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1 Scope

The NanoStringQCPro package facilitates preprocessing and quality control of NanoString® gene expression
data. It provides functions for creating an RccSet (an extension of the standard ExpressionSet class) from
the files produced by an nCounter® mRNA Gene Expression assay, performing NanoString®-recommended
background correction and normalization, and generating a QC report with metrics that can be used to identify
outlier samples and poorly performing probes (i.e. probes with signals within noise range). The overall workflow
is outlined in Figure 1 (see next page).

2 Quick start

The package’s newRccSet() function is the main wrapper function for reading in nCounter® mRNA Gene
Expression count data and annotations:
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> library(NanoStringQCPro)

> exampleDataDir <- system.file("extdata", package="NanoStringQCPro")

> rccDir <- file.path(exampleDataDir, "RCC")

> example_rccSet <- newRccSet(

+ rccFiles = dir(rccDir, full.names=TRUE)

+ #,rccCollectorToolExport = file.path(exampleDataDir, "nSolver", "RCC_collector_tool_export.csv")

+ ,rlf = file.path(exampleDataDir, "RLF", "NQCP_example.rlf")

+ ,cdrDesignData = file.path(exampleDataDir, "CDR", "CDR-DesignData.csv")

+ ,extraPdata = file.path(exampleDataDir, "extraPdata", "SampleType.txt")

+ ,blankLabel = "blank"

+ ,experimentData.name = "Dorothee Nickles"

+ ,experimentData.lab = "Richard Bourgon"

+ ,experimentData.contact = "nickles.dorothee@gene.com"

+ ,experimentData.title = "NanoStringQCPro example dataset"

+ ,experimentData.abstract= "Example data for the NanoStringQCPro package"

+ )

>

> # Reading RCC files...

> # checkRccSet() messages:

> # The following panel housekeeping genes were found: RBCK1, USP19

Raw count data is stored in a series of Reporter Code Count (.RCC) files where each file holds the data for one
sample. The rccFiles argument should be assigned a vector of paths to these files. Alternatively, the .CSV file
produced using the RCC Collector Tool Format Export feature of NanoString® nSolver� Analysis Software can
be imported instead via the rccCollectorToolExport argument (commented out in the example above), but
we recommend importing the .RCC files directly if they are available. Details for each probe in the codeset used
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Figure 1: Overview of the NanoStringQCPro work flow.
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in the experiment are specified in a Reporter Library File (.RLF): a path to this file must always be specified
via the rlf argument. Optional additional details for each probe are usually provided by NanoString® in
the “Design Data” tab of the Codeset Design Report (CDR) — an Excel spreadsheet that accompanies each
codeset order. To import these details, an extract of the“Design Data”tab should be saved as a .CSV file (see
extdata/CDR for an example) and then its path should be specified in the cdrDesignData argument.

The function has a few optional arguments that are described in more detail in its man page and in Sample
annotation and Codeset annotation in the following section. For examples of the various input files, see the
extdata directory included with the package and the Example files section at the end of this vignette.

3 RccSet loaded with NanoString® data

The object returned by newRccSet() is an RccSet. This class is a light extension of the standard ExpressionSet
class, and it enables NanoStringQCPro to more rigorously make use of the base ExpressionSet data structure
in a manner suitable for the preprocessing and quality control of NanoString® data.

> str(max.level=2, example_rccSet)

Formal class 'RccSet' [package "NanoStringQCPro"] with 7 slots

..@ experimentData :Formal class 'MIAME' [package "Biobase"] with 13 slots

..@ assayData :<environment: 0xb6679e0>

..@ phenoData :Formal class 'AnnotatedDataFrame' [package "Biobase"] with 4 slots

..@ featureData :Formal class 'AnnotatedDataFrame' [package "Biobase"] with 4 slots

..@ annotation : chr "NQCP_example"

..@ protocolData :Formal class 'AnnotatedDataFrame' [package "Biobase"] with 4 slots

..@ .__classVersion__:Formal class 'Versions' [package "Biobase"] with 1 slot

The experimentData slot contains information about the experiment: its title and an abstract, and the
name, lab, and contact information of the people who generated the data. assayData is a pointer to an
environment that contains a matrix called exprs which initially contains the raw expression data imported
from the .RCC files. (Note: a pseudo-count of 1 is always added to all measurements to enable subsequent
log transformation of the data in cases where zero-counts are present.) After preprocessing, this matrix will
contain background-corrected and normalized data and there will be additional matrices in assayData for each
preprocessing step — see sections below. phenoData is an AnnotatedDataFrame with information about the
samples, and featureData is a similar AnnotatedDataFrame with information about the probes. The elements
of phenoData correspond to the columns of the exprs matrix while those of featureData correspond to its
rows. The annotation slot shows the name of the codeset. The protocolData slot is currently unused.

Note that Biobase provides accessor functions for most key content: experimentData(), assayData(),
exprs(), phenoData() (or pData() for the same content in a standard data frame), featureData() (or
fData()), and annotation(). For more information about any of these functions or the ExpressionSet class
overall, see the Biobase documentation. For more information on the additional methods provided by the
RccSet class, see the package’s man pages.

3.1 Sample annotation

Any descriptions or details about the samples that are already present in the .RCC files will be extracted by
newRccSet() and stored in the phenoData slot. Such details are often limited and insufficient for downstream
work, so additional sample annotation can be added via .CSV files specified in a vector of paths passed to
the function’s extraPdata argument. Each of these annotation files should be comma-separated and should

http://bioconductor.org/packages/Biobase
http://bioconductor.org/packages/Biobase
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contain a column labeled FileName whose values are the exact .RCC file names. The FileName column is
used as the primary key for merging the annotation columns into phenoData, and the function will return
an error if it contains any missing or additional .RCC filenames. One particularly important bit of sample
information that can be added via one of these annotation files is the SampleType column used primarily by
the preprocessing and QC report functions to identify blank samples (i.e. water runs). If this column isn’t
specified as such, it will be assigned with default value NA for all samples. (Note also that the ‘blankLabel’
argument to newRccSet() should be the same as the value used in the annotation file.)

3.2 Codeset annotation

Three feature annotation columns (CodeClass, GeneName, Accession) are extracted from the .RCC files and
stored in the featureData slot. Their concatenation (“<CodeClass>_<GeneName>_<Accession>”) is used
for the featureData row names and thus serves as a primary key for features; probe details in the .RLF

file are merged into featureData using this key. An additional column named SpikeInInput is added to
record the RNA “spike in” input concentrations for the control probes in each codeset. These probes are
identified by “Positive” and “Negative” values in the CodeClass column, and their concentrations are parsed
from the parenthesized label in the GeneName (128, 32, 8, 2, 0.5, and 0.125 fM for positive control probes and
0 for all negative control probes in the mRNA Gene Expression assay). If addEgAnnotions == TRUE, then
featureData is further annotated with EntrezGene identifiers and HGNC symbols by doing look ups in the
org.Hs.eg.db package using the RefSeq accessions indicated in the .RLF. Note that NA values will be assigned
as the annotations for any accessions not found in org.Hs.eg.db, and the values for other accessions will depend
on the specific version of org.Hs.eg.db that you have installed.

The CDR for a given codeset is provided as an Excel file with multiple tabs containing information about the
probe design history and the overall order. For the annotation of a codeset, only the “Design Data” tab is
relevant: it has information such as probe identifiers and target sequences for all probes in the codeset. If the
CDR is available, the“Design Data”tab can be saved as a comma delimited .CSV file, and the cdrDesignData

argument of newRccSet() can be pointed at this file. The function will then add the relevant columns from
the file to featureData. See the buildCodesetAnnotation() man page for more details.

4 Preprocessing

NanoString® proposes several data preprocessing steps for NanoString® gene expression data:

� Positive control normalization. Positive control normalization can be used to adjust for all platform-
associated sources of variation (e.g., automated purification, hybridization conditions, etc.). This type
of normalization will not, however, account for differences in sample input — which is also an important
source of systematic variation.

� Background correction. Background signal estimates — ideally, probe-specific estimates — are the
basis for determining whether or not a specific transcript was detected in a given sample. In addition,
background subtraction improves accuracy of fold change estimation across samples, especially for targets
whose signal is above but still close to the background level. Global background signal estimates can be
computed using negative controls. Probe-specific background signal estimates require running a small
number of blanks in addition to the primary samples of interest (three or more blanks is recommended).

� RNA content normalization. To account for inevitable differences in total RNA input per sample, an
additional step beyond positive control normalization is required. One such approach uses scaling to

http://bioconductor.org/packages/org.Hs.eg.db
http://bioconductor.org/packages/org.Hs.eg.db
http://bioconductor.org/packages/org.Hs.eg.db
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make the average signal for so-called“housekeeping”genes the same across all samples. Other non-linear
approaches exist as well, but those in common use for microarray or whole-transcriptome RNA-seq data
typically assume that most targets show no differential expression between conditions. For NanoString®

panels that include target sets that are highly focused on particular pathways or processes, this is often
not a reasonable assumption, and as a consequence such approaches may not be appropriate.

For most data sets, we typically use the following approach:

(i) Positive control normalization, to first reduce technical variability.
(ii) Subtraction of background estimates. Our preferred method (described in more detail below) is identical

to that of NanoString®, and it makes use of both blank samples and negative control probes. The
method smoothly combines blanks and negative controls — relying wholly on the latter if no blanks are
available, but largely ignoring negative controls as the number of blanks increases. We have observed
strong and systematic differences in probe-specific background, and we therefore recommend including
enough blanks to make the negative control impact on background estimation minor.

(iii) RNA content normalization via housekeeping or global median scaling. Note that if background subtrac-
tion is omitted, there is no need to do both positive control and RNA content normalization: the latter
will override the former.

The preprocRccSet() function can be used to perform all recommended preprocessing steps (or any com-
bination of them) in one go. It takes an RccSet and the preprocessing parameters as input, and it returns
a new RccSet with exprs containing the final result of the preprocessing. Results for intermediate prepro-
cessing steps are included in additional matrices in assayData, and the settings for each preprocessing step
are recorded in correspondingly named elements in the preprocessing slot of experimentData (accessible
via the preproc() function provided by Biobase). Note: Most downstream analysis is best performed on a
logarithmic scale, so in the output’s assayData, the normData matrix is on the log2 scale; all other matrices
in assayData are on the natural (original) scale.

> norm_example_rccSet <- preprocRccSet(rccSet = example_rccSet, normMethod = "housekeeping")

> # Warning message:

> # In .local(rccSet, ...) : Less than three housekeeping features are defined

>

> ls(assayData(norm_example_rccSet))

[1] "bgCorrData" "bgEstimates" "exprs" "normData" "paData"

[6] "posCtrlData"

> preproc(norm_example_rccSet)

$org.Hs.eg.db_version

[1] NA

$posCtrlData_summaryFunction

[1] "sum"

$bgEstimates_bgReference

[1] "both"

$bgEstimates_summaryFunction

[1] "median"

$bgEstimates_stringency

[1] 1

$bgEstimates_nSolverBackground.w1

[1] 2.18

http://bioconductor.org/packages/Biobase
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$bgEstimates_nSolverBackground.shrink

[1] TRUE

$bgEstimates_inputMatrix

[1] "posCtrlData"

$paData_stringency

[1] 2

$paData_inputMatrix

[1] "posCtrlData"

$normData_method

[1] "housekeeping"

$normData_summaryFunction

[1] "median"

$normData_hkgenes

[1] "RBCK1" "USP19"

$normData_hkfeatures

[1] "Housekeeping_RBCK1_NM_006462" "Housekeeping_USP19_XP_005264882"

$normData_inputMatrix

[1] "bgCorrData"

The following subsections further describe each individual preprocessing step.

4.1 Positive control normalization

The positive spike-in RNA hybridization controls for each lane may be used to estimate the overall efficiency
of hybridization and recovery for each lane. To do so, a lane-specific summary (e.g., sum or, equivalently,
average) of positive control counts is first calculated. The average of these per-lane values is then used as the
target, and all counts for each lane are then scaled so that all lane-specific positive control summaries match
the target.

The posCtrlNorm() function performs positive control normalization and stores the results in a matrix called
posCtrlData in the assayData slot. (Note: this differs from the behavior of other packages dealing with
ExpressionSet objects that modify the values in exprs. The implementation was chosen in order to handle
certain cases where the QC report needs to perform its own preprocessing on a given RccSet.) You can choose
mean, median, or sum (the default) as the summary of positive control counts. NanoString® advises caution
with interpreting results of samples with positive control scaling factors outside the range of 0.3 to 3 since
values outside this range may indicate significant under-performance of the respective lanes. A plot highlighting
any outliers is provided in the QC report, and posCtrlNorm() records the positive control scaling factors in a
column named PosFactor in the output’s phenoData for additional inspection.

> adj_example_rccSet <- posCtrlNorm(example_rccSet, summaryFunction="sum")

> ls(assayData(adj_example_rccSet))

[1] "exprs" "posCtrlData"

> preproc(adj_example_rccSet)



NacoStringQCPro 7

$org.Hs.eg.db_version

[1] NA

$posCtrlData_summaryFunction

[1] "sum"

> head(pData(adj_example_rccSet)$PosFactor)

[1] 1.1336986 0.8377521 0.7364953 0.8895509 0.8347573 1.1523211

4.2 Background correction

As mentioned above, NanoString® includes several probes in each codeset for which no target is expected
to be present. These negative controls can be used to produce global estimates for each lane. Importantly,
such global estimates will not capture probe-specific differences in background — which we have seen to
often be quite large. The NanoStringQCPro package offers three ways to estimate the non-specific noise in a
NanoString® gene expression experiment, two of which are probe specific:

� Lane-sepecific background, based on signals obtained for negative controls in each lane.
� Probe-specific background, based on signals obtained for each probe in blank measurements without

RNA present.
� Combined probe- and lane-specific background.

A few examples are shown below using the getBackground() function. The algorithm that mimics the
calculation used in NanoString® nSolver� Analysis Software takes effect when the option to do combined
probe- and lane-specific background is selected, and a full description of the algorithm and its parameters can
be found in the man page for the nSolverBackground() function in this package.

Note: for datasets that do not contain blanks, use bgReference="negatives" or preproRccSet() will
throw an error.

> # Get background based on median signal for each probe in blank measurements:

> bg1 <- getBackground(adj_example_rccSet, bgReference="blanks", summaryFunction="median")

> # ...based on mean of negative controls:

> bg2 <- getBackground(adj_example_rccSet, bgReference="negatives", summaryFunction="mean")

> # ...using an implementation mimicking that of the nSolver software:

> bg3 <- getBackground(adj_example_rccSet, bgReference="both", stringency=1)

Background signal can then be subtracted from the data by calling subtractBackground() on the background
estimates matrix as obtained above.

> bgcorr_example_rccSet <- subtractBackground(adj_example_rccSet, bgEstimates=bg1)

> ls(assayData(bgcorr_example_rccSet))

[1] "bgCorrData" "bgEstimates" "exprs" "posCtrlData"

> preproc(bgcorr_example_rccSet)

$org.Hs.eg.db_version

[1] NA

$posCtrlData_summaryFunction

[1] "sum"

$bgEstimates_bgReference

[1] NA
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$bgEstimates_summaryFunction

[1] NA

$bgEstimates_stringency

[1] NA

$bgEstimates_nSolverBackground.w1

[1] NA

$bgEstimates_nSolverBackground.shrink

[1] NA

$bgEstimates_inputMatrix

[1] NA

4.3 RNA content normalization

NanoStringQCPro offers two ways to normalize the NanoString® count data to account for differences in
input RNA content:

� Median normalization. Median expression values across all probes are equated (typically after positive
control normalization and background correction have already been applied).

� Housekeeping normalization. Expression values for each probe are scaled relative the average signal
from a small number of pre-specified genes “housekeeping” genes.

Median normalization is only recommended if a large number of genes are assayed in the experiment (NanoString®

recommends >300 probes) and most of them are not expected to change dramatically across conditions. Note
that in this setting, other non-linear normalization techniques traditionally applied to microarray or RNA-seq
data — e.g., variance stabilizing transforms or quantile normalization — may also be appropriate. (These are
not currently implemented in NanoStringQCPro, but relevant code in other Bioconductor packages can be
applied directly to the matrices in assayData.)

Housekeeping normalization is recommended if a reasonable number of low-variance features can be identified
for the experiment. As in PCR experiments, the housekeeping genes should be carefully evaluated as part
of the codeset design process. NanoString® recommends using at least 3 housekeeping features, and ideally
even more. If housekeeping normalization is selected, the normalization function will by default use the panel-
specified housekeeping features (i.e., those whose CodeClass is recorded as“Housekeeping” in the .RCC and
.RLF files), but these can be overridden by passing in a different list of feature identifiers or gene symbols.
The RccSet output by the normalization function will have a featureData column named ‘Housekeeping’
that indicates which features were used for the normalization.

Note: Final normalized data are on the log2 scale, unlike all other matrices in assayData.

> gmnorm_example_rccSet <- contentNorm(rccSet=bgcorr_example_rccSet, method="median")

> hknorm_example_rccSet <- contentNorm(rccSet=bgcorr_example_rccSet, method="housekeeping")

>

> # Warning message:

> # In contentNorm(srccSet, method = "housekeeping", hk = hk) :

> # Less than three housekeeping features are defined
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5 QC report and quality control of NanoString® expression data

For quality control of NanoString® expression data, NanoStringQCPro provides a single function, makeQCRe-
port(), that generates a QC report in HTML format:

> qc_example_rccSet <- makeQCReport(norm_example_rccSet, "example_QC_report")

>

> # Generating QC report...

> # Report file has been generated: /gne/home/richarbo/tmp/example_QC_report.html

The report includes detailed descriptions of the different quality control steps it performs and metrics it
uses. Please see the example report generated above for full detail (a copy of the report can be found in
extdata/example_output). In addition to generating the report, makeQCReport() also generates additional
QC files:

� SampleFlags.txt: a tab-delimited file listing all samples along with their sample identifiers and sample
types. Three TRUE/FALSE columns specify QC flags for each sample: one flag based on technical assay
run information (TechnicalFlags), one based on QC steps using signals obtained for positive and
negative controls (ControlFlags), and one based on QC steps using signals obtained for endogenous
genes (CountFlags).

� HousekeepingGeneStats.txt: a tab-delimited file providing some metrics on the housekeeping genes.
For each gene, values are provided for the variance, inter-quartile range (IQR), median expression, and
correlation (cor) with all other housekeeping genes across all samples. (Note that this file will only
be generated if housekeeping genes are indicated in the input via CodeClass “Housekeeping” or if
housekeeping normalization has been evinced by the featureData Housekeeping column.)

6 Example files

The package comes with the following example files corresponding to the example discussed throughout the
vignette:

� extdata/RCC contains .RCC files as they would be produced by the nCounter® instrument.
� extdata/nSolver/RCC_collector_tool_export.csv contains a .CSV file as would be generated by

the RCC Collector Tool Format Export feature of the NanoString® nSolver� Analysis Software. (This
file contains the same data as the .RCC files.)

� extdata/RLF has the .RLF annotation corresponding to the codeset used in the example.
� extdata/CDR has the CDR“Design Data”annotation corresponding to the codeset used in the example.
� extdata/extraPdata has additional sample annotation passed to the extraPdata argument of newR-
ccSet().

� examples contains .R scripts illustrating the overall workflow.

7 Session info

> sessionInfo()

R version 3.4.0 (2017-04-21)

Platform: x86_64-pc-linux-gnu (64-bit)

Running under: Ubuntu 16.04.2 LTS
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Matrix products: default

BLAS: /home/biocbuild/bbs-3.5-bioc/R/lib/libRblas.so

LAPACK: /home/biocbuild/bbs-3.5-bioc/R/lib/libRlapack.so

locale:

[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C

[3] LC_TIME=en_US.UTF-8 LC_COLLATE=C

[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8

[7] LC_PAPER=en_US.UTF-8 LC_NAME=C

[9] LC_ADDRESS=C LC_TELEPHONE=C

[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C

attached base packages:

[1] parallel stats graphics grDevices utils datasets methods

[8] base

other attached packages:

[1] NanoStringQCPro_1.8.0 bigmemory_4.5.19 bigmemory.sri_0.1.3

[4] Biobase_2.36.0 BiocGenerics_0.22.0

loaded via a namespace (and not attached):

[1] Rcpp_0.12.10 highr_0.6 plyr_1.8.4

[4] compiler_3.4.0 RColorBrewer_1.1-2 iterators_1.0.8

[7] tools_3.4.0 rngtools_1.2.4 digest_0.6.12

[10] tibble_1.3.0 RSQLite_1.1-2 evaluate_0.10

[13] memoise_1.1.0 gtable_0.2.0 gridBase_0.4-7

[16] NMF_0.20.6 png_0.1-7 foreach_1.4.3

[19] DBI_0.6-1 registry_0.3 yaml_2.1.14

[22] stringr_1.2.0 pkgmaker_0.22 knitr_1.15.1

[25] cluster_2.0.6 S4Vectors_0.14.0 IRanges_2.10.0

[28] stats4_3.4.0 rprojroot_1.2 grid_3.4.0

[31] AnnotationDbi_1.38.0 rmarkdown_1.4 reshape2_1.4.2

[34] ggplot2_2.2.1 org.Hs.eg.db_3.4.1 magrittr_1.5

[37] backports_1.0.5 scales_0.4.1 codetools_0.2-15

[40] htmltools_0.3.5 BiocStyle_2.4.0 xtable_1.8-2

[43] colorspace_1.3-2 stringi_1.1.5 lazyeval_0.2.0

[46] munsell_0.4.3 doParallel_1.0.10 markdown_0.8
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