑

i
Wi(Yi−m(Y ;W ))2∑

i
Wi

)

This correlation therefore takes into account not only the ranking of each feature in a signature, but also of the significance
of each rank.
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Session Info

# set eval = FALSE if you don't want this info (useful for reproducibility) to appear
sessionInfo()
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R version 4.1.1 (2021-08-10)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Ubuntu 20.04.3 LTS

Matrix products: default
BLAS: /home/biocbuild/bbs-3.14-bioc/R/lib/libRblas.so
LAPACK: /home/biocbuild/bbs-3.14-bioc/R/lib/libRlapack.so

locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
[3] LC_TIME=en_GB LC_COLLATE=C
[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
[7] LC_PAPER=en_US.UTF-8 LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C

[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C

attached base packages:
[1] stats4 stats graphics grDevices utils datasets methods
[8] base

other attached packages:
[1] pander_0.6.4 PharmacoGx_2.6.0
[3] CoreGx_1.6.0 SummarizedExperiment_1.24.0
[5] GenomicRanges_1.46.0 GenomeInfoDb_1.30.0
[7] IRanges_2.28.0 S4Vectors_0.32.0
[9] MatrixGenerics_1.6.0 matrixStats_0.61.0

[11] Biobase_2.54.0 BiocGenerics_0.40.0
[13] knitcitations_1.0.12 knitr_1.36

loaded via a namespace (and not attached):
[1] fgsea_1.20.0 colorspace_2.0-2
[3] ellipsis_0.3.2 lsa_0.73.2
[5] XVector_0.34.0 SnowballC_0.7.0
[7] MultiAssayExperiment_1.20.0 DT_0.19
[9] fansi_0.5.0 lubridate_1.8.0

[11] RefManageR_1.3.0 xml2_1.3.2
[13] jsonlite_1.7.2 magicaxis_2.2.1
[15] cluster_2.1.2 shinydashboard_0.7.2
[17] shiny_1.7.1 mapproj_1.2.7
[19] compiler_4.1.1 httr_1.4.2
[21] backports_1.2.1 assertthat_0.2.1
[23] Matrix_1.3-4 fastmap_1.1.0
[25] limma_3.50.0 later_1.3.0
[27] visNetwork_2.1.0 htmltools_0.5.2
[29] tools_4.1.1 igraph_1.2.7
[31] gtable_0.3.0 glue_1.4.2
[33] GenomeInfoDbData_1.2.7 reshape2_1.4.4
[35] RANN_2.6.1 dplyr_1.0.7
[37] maps_3.4.0 tinytex_0.34
[39] fastmatch_1.1-3 Rcpp_1.0.7
[41] slam_0.1-48 vctrs_0.3.8
[43] BumpyMatrix_1.2.0 xfun_0.27
[45] stringr_1.4.0 mime_0.12
[47] lifecycle_1.0.1 gtools_3.9.2
[49] zlibbioc_1.40.0 MASS_7.3-54
[51] scales_1.1.1 promises_1.2.0.1
[53] relations_0.6-10 parallel_4.1.1
[55] RColorBrewer_1.1-2 sets_1.0-19
[57] yaml_2.2.1 gridExtra_2.3
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[59] ggplot2_3.3.5 downloader_0.4
[61] stringi_1.7.5 highr_0.9
[63] NISTunits_1.0.1 plotrix_3.8-2
[65] checkmate_2.0.0 caTools_1.18.2
[67] BiocParallel_1.28.0 rlang_0.4.12
[69] pkgconfig_2.0.3 bitops_1.0-7
[71] pracma_2.3.3 evaluate_0.14
[73] lattice_0.20-45 purrr_0.3.4
[75] htmlwidgets_1.5.4 tidyselect_1.1.1
[77] plyr_1.8.6 magrittr_2.0.1
[79] R6_2.5.1 gplots_3.1.1
[81] generics_0.1.1 DelayedArray_0.20.0
[83] DBI_1.1.1 sm_2.2-5.7
[85] pillar_1.6.4 RCurl_1.98-1.5
[87] tibble_3.1.5 crayon_1.4.1
[89] KernSmooth_2.23-20 utf8_1.2.2
[91] rmarkdown_2.11 grid_4.1.1
[93] data.table_1.14.2 marray_1.72.0
[95] piano_2.10.0 digest_0.6.28
[97] xtable_1.8-4 httpuv_1.6.3
[99] munsell_0.5.0 celestial_1.4.6

[101] shinyjs_2.0.0
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