
Detection of de novo copy number alterations in case-parent trios

using the R package MinimumDistance

Rob Scharpf

October 26, 2021

Abstract

For the analysis of case-parent trio genotyping arrays, copy number variants (CNV) appearing in
the offspring that differ from the parental copy numbers are often of interest (de novo CNV). This
package defines a statistic, referred to as the minimum distance, for identifying de novo copy number
alterations in the offspring. We smooth the minimum distance using the circular binary segmentation
algorithm implemented in the Bioconductor package DNAcopy. Trio copy number states are inferred
from the maximum a posteriori probability of the segmented data, incorporating information from the
log R ratios and B allele frequencies. As both log R ratios and B allele frequencies are estimable from
Illumina and Affymetrix arrays, this package supports de novo copy number inference in both platforms.

1 Introduction

There are numerous R packages available from Bioconductor for smoothing copy number alterations. For
example, the biocview CopyNumberVariants in the 2.9 release of Bioconductor lists 27 packages. For the
analysis of germline diseases, hidden Markov models have emerged as a popular tool as inference regarding
the latent copy number state incorporates information from both the estimates of copy number (or relative
copy number) and the allelic frequencies, such as the B allele frequency [4] or genotype calls [1, 7, 5]. For the
analysis of somatic cell diseases such as cancer, algorithms that segment the genome into regions of constant
copy number (referred to here as segmentation algorithms) may be more preferable for the detection of copy
number aberrations (CNA) as a mixture of cells with different copy numbers give rise to mosaic (non-integer)
copy numbers. Examples include circular binary segmentation implemented in the R package DNAcopy and
the GLAD, both of which were orginally developed for array CGH platforms [3, 2, 6]. One disadvantage of
segmentation algorithms is that inference regarding duplication and deletions is not directly available.

More recently, HMMs and segmentation algorithms have been developed for inferring common regions of
copy number alterations in multiple samples. However, relatively few algorithms are available for inferring
copy number alterations, especially de novo copy number alterations, in family-based study designs involving
case-parent trios. Instead, a common strategy has been a two-step approach of identifying copy number
alterations in the individual samples and then comparing the results across samples to infer whether an
alteration observed in the offspring is de novo. A disadvantage of the two-step approach is that unadjusted
sources of technical variation, such as waves, can contribute to false positives. The joint HMM implemented
in the PennCNV software is one of the few algorithms to date that provides direct inference regarding de
novo alterations in case parent study designs.

This package develops an alternative framework for inferring regions of de novo copy number alterations
in case-parent trios. Like the PennCNV joint HMM, inference regarding de novo alterations integrates
information from both the log R ratios and B allele frequencies. Differences in the two approaches are most
apparent in non-HapMap experimental datasets in which technical and experimental sources of variation
appear to contribute to a large number of false positives. This vignette describes the analysis pipeline
from preprocessed and normalized estimates of copy number and allele frequencies to inference of de novo
copy number alterations. The workflow is illustrated using a publicly available HapMap trio and a publicly
available oral cleft trio, each assayed on the Illumina 610quad array.

1

2 Data input

R> library(oligoClasses)

R> library(VanillaICE)

R> library(SummarizedExperiment)

R> library(MinimumDistance)

R> foreach::registerDoSEQ()

2.1 Reading and organizing the annotation on the markers

We require that marker-level annotation is represented as a GRanges-derived class. To read the plain text
annotation file, we use the fread function provided in the data.table package. In addition, we define an
indicator for whether the marker is polymophic using the ’Intensity Only’ flag. The SnpGRanges class
created from the fgr object in the following code-chunk ensures that this binary indicator is created and
can be reliably accessed.

R> library(data.table)

R> extdir <- system.file("extdata", package="VanillaICE")

R> features <- suppressWarnings(fread(file.path(extdir, "SNP_info.csv")))

R> fgr <- GRanges(paste0("chr", features$Chr), IRanges(features$Position, width=1),

isSnp=features[["Intensity Only"]]==0)

R> fgr <- SnpGRanges(fgr)

R> names(fgr) <- features[["Name"]]

Ideally, one should include the genome build and the chromosome lengths appropriate to the build. Here,
we extract the metadata on the chromosomes using the BSgenome Bioconductor package for the hg18 build.
Finally, we sort the fgr object such that the chromosomes are ordered by their seqlevels and the markers
are ordered by their genomic position along the chromosome.

R> library(BSgenome.Hsapiens.UCSC.hg18)

R> sl <- seqlevels(BSgenome.Hsapiens.UCSC.hg18)

R> seqlevels(fgr) <- sl[sl %in% seqlevels(fgr)]

R> seqinfo(fgr) <- seqinfo(BSgenome.Hsapiens.UCSC.hg18)[seqlevels(fgr),]

R> fgr <- sort(fgr)

2.2 Organizing the marker-level summaries

The abbreviated plain text files included with this package that contain the log R ratios and B allele fre-
quencies from 2 trios are listed below.

R> files <- list.files(extdir, full.names=TRUE, recursive=TRUE, pattern="FinalReport")

We parse these files into a specific format such that all downstream steps for copy number estimation no
longer depend on the format of the source files. At this point, we encapsulate the names of the source files
(’sourcePaths’), the location of where we intend to store the parsed data (’parsedPath’), and the genomic
marker annnotation created in the preceding section (’rowRanges’) in a single object called an ArrayViews.

R> ##

R> ## Where to keep parsed files

R> ##

R> parsedDir <- "ParsedFiles"

R> if(!file.exists(parsedDir)) dir.create(parsedDir)

R> views <- ArrayViews(rowRanges=fgr, sourcePaths=files, parsedPath=parsedDir)

R> show(views)

2

class 'ArrayViews'

No. files : 6

No. markers: 11780

Because the format of the source files depends on upstream software, we read one file and store information
regarding its parsing so that subsequent files can be parsed in a similar fashion. We use the fread to read
in the first file.

R> ## read the first file

R> dat <- fread(files[1], skip="[Data]")

R> head(dat,n=3)

SNP Name Allele1 - AB Allele2 - AB B Allele Freq

1: cnvi0005126 - - 0.0085

2: cnvi0005127 - - 0.0081

3: cnvi0005128 - - 0.0063

Log R Ratio

1: -0.7214

2: -0.8589

3: -0.1640

Next, we select which columns we plan to keep. Again, the required data for downstream processing is
the name of the SNP identifier, the log R ratios, and B allele frequencies.

R> ## information to store on the markers

R> select_columns <- match(c("SNP Name", "Allele1 - AB", "Allele2 - AB",

"Log R Ratio", "B Allele Freq"), names(dat))

We also specify the order in which we will store the marker-level summaries by matching the rownames

of the views object with the names of the markers in the source file:

R> index_genome <- match(names(fgr), dat[["SNP Name"]])

Similar to the parameter classes defined in Rsamtools, we encapsulate the information for parsing the
columns and rows of the source files in a class. In addition, we specify which variable names in the source
file refers to log R ratios (’cnvar’), B allele frequences (’bafvar’), and genotypes (’gtvar’).

R> scan_params <- CopyNumScanParams(index_genome=index_genome,

select=select_columns,

cnvar="Log R Ratio",

bafvar="B Allele Freq",

gtvar=c("Allele1 - AB", "Allele2 - AB"))

The parseSourceFile will parse a single file in the views object (by default, the first file) according
to the parameters for reading the data in the scan_params object and write the output to the parsedPath

directory. In particular, the parseSourceFile returns NULL.

R> parsedPath(views)

[1] "ParsedFiles"

R> parseSourceFile(views[, 1], scan_params)

To apply the function parseSourceFile to all arrays in the views object, one can use the functional
sapply.

R> invisible(sapply(views, parseSourceFile, param=scan_params))

3

Apart from confirming their existance, the user should not have a need to directly access the parsed files.
Utilities for querying these files are provided through the views object.

R> head(list.files(parsedPath(views)), n=3)

[1] "FinalReport1664_baf.rds" "FinalReport1664_gt.rds"

[3] "FinalReport1664_lrr.rds"

2.3 Accessors for the parsed data

The preference for writing the parsed data to disk rather than keeping the data in RAM is simply that
the latter does not scale to projects involving thousands of samples. For the former, slices of the parsed
data easily be accessed from the parsedPath directory via methods defined for the ArrayViews class. For
example, one can use accessors for the low-level summaries directly: lrr, baf, and genotypes for log R
ratios, B allele frequencies, and genotypes, respectively. The user has the option of either subsetting the
views object or subsetting the matrix returned by the accessor to extract the appropriate data slice. In the
following examples, we access data on the first 2 markers and sample indices 2-4.

R> lrr(views)[1:2, 2:4]

FinalReport1675.txt FinalReport1686.txt

rs12789205 -0.169 0.191

rs2114088 -0.182 -0.114

FinalReport6841.txt

rs12789205 -0.084

rs2114088 0.253

R> ## or

R> lrr(views[1:2, 2:4])

FinalReport1675.txt FinalReport1686.txt

rs12789205 -0.169 0.191

rs2114088 -0.182 -0.114

FinalReport6841.txt

rs12789205 -0.084

rs2114088 0.253

R> ## B allele frequencies

R> baf(views[1:2, 2:4])

FinalReport1675.txt FinalReport1686.txt

rs12789205 0.529 0.549

rs2114088 0.000 0.000

FinalReport6841.txt

rs12789205 0.481

rs2114088 0.000

R> ## potentially masked by function of the same name in crlmm

R> VanillaICE::genotypes(views)[1:2, 2:4]

FinalReport1675.txt FinalReport1686.txt

rs12789205 2 2

rs2114088 1 1

FinalReport6841.txt

rs12789205 2

rs2114088 1

More often, it is useful to extract the low-level data in a RangedSummarizedExperiment-derived class
such that meta-data on the samples remains bound to the columns of the assay data (log R ratios / B allele
frequencies) and meta-data on the rows remains bound to the rows of the assay data. This is accomplished
by applying the MinDistExperiment function to a views object, as described in the following section.

4

3 Binding the genomic, marker, and individual-level data

3.1 Pedigree annotation

The container for a single pedigree is the ParentOffspring class.

R> ped_hapmap <- ParentOffspring(id = "hapmap", father="12287_03",

mother="12287_02",

offspring="12287_01",

parsedPath=parsedPath(views))

For families with multiple affected offspring, the argument to offspring can be a character-vector with
length greater than 1. We can store any number of ParentOffspring objects in a list using the ParentOff-
springList class. In particular, for the 2 trios provided in the VanillaICE package

R> ped_list <- ParentOffspringList(pedigrees=list(

ParentOffspring(id = "hapmap", father="12287_03",

mother="12287_02",

offspring="12287_01",

parsedPath=parsedPath(views)),

ParentOffspring(id = "cleft",

father="22169_03",

mother="22169_02",

offspring="22169_01",

parsedPath=parsedPath(views))))

R> pedigreeName(ped_list)

[1] "hapmap" "cleft"

For a single pedigree, the MinDistExperiment encapsulates the annotation on the pedigree, the genomic
annotation of the markers, and the marker-level summary statistics. Note, however, that the sample identi-
fiers in the pedigree are not the same as the file identifiers used by default to create the R object views. To
resolve the naming issue, we read in separate file provided in the VanillaICE package:

R> sample_info <- read.csv(file.path(extdir, "sample_data.csv"), stringsAsFactors=FALSE)

R> ind_id <- setNames(gsub(" ", "", sample_info$IndividualID), sample_info$File)

R> colnames(views) <- ind_id[gsub(".txt", "", colnames(views))]

3.2 MinDistExperiment class

The constructor function for MinDistExperiment extracts from the views object only the data relevant for
the provided pedigree.

R> me <- MinDistExperiment(views, pedigree=ped_list[[2]])

R> colnames(me)

[1] "22169_03" "22169_02" "22169_01"

R> me

class: MinDistExperiment

dim: 11780 3

metadata(0):

assays(2): cn baf

rownames(11780): rs12789205 rs2114088 ... rs5994329

rs1055232

rowData names(1): isSnp

colnames(3): 22169_03 22169_02 22169_01

colData names(0):

5

4 Detection of de novo copy number variants

A container for the various parameters used to segment and call de novo copy number variants is provided
by the MinDistParam. A constructor function of the same name provides a default parametrization that
works well in most instances:

R> params <- MinDistParam()

R> show(params)

An object of class 'MinDistParam'

call segments with |seg.mean|/MAD > 0.75

Setting nMAD() to smaller values will increase the number of segments that are called.

DNAcopy settings:

alpha: 0.01

min.width: 2

undo.splits: none

undo.SD: 3

See segment() for description of DNAcopy parameters

The parameters in this class are organized according to function. For example, the argument dnacopy

takes an argument of class DNAcopyParam that contains setting that are passed to the segment function for
the implementation of circular binary segmentation in the R package DNAcopy. Changing the parameters
for the segmentation is most easily accomplished by a call to the constructor. E.g.,

R> segment_params <- DNAcopyParam(alpha=0.01)

R> params <- MinDistParam(dnacopy=segment_params)

Several of the parameters relate to a priori assumptions of the probability of a non-Mendelian transmis-
sion. These a priori assumptions are defined in PennCNV [7] and encapsulated in the PennParam class.

R> penn_param <- PennParam()

R> show(penn_param)

Object of class `PennParam'

121 trio states

state names: 000,100,200,300,400,010 ...

reference state: 222

PennCNV Table 1: 121 vector

PennCNV Table 3: 5 x 5 x 5 x 5 x 5 x 5 array

probability non-Mendelian: 1.5e-06

initial state probabilities: 0.2,0.2,0.2,0.2,0.2

transition prob: 5 x 5 matrix

See table1(), table3(), state(), stateNames(), referenceState()

Finally, parameters for the emission probabilities computed by the R package VanillaICE are encapsulated in
the EmissionParam class. Again, default values for the emission probabilities will be created automatically
as part of the params object if none is specified.

Segmentation and posterior calls. For a given trio, the signed minimum absolute difference of the offspring
and parental log2 R ratios (r) is defined as

d ≡ (rO − rM) × I[|rO−rF|>|rO−rM|] + (rO − rF) × I[|rO−rF|≤|rO−rM|] . (1)

If the offspring copy number changes within a minimum distance segment (as determined by the segmen-
tation of the offspring copy number), the start and stop position of the minimum distance segments may
be edited. The approach currently implemented is to define a new start and stop position if a breakpoint
for the offspring segmentation occurs in the minimum distance interval. To illustrate, the following diagram
uses vertical dashes (|) to denote breakpoints:

6

1 ...--|--------------|--... ## minimum distance segment (before editing)

2 ...----|--------|------... ## segmenation of log R ratios for offspring

->

3 ...--|-|--------|---|--... ## after editing

In the above illustration, posterior calls are provided for the 3 segments indicated in line 3 instead of the
single segment in line 1. Two additional steps are therefore required: (1) segmentation of the offspring log
R ratios and (2) editing of the minimum distance breakpoints when appropriate. The following codechunk,
segments the log R ratios for all chromosomes in the me object and edits the ranges for the minimum distance
when conflicts with the offspring segmentation boundaries arise (as illustrated above).

R> mdgr <- segment2(me, params)

Analyzing: X22169_03

Analyzing: X22169_02

Analyzing: X22169_01

Analyzing: md_22169_01

For each minimum distance segment in which the mean minimum distance is above a user-specificed
cutoff in absolute value (specified in terms of the median absolute deviations of the minimum distance), a
trio copy number state is assigned from the maximum a posteriori estimate.

R> ## the threshold in terms of the number of median absolute deviations from zero

R> nMAD(params)

R> md_g <- MAP2(me, mdgr, params)

R> show(md_g)

5 Inspecting, Filtering, and plotting de novo CNV inference

5.1 Filtering

There are several meta-data columns stored in the GRanges-derived summary useful for filtering the set of
genomic intervals. All the available parameters for filtering the fit object are stored in the parameter class
FilterParam of which an instance can be created by its constructor of the same name without any arguments.

R> filter_param <- FilterParamMD()

R> show(filter_param)

An object of class 'FilterParamMD'

min. posterior probability of trio CNV call: 0.99

min. no. of markers spanned by segment : 10

min. width of segment : 1

121 selected trio CN states : 000, 100, 200, 300, 400, 010, ...

selected seqnames : chr1, chr2, chr3, chr4, chr5, chr6 ...

To apply the default filter parameters to the fit object, we use the cnvFilter function. The cnvFilter

function returns only the set of genomic ranges satisfying the filters. For example,

R> cnvFilter(md_g, filter_param)

MDRanges object with 4 ranges and 9 metadata columns:

seqnames ranges strand | sample seg.mean

<Rle> <IRanges> <Rle> | <character> <numeric>

[1] chr11 55139733-55204003 * | md_22169_01 -0.4712

7

[2] chr22 17281004-17633332 * | md_22169_01 -0.3178

[3] chr22 17670969-18670691 * | md_22169_01 -0.3540

[4] chr22 19066315-19792353 * | md_22169_01 -0.3359

log_RR log_odds prob_MAP prob_222 prob_221

<numeric> <numeric> <numeric> <numeric> <numeric>

[1] 72.737 -82.214 1 0 0

[2] 146.106 Inf 1 0 1

[3] 697.008 Inf 1 0 1

[4] 430.425 Inf 1 0 1

calls number_probes

<character> <integer>

[1] 302 25

[2] 221 88

[3] 221 278

[4] 221 208

seqinfo: 3 sequences from hg18 genome

The helper functions denovoHemizygous and denovoHomozygous create commonly used filters.

R> denovoHemizygous(md_g)

MDRanges object with 3 ranges and 9 metadata columns:

seqnames ranges strand | sample seg.mean

<Rle> <IRanges> <Rle> | <character> <numeric>

[1] chr22 17281004-17633332 * | md_22169_01 -0.3178

[2] chr22 17670969-18670691 * | md_22169_01 -0.3540

[3] chr22 19066315-19792353 * | md_22169_01 -0.3359

log_RR log_odds prob_MAP prob_222 prob_221

<numeric> <numeric> <numeric> <numeric> <numeric>

[1] 146.106 Inf 1 0 1

[2] 697.008 Inf 1 0 1

[3] 430.425 Inf 1 0 1

calls number_probes

<character> <integer>

[1] 221 88

[2] 221 278

[3] 221 208

seqinfo: 3 sequences from hg18 genome

R> denovoHomozygous(md_g)

MDRanges object with 0 ranges and 9 metadata columns:

seqnames ranges strand | sample seg.mean log_RR

<Rle> <IRanges> <Rle> | <character> <numeric> <numeric>

log_odds prob_MAP prob_222 prob_221 calls

<numeric> <numeric> <numeric> <numeric> <character>

number_probes

<integer>

seqinfo: 3 sequences from hg18 genome

Equivalently, one could customize the filter parameteters to acheive the same result:

8

R> select_cnv <- FilterParamMD(state=c("220", "221", "223"), seqnames="chr22")

R> cnvs <- cnvFilter(md_g, select_cnv)

R> cnvs

MDRanges object with 3 ranges and 9 metadata columns:

seqnames ranges strand | sample seg.mean

<Rle> <IRanges> <Rle> | <character> <numeric>

[1] chr22 17281004-17633332 * | md_22169_01 -0.3178

[2] chr22 17670969-18670691 * | md_22169_01 -0.3540

[3] chr22 19066315-19792353 * | md_22169_01 -0.3359

log_RR log_odds prob_MAP prob_222 prob_221

<numeric> <numeric> <numeric> <numeric> <numeric>

[1] 146.106 Inf 1 0 1

[2] 697.008 Inf 1 0 1

[3] 430.425 Inf 1 0 1

calls number_probes

<character> <integer>

[1] 221 88

[2] 221 278

[3] 221 208

seqinfo: 3 sequences from hg18 genome

5.2 Visualization

This produces a somewhat unsatisfactory result in that there are 2 additional denovo hemizygous deletions
nearby that likely comprise one denovo segment.

R> denovoHemizygous(md_g)

MDRanges object with 3 ranges and 9 metadata columns:

seqnames ranges strand | sample seg.mean

<Rle> <IRanges> <Rle> | <character> <numeric>

[1] chr22 17281004-17633332 * | md_22169_01 -0.3178

[2] chr22 17670969-18670691 * | md_22169_01 -0.3540

[3] chr22 19066315-19792353 * | md_22169_01 -0.3359

log_RR log_odds prob_MAP prob_222 prob_221

<numeric> <numeric> <numeric> <numeric> <numeric>

[1] 146.106 Inf 1 0 1

[2] 697.008 Inf 1 0 1

[3] 430.425 Inf 1 0 1

calls number_probes

<character> <integer>

[1] 221 88

[2] 221 278

[3] 221 208

seqinfo: 3 sequences from hg18 genome

In the following code-chunk, we reduce the denovo hemizygous deletions and update the posterior prob-
abilities for the MAP estimates. We use a combination of lattice and grid to visualize the marker-level
summaries and copy number inference for the trio.

R> library(grid)

R> g2 <- reduce(denovoHemizygous(md_g), min.gapwidth=500e3)

9

R> post <- MAP2(me, g2, params)

R> g2 <- denovoHemizygous(post)

R> vps <- pedigreeViewports()

R> grid.params <- HmmTrellisParam()

R> p <- plotDenovo(me, g2, grid.params)

R> pedigreeGrid(g=g2, vps=vps, figs=p)

Error using packet 1
no file found

kb

fo
ld

 c
ha

ng
e

1/8

1/4

1/2

1/1

2

15,000 20,000 25,000

22169_01
1/8

1/4

1/2

1/1

2
22169_02

1/8

1/4

1/2

1/1

2
22169_03

kb

b

0.0

0.2

0.4

0.6

0.8

1.0

15,000 20,000 25,000

22169_01
0.0

0.2

0.4

0.6

0.8

1.0

22169_02
0.0

0.2

0.4

0.6

0.8

1.0

22169_03

md_22169_01
chr22

size (kb) :2,511.3

fold change :0.8

MAP estimate :221

posterior Pr :1

posterior odds

221 or 220 :Inf

posterior RR :4.5e+111

6 Acknowledgements

Moiz Bootwalla contributed to early versions of this vignette.

7 Session information

R> toLatex(sessionInfo())

� R version 4.1.1 (2021-08-10), x86_64-pc-linux-gnu

� Locale: LC_CTYPE=en_US.UTF-8, LC_NUMERIC=C, LC_TIME=en_GB, LC_COLLATE=C,
LC_MONETARY=en_US.UTF-8, LC_MESSAGES=en_US.UTF-8, LC_PAPER=en_US.UTF-8, LC_NAME=C,
LC_ADDRESS=C, LC_TELEPHONE=C, LC_MEASUREMENT=en_US.UTF-8, LC_IDENTIFICATION=C

� Running under: Ubuntu 20.04.3 LTS

� Matrix products: default

� BLAS: /home/biocbuild/bbs-3.14-bioc/R/lib/libRblas.so

� LAPACK: /home/biocbuild/bbs-3.14-bioc/R/lib/libRlapack.so

� Base packages: base, datasets, grDevices, graphics, grid, methods, stats, stats4, utils

� Other packages: BSgenome 1.62.0, BSgenome.Hsapiens.UCSC.hg18 1.3.1000, Biobase 2.54.0,
BiocGenerics 0.40.0, Biostrings 2.62.0, GenomeInfoDb 1.30.0, GenomicRanges 1.46.0, IRanges 2.28.0,
MatrixGenerics 1.6.0, MinimumDistance 1.38.0, S4Vectors 0.32.0, SummarizedExperiment 1.24.0,

10

VanillaICE 1.56.0, XVector 0.34.0, data.table 1.14.2, matrixStats 0.61.0, oligoClasses 1.56.0,
rtracklayer 1.54.0

� Loaded via a namespace (and not attached): BiocIO 1.4.0, BiocManager 1.30.16, BiocParallel 1.28.0,
DBI 1.1.1, DNAcopy 1.68.0, DelayedArray 0.20.0, GenomeInfoDbData 1.2.7,
GenomicAlignments 1.30.0, Matrix 1.3-4, RCurl 1.98-1.5, Rcpp 1.0.7, RcppEigen 0.3.3.9.1,
Rsamtools 2.10.0, VGAM 1.1-5, XML 3.99-0.8, affyio 1.64.0, askpass 1.1, base64 2.0, beanplot 1.2,
bit 4.0.4, bitops 1.0-7, codetools 0.2-18, compiler 4.1.1, crayon 1.4.1, crlmm 1.52.0, ellipse 0.4.2,
ff 4.0.4, foreach 1.5.1, illuminaio 0.36.0, iterators 1.0.13, lattice 0.20-45, limma 3.50.0, mvtnorm 1.1-3,
openssl 1.4.5, parallel 4.1.1, preprocessCore 1.56.0, restfulr 0.0.13, rjson 0.2.20, rstudioapi 0.13,
splines 4.1.1, tools 4.1.1, yaml 2.2.1, zlibbioc 1.40.0

References

[1] Stefano Colella, Christopher Yau, Jennifer M Taylor, Ghazala Mirza, Helen Butler, Penny Clouston,
Anne S Bassett, Anneke Seller, Christopher C Holmes, and Jiannis Ragoussis. QuantiSNP: an Objective
Bayes Hidden-Markov Model to detect and accurately map copy number variation using SNP genotyping
data. Nucleic Acids Res, 35(6):2013–2025, 2007.

[2] Philippe Hupe, Nicolas Stransky, Jean-Paul Thiery, Francois Radvanyi, and Emmanuel Barillot. Analysis
of array cgh data: from signal ratio to gain and loss of dna regions. Bioinformatics, 20(18):3413–3422,
Dec 2004.

[3] Adam B Olshen, E. S. Venkatraman, Robert Lucito, and Michael Wigler. Circular binary segmentation
for the analysis of array-based DNA copy number data. Biostatistics, 5(4):557–72, Oct 2004.

[4] Daniel A Peiffer, Jennie M Le, Frank J Steemers, Weihua Chang, Tony Jenniges, Francisco Garcia, Kirt
Haden, Jiangzhen Li, Chad A Shaw, John Belmont, Sau Wai Cheung, Richard M Shen, David L Barker,
and Kevin L Gunderson. High-resolution genomic profiling of chromosomal aberrations using infinium
whole-genome genotyping. Genome Res, 16(9):1136–1148, Sep 2006.

[5] Robert B Scharpf, Giovanni Parmigiani, Jonathan Pevsner, and Ingo Ruczinski. Hidden Markov models
for the assessment of chromosomal alterations using high-throughput SNP arrays. Annals of Applied
Statistics, 2(2):687–713, 2008.

[6] E. S. Venkatraman and Adam B Olshen. A faster circular binary segmentation algorithm for the analysis
of array cgh data. Bioinformatics, 23(6):657–663, Mar 2007.

[7] Kai Wang, Zhen Chen, Mahlet G Tadesse, Joseph Glessner, Struan F A Grant, Hakon Hakonarson, Maja
Bucan, and Mingyao Li. Modeling genetic inheritance of copy number variations. Nucleic Acids Res,
36(21):e138, Dec 2008.

11

