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1 Overview

LEA is an R package dedicated to landscape genomics and ecological associ-
ation tests (Frichot and François, 2015; Gain and François, 2021). LEA per-
forms analyses of population structure and imputation of missing genotypes.
It also runs genome scans for selection, tests association of genotypes with
environmental variables, and computes predictive values of genetic offsets
based on new or future environments. The package includes factor methods
for estimating ancestry coefficients from large genotypic matrices and for
evaluating the number of ancestral populations (snmf, pca). It implements
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latent factor mixed models for identifying genetic polymorphisms that ex-
hibit high correlation with environmental gradients (lfmm, lfmm2). LEA is
mainly based on optimized programs that can scale with the dimension of
large data sets.

2 Introduction

The goal of this tutorial is to give an overview of the main functionali-
ties of the R package LEA. It will show the main steps of analysis, includ-
ing 1) analysing population structure and preparing a genotypic matrix for
genomewide association studies, 2) fitting GWAS latent factor mixed models
to the data and extracting candidate regions of interest.

As some functions may take a few hours to analyse very large data sets,
output files are written into text files that can be read by LEA after each
batch of runs (called a ’project’). We advise creating working directories
containing genotypic data and covariables when starting LEA. Note that two
files with the same names but a different extension are assumed to contain
the same data in distinct formats.

# creation of a directory for LEA analyses

dir.create("LEA_analyses")

# set the created directory as the working directory

setwd("LEA_analyses")

This tutorial is based on a small dataset consisting of 400 SNPs geno-
typed for 50 diploid individuals. The last 50 SNPs are correlated with an
environmental variable, and represent the target loci for an association anal-
ysis. Similar artificial data were analyzed in the computer note introducing
the R package LEA (Frichot and François, 2015).

library(LEA)

# Creation a the genotypic file: "genotypes.lfmm"

# The data include 400 SNPs for 50 individuals.

data("tutorial")

# Write genotypes in the lfmm format

write.lfmm(tutorial.R, "genotypes.lfmm")

# Write genotypes in the geno format

write.geno(tutorial.R, "genotypes.geno")

# creation of an environment gradient file: gradient.env.

# The .env file contains a single ecological variable

# for each individual.

write.env(tutorial.C, "gradients.env")
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Note that the LEA package is to be able to handle very large population
genetic data sets. Genomic data are processed using fast C codes wrapped
into the R code. Most LEA functions use character strings containing paths
to input files as arguments.

2.1 Input files

The R package LEA can handle several input file formats for genotypic ma-
trices. More specifically, the package uses the lfmm and geno formats, and
provides functions to convert from other formats such as ped, vcf, and
ancestrymap formats. The program VCFTOOLS can be very useful in
providing one of those format (ped is the closest to an lfmm matrix).

The lfmm and geno formats can also be used for coding multiallelic
marker data (eg, microsatellites). For multiallelic marker data, the conver-
sion function struct2geno() converts files in the STRUCTURE format in
the geno or lfmm formats. LEA can also process allele frequency data if they
are encoded in the lfmm format. In that case, the lfmm() and lfmm2()

functions will use allele counts for populations in its model.
Ecological predictors or phenotypic traits must be formatted in the env

format. This format corresponds to a matrix where each variable is repre-
sented as a column (Frichot et al., 2013). It uses the .env extension.

When using ecological data, we often need to decide which variables
should be used among a large number of ecological indicators (e.g., climatic
variables). Here, we suggest that users summarize their data using linear
combinations of those indicators. Considering principal component analysis
and using the first principal components as proxies for ecological gradients
linked to selective forces can be useful in this context.

The LEA package can handle missing data in population structure analy-
ses. In association analyses, missing genotypes must be replaced by imputed
values using a missing data imputation method. We encourage users to re-
move their missing data by using the function impute(), which is based
on population structure analysis and nonnegative matrix factorization (see
next section). Note that specialized genotype imputation programs such
as BEAGLE, IMPUTE2 or MENDEL-IMPUTE could provide better im-
putation results than LEA, in particular for model species with a published
reference genome. Filtering out rare variants – retaining minor allele fre-
quency greater than 5 percent –, and pruning regions in strong LD may also
result in better analyses with LEA.
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3 Analysis of population structure and imputation
of missing data

The R package LEA implements two classical approaches for the estimation
of population genetic structure: principal component analysis (pca) and ad-
mixture analysis (Patterson et al., 2006; Pritchard et al., 2000) using sparse
nonnegative matrix factorization (snmf). The algorithms programmed in
LEA are improved versions of pca and admixture analysis, that are able to
process large genotypic matrices efficiently.

3.1 Principal Component Analysis

The LEA function pca() computes the scores of a PCA for a genotypic
matrix, and returns a screeplot for the eigenvalues of the sample covariance
matrix. Using the function pca(), an object of class pcaProject is created.
This object contains a path to the files storing eigenvectors, eigenvalues and
projections.

# run of pca

# Available options, K (the number of PCs),

# center and scale.

# Create files: genotypes.eigenvalues - eigenvalues,

# genotypes.eigenvectors - eigenvectors,

# genotypes.sdev - standard deviations,

# genotypes.projections - projections,

# Create a pcaProject object: pc.

pc = pca("genotypes.lfmm", scale = TRUE)

The number of ”significant” components can be evaluated using graphical
methods based on the screeplot (Figure 1). The knee in the screeplot in-
dicates that there are around K = 4 major components in the data (≈ 5
genetic clusters). Following (Patterson et al., 2006), the tracy.widom()

function computes Tracy-Widom tests for each eigenvalue as follows.

# Perfom Tracy-Widom tests on all eigenvalues.

# create file: tuto.tracyWidom - tracy-widom test information.

tw = tracy.widom(pc)

# display p-values for the Tracy-Widom tests (first 5 pcs).

tw$pvalues[1:5]

[1] 8.000e-09 8.000e-09 8.000e-09 1.503e-04 3.152e-02
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# plot the percentage of variance explained by each component

plot(tw$percentage)
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Figure 1: Screeplot for the percentage of variance explained by each compo-
nent in a PCA of the genetic data. The knee at K = 4 indicates that there
are 5 major genetic clusters in the data.

3.2 Inference of individual admixture coefficients using snmf

The package LEA includes the R function snmf() that estimates individual
admixture coefficients from the genotypic matrix. The function provides
results very close to Bayesian clustering programs such as STRUCTURE
(Pritchard et al., 2000; François and Durand, 2010). Assuming K ancestral
populations, the R function snmf() provides least-squares estimates of an-
cestry proportions rather than maximum likelihood estimates (Frichot et al.,
2014).

# main options

# K = number of ancestral populations

# entropy = TRUE: computes the cross-entropy criterion,

# CPU = 4 the number of CPUs.

project = NULL
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project = snmf("genotypes.geno",

K = 1:10,

entropy = TRUE,

repetitions = 10,

project = "new")

The snmf() function computes an entropy criterion that evaluates the
quality of fit of the statistical model to the data using a cross-validation
technique (Figure 2). The entropy criterion can help choosing the number
of ancestral populations that best explains the genotypic data (Alexander
and Lange, 2011; Frichot et al., 2014). Here we have a clear minimum at
K = 4, suggesting 4 genetic clusters in the data. Often, the plot shows
a less clear pattern, and choosing the ”knee” point is a generally good ap-
proach. The number of ancestral populations is closely linked to the number
of principal components that explain variation in the genomic data. Both
numbers can help determining the number of latent factors when correcting
for confounding effects due to population structure in ecological association
tests with lfmm() and lfmm2().

The next step is to display a barplot for the Q-matrix. In Figure 3, the
Q() function of LEA is called and the output Q-matrix is converted into a
Qmatrix object. The conversion of the Q-matrix as a Qmatrix object is also
useful for running improved graphical functions from other packages such as
tess3r (Caye et al., 2016, 2018).

3.3 Population differentation tests using snmf()

The most common approaches to detecting outlier loci from a genomic back-
ground have focused on extreme values of the fixation index, Fst, across loci.
The snmf() function can compute fixation indices when the population is
genetically continuous, when predefining subpopulations is difficult, and in
the presence of admixed individuals in the sample (Martins et al., 2016). In
the snmf approach, population differentiation statistics are computed from
ancestry coefficients obtained from an snmf object, and p-values are returned
for all loci. Figure 4 is an example of outlier analysis with snmf().

3.4 Missing genotype imputation using snmf

Missing genotypes are critical to genome-wide association studies. Before
running an association study, an important step is to replace the missing
data, represented as ’9’ in the geno and lfmm) files, by better values. To
provide an example of missing data imputation, let’s start by removing 100
genotypes from the original data. The resulting matrix is saved in the file
genotypeM.geno.

6



# plot cross-entropy criterion for all runs in the snmf project

plot(project, col = "blue", pch = 19, cex = 1.2)
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Figure 2: Value of the cross-entropy criterion as a function of the number
of populations in snmf.

# creation of a genotypic matrix with missing genotypes

dat = as.numeric(tutorial.R)

dat[sample(1:length(dat), 100)] <- 9

dat <- matrix(dat, nrow = 50, ncol = 400)

write.lfmm(dat, "genoM.lfmm")

## [1] "genoM.lfmm"

Next, the function snmf() can be run on the data with missing genotypes
as follows. The completion of th genotypic matrix is based on estimated
ancestry coefficients and ancestral genotype frequencies.

project.missing = snmf("genoM.lfmm", K = 4,

entropy = TRUE, repetitions = 10,

project = "new")
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# select the best run for K = 4

best = which.min(cross.entropy(project, K = 4))

my.colors <- c("tomato", "lightblue",

"olivedrab", "gold")

barchart(project, K = 4, run = best,

border = NA, space = 0,

col = my.colors,

xlab = "Individuals",

ylab = "Ancestry proportions",

main = "Ancestry matrix") -> bp

axis(1, at = 1:length(bp$order),

labels = bp$order, las=1,

cex.axis = .4)
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Figure 3: Ancestry coefficients obtained from snmf().

The snmf project data can be used to impute the missing data as follows.

# select the run with the lowest cross-entropy value

best = which.min(cross.entropy(project.missing, K = 4))

# Impute the missing genotypes

impute(project.missing, "genoM.lfmm",

method = 'mode', K = 4, run = best)

## Missing genotype imputation for K = 4

## Missing genotype imputation for run = 1

## Results are written in the file: genoM.lfmm_imputed.lfmm

# Proportion of correct imputation results

dat.imp = read.lfmm("genoM.lfmm_imputed.lfmm")

mean( tutorial.R[dat == 9] == dat.imp[dat == 9] )
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# Population differentiation tests

p = snmf.pvalues(project,

entropy = TRUE,

ploidy = 2,

K = 4)

pvalues = p$pvalues

par(mfrow = c(2,1))

hist(pvalues, col = "orange")

plot(-log10(pvalues), pch = 19, col = "blue", cex = .5)

Histogram of pvalues

pvalues

F
re

qu
en

cy

0.0 0.2 0.4 0.6 0.8 1.0

0
20

40
60

0 100 200 300 400

0
1

2
3

Index

−
lo

g1
0(

pv
al

ue
s)

Figure 4: P -values for population differentiation tests with snmf().

## [1] 0.78

The results are saved in an output file with the string "imputed" in its
suffix name.

4 Ecological association tests using lfmm

The R package LEA performs genome-wide association analysis based on la-
tent factor mixed models using the lfmm() function (Frichot et al., 2013).
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To recall the model, let G denote the genotypic matrix, storing allele fre-
quencies for each individual at each locus, and let X denote a set of d
ecological predictors or phenotypic traits. LFMMs consider the genotypic
matrix entries as response variables in a latent factor regression model

Gi` = µ` + βT` Xi + UT
i V` + εi` , (1)

where µ` is a locus specific effect, β` is a d-dimensional vector of regression
coefficients, Ui containsK latent factors, and V` contains their corresponding
loadings (i stands for an individual and ` for a locus). The residual terms,
εi`, are statistically independent Gaussian variables with mean zero and
variance σ2.

In latent factor models, association between predictors and allele fre-
quencies can be tested while estimating unobserved latent factors that model
confounding effects. In principle, the latent factors include levels of popu-
lation structure due to shared demographic history or background genetic
variation. After correction for confounding effects, association between al-
lele frequencies and an ecological predictor at a particular locus is often
interpreted as a signature of natural selection.

Running LFMM. The lfmm() program is based on a stochastic algo-
rithm (MCMC) which does not provide exact results. See the section on
the lfmm2() for an alternative method which provides exact results under
simplified assumptions. We recommend using large number of cycles (e.g.,
-i 6000) and the burnin period should set at least to one-half of the total
number of cycles (-b 3000). We have noticed that the program results are
sensitive to the run-length parameter when data sets have relatively small
sizes (e.g., a few hundreds of individuals, a few thousands of loci). We rec-
ommend increasing the burnin period and the total number of cycles in this
situation.

# main options:

# K the number of latent factors

# Runs with K = 6 and 5 repetitions.

project = NULL

project = lfmm("genotypes.lfmm",

"gradients.env",

K = 6,

repetitions = 5,

project = "new")

## lfmm uses a very naive imputation method which has low power

when genotypes are missing: See impute() for a better imputation

method.
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## Note that lfmm has an improved estimation algorithm implemented

in lfmm2, which should be the prefered option.

Deciding the number of latent factors. Deciding an appropriate value
for the number of latent factors in the lfmm() call can be based on the
analysis of histograms of test significance values. Ideally, histograms should
be flat, with a peak close to zero.

Since the objective is to control the false discovery rate (FDR) while
keeping reasonable power to reject the null hypothesis, we recommend using
several runs for each value of K and combine p-values (use 5 to 10 runs,
see our script below). Choosing values of K for which the histograms show
their correct shape warrants that the FDR can be controlled efficiently.

Testing allK values in a large range, say from 1 to 20, is generally useless.
A careful analysis of population structure and estimates of the number of
ancestral populations contributing to the genetic data indicates the range
of values to be explored. For example, if the snmf() command estimates 4
ancestral populations, then running lfmm() for K = 3 − 6 often provides
good results.

Combining z-scores obtained from multiple runs. We use the Fisher-
Stouffer method to combine z-scores from multiple runs. In practice, we
found that using the median z-scores of 5-10 runs and re-adjusting the p-
values afterwards can increase the power of lfmm tests. This procedure is
implemented in LEA function lfmm.pvalues().

# compute adjusted p-values

p = lfmm.pvalues(project, K = 6)

pvalues = p$pvalues

The results displayed in Figure 5 show that the null-hypothesis is cor-
rectly calibrated. The loci exhibiting significant associations are found at
the right on the Manhattan plot.

To adjust p-values for multiple testing issues, we use the Benjamini-
Hochberg procedure (Benjamini and Hochberg, 1995). We set the expected
levels of FDR to q = 5%, 10%, 15% and 20% respectively . The lists of
candidate loci are given by the following script. Since we the ground truth
is known for the simulated data, we can compare the expected FDR levels
to their observed levels, and compute the power (TPR) of the test.

for (alpha in c(.05,.1,.15,.2)) {
# expected FDR

print(paste("Expected FDR:", alpha))
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# GWAS significance test

par(mfrow = c(2,1))

hist(pvalues, col = "lightblue")

plot(-log10(pvalues), pch = 19, col = "blue", cex = .7)
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Figure 5: P -values for LFMM tests. The loci showing significant associations
are at the right on the Manhattan plot.

L = length(pvalues)

# return a list of candidates with expected FDR alpha.

# Benjamini-Hochberg's algorithm:

w = which(sort(pvalues) < alpha * (1:L) / L)

candidates = order(pvalues)[w]

# estimated FDR and True Positive Rate

Lc = length(candidates)

estimated.FDR = sum(candidates <= 350)/Lc

print(paste("Observed FDR:",

round(estimated.FDR, digits = 2)))

estimated.TPR = sum(candidates > 350)/50
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print(paste("Estimated TPR:",

round(estimated.TPR, digits = 2)))

}

## [1] "Expected FDR: 0.05"

## [1] "Observed FDR: 0.05"

## [1] "Estimated TPR: 0.72"

## [1] "Expected FDR: 0.1"

## [1] "Observed FDR: 0.09"

## [1] "Estimated TPR: 0.82"

## [1] "Expected FDR: 0.15"

## [1] "Observed FDR: 0.12"

## [1] "Estimated TPR: 0.88"

## [1] "Expected FDR: 0.2"

## [1] "Observed FDR: 0.2"

## [1] "Estimated TPR: 0.9"

5 Ecological association tests using lfmm2

As an efficient alternative to the MCMC algorithm implemented in the
lfmm(), genome-wide association analysis can be performed in LEA by using
the lfmm2() command. This function allows estimating K latent factors and
the effect sizes corresponding to environmental variables in the same statis-
tical model as with lfmm(). For lfmm2(), the estimation algorithm is based
on exact solutions of a least-squares minimization problem (Caye et al.,
2019). For large data sets, lfmm2() is much faster than the MCMC version
(Gain and François, 2021). The function also decouples the estimation of
latent factors from the association tests, which allows implementing various
types of tests including linear or generalized linear models. Let us consider
an example simulated from the LFMM generative model. The simulated
genotypic matrix contains n = 100 individuals genotyped for L = 1000 loci,
ten of which are truly associated with an artificial environmental variable,
X.

# Simulate non-null effect sizes for 10 target loci

#individuals

n = 100

#loci

L = 1000

# Environmental variable

X = as.matrix(rnorm(n))

# effect sizes
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B = rep(0, L)

target = sample(1:L, 10)

B[target] = runif(10, -10, 10)

The latent factors, U, contained in an n × 3 matrix, are random vec-
tors created as follows. Correlations between the factors and environmental
predictor, X, are introduced in the simulation model.

# Create 3 hidden factors and their loadings

U = t(tcrossprod(as.matrix(c(-1,0.5,1.5)), X)) +

matrix(rnorm(3*n), ncol = 3)

V <- matrix(rnorm(3*L), ncol = 3)

The genotypic matrix, Y, is simulated according to an approximation of
the LFMM generative model. This matrix has dimension n× L.

# Simulate a matrix containing haploid genotypes

Y <- tcrossprod(as.matrix(X), B) +

tcrossprod(U, V) +

matrix(rnorm(n*L, sd = .5), nrow = n)

Y <- matrix(as.numeric(Y > 0), ncol = L)

We fit an LFMM by using K = 3 latent factors. This value corresponds
to the true value in the model (note that K = 3 could be easily recovered
from a PCA screeplot).

# Fitting an LFMM with K = 3 factors

mod <- lfmm2(input = Y, env = X, K = 3)

The lfmm2() command generates an object of class lfmm2Class which
contains estimated factors (mod2@U) and loadings (mod2@V) for being intro-
duced as correction factors in genome-wide association tests. Note here that
LEA is using S4 objects rather than S3 objects. Getting the factors could
be useful for implementing customized tests. For example, they could be
used for computing a covariance matrix for random effects in a mixed linear
model. The lfmm2.test() function implements simpler tests such as linear
or generalized linear model tests. The latter are much slower. To adjust
p-values for multiple testing issues, we can use the Benjamini-Hochberg pro-
cedure as with the lfmm() tests. The tests and a Manhattan plot can be
performed as follows.

6 Predictive Ecological Genomics: Genetic offsets

to be developed
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# Computing P-values and plotting their minus log10 values

pv <- lfmm2.test(object = mod,

input = Y,

env = X,

linear = TRUE)

plot(-log10(pv$pvalues), col = "grey", cex = .6, pch = 19)

points(target, -log10(pv$pvalues[target]), col = "red")
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Figure 6: Manhattan plot of log10 p-values for LFMM2 tests. The loci
showing real associations are circled in red.
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