
An Overview of the IRanges package

Patrick Aboyoun, Michael Lawrence, Hervé Pagès

Edited: February 2018; Compiled: October 26, 2021

Contents

1 Introduction . 1

2 IRanges objects . 2

2.1 Normality. 4

2.2 Lists of IRanges objects . 5

2.3 Vector Extraction . 5

2.4 Finding Overlapping Ranges 5

2.5 Counting Overlapping Ranges 6

2.6 Finding Neighboring Ranges 6

2.7 Transforming Ranges . 6
2.7.1 Adjusting starts, ends and widths. 6
2.7.2 Making ranges disjoint 9
2.7.3 Other transformations. 10

2.8 Set Operations . 10

3 Vector Views . 11

3.1 Creating Views . 11

3.2 Aggregating Views . 11

4 Lists of Atomic Vectors . 12

5 Session Information . 15

1 Introduction
When analyzing sequences, we are often interested in particular consecutive subsequences. For
example, the a vector could be considered a sequence of lower-case letters, in alphabetical
order. We would call the first five letters (a to e) a consecutive subsequence, while the
subsequence containing only the vowels would not be consecutive. It is not uncommon for
an analysis task to focus only on the geometry of the regions, while ignoring the underlying
sequence values. A list of indices would be a simple way to select a subsequence. However,
a sparser representation for consecutive subsequences would be a range, a pairing of a start
position and a width, as used when extracting sequences with window.

http://bioconductor.org/packages/IRanges

An Overview of the IRanges package

Two central classes are available in Bioconductor for representing ranges: the IRanges class
defined in the IRanges package for representing ranges defined on a single space, and the
GRanges class defined in the GenomicRanges package for representing ranges defined on
multiple spaces.

In this vignette, we will focus on IRanges objects. We will rely on simple, illustrative example
datasets, rather than large, real-world data, so that each data structure and algorithm can
be explained in an intuitive, graphical manner. We expect that packages that apply IRanges
to a particular problem domain will provide vignettes with relevant, realistic examples.

The IRanges package is available at bioconductor.org and can be downloaded via BiocMan

ager::install:

> if (!require("BiocManager"))

+ install.packages("BiocManager")

> BiocManager::install("IRanges")

> library(IRanges)

2 IRanges objects
To construct an IRanges object, we call the IRanges constructor. Ranges are normally
specified by passing two out of the three parameters: start, end and width (see help(IRanges)
for more information).

> ir1 <- IRanges(start=1:10, width=10:1)

> ir1

IRanges object with 10 ranges and 0 metadata columns:

start end width

<integer> <integer> <integer>

[1] 1 10 10

[2] 2 10 9

[3] 3 10 8

[4] 4 10 7

[5] 5 10 6

[6] 6 10 5

[7] 7 10 4

[8] 8 10 3

[9] 9 10 2

[10] 10 10 1

> ir2 <- IRanges(start=1:10, end=11)

> ir3 <- IRanges(end=11, width=10:1)

> identical(ir1, ir2) && identical(ir1, ir3)

[1] FALSE

> ir <- IRanges(c(1, 8, 14, 15, 19, 34, 40),

+ width=c(12, 6, 6, 15, 6, 2, 7))

> ir

IRanges object with 7 ranges and 0 metadata columns:

start end width

2

http://bioconductor.org/packages/IRanges
http://bioconductor.org/packages/IRanges
http://bioconductor.org/packages/GenomicRanges
http://bioconductor.org/packages/IRanges
http://bioconductor.org/packages/IRanges

An Overview of the IRanges package

<integer> <integer> <integer>

[1] 1 12 12

[2] 8 13 6

[3] 14 19 6

[4] 15 29 15

[5] 19 24 6

[6] 34 35 2

[7] 40 46 7

All of the above calls construct the same IRanges object, using different combinations of the
start, end and width parameters.

Accessing the starts, ends and widths is supported via the start, end and width getters:

> start(ir)

[1] 1 8 14 15 19 34 40

> end(ir)

[1] 12 13 19 29 24 35 46

> width(ir)

[1] 12 6 6 15 6 2 7

Subsetting an IRanges object is supported, by numeric and logical indices:

> ir[1:4]

IRanges object with 4 ranges and 0 metadata columns:

start end width

<integer> <integer> <integer>

[1] 1 12 12

[2] 8 13 6

[3] 14 19 6

[4] 15 29 15

> ir[start(ir) <= 15]

IRanges object with 4 ranges and 0 metadata columns:

start end width

<integer> <integer> <integer>

[1] 1 12 12

[2] 8 13 6

[3] 14 19 6

[4] 15 29 15

In order to illustrate range operations, we’ll create a function to plot ranges.

> plotRanges <- function(x, xlim=x, main=deparse(substitute(x)),

+ col="black", sep=0.5, ...)

+ {

+ height <- 1

+ if (is(xlim, "IntegerRanges"))

3

http://bioconductor.org/packages/IRanges

An Overview of the IRanges package

ir

0 10 20 30 40

Figure 1: Plot of original ranges

+ xlim <- c(min(start(xlim)), max(end(xlim)))

+ bins <- disjointBins(IRanges(start(x), end(x) + 1))

+ plot.new()

+ plot.window(xlim, c(0, max(bins)*(height + sep)))

+ ybottom <- bins * (sep + height) - height

+ rect(start(x)-0.5, ybottom, end(x)+0.5, ybottom + height, col=col, ...)

+ title(main)

+ axis(1)

+ }

> plotRanges(ir)

2.1 Normality
Sometimes, it is necessary to formally represent a subsequence, where no elements are re-
peated and order is preserved. Also, it is occasionally useful to think of an IRanges object as
a set of integers, where no elements are repeated and order does not matter.

The NormalIRanges class formally represents a set of integers. By definition an IRanges
object is said to be normal when its ranges are: (a) not empty (i.e. they have a non-null
width); (b) not overlapping; (c) ordered from left to right; (d) not even adjacent (i.e. there
must be a non empty gap between 2 consecutive ranges).

There are three main advantages of using a normal IRanges object: (1) it guarantees a
subsequence encoding or set of integers, (2) it is compact in terms of the number of ranges,
and (3) it uniquely identifies its information, which simplifies comparisons.

The reduce function reduces any IRanges object to a NormalIRanges by merging redundant
ranges.

> reduce(ir)

IRanges object with 3 ranges and 0 metadata columns:

start end width

<integer> <integer> <integer>

[1] 1 29 29

[2] 34 35 2

[3] 40 46 7

> plotRanges(reduce(ir))

4

http://bioconductor.org/packages/IRanges

An Overview of the IRanges package

reduce(ir)

0 10 20 30 40

Figure 2: Plot of reduced ranges

2.2 Lists of IRanges objects
It is common to manipulate collections of IRanges objects during an analysis. Thus, the
IRanges package defines some specific classes for working with multiple IRanges objects.

The IRangesList class asserts that each element is an IRanges object and provides convenience
methods, such as start, end and width accessors that return IntegerList objects, aligning
with the IRangesList object. Note that IntegerList objects will be covered later in more
details in the “Lists of Atomic Vectors” section of this document.

To explicitly construct an IRangesList, use the IRangesList function.

> rl <- IRangesList(ir, rev(ir))

> start(rl)

IntegerList of length 2

[[1]] 1 8 14 15 19 34 40

[[2]] 40 34 19 15 14 8 1

2.3 Vector Extraction
As the elements of an IRanges object encode consecutive subsequences, they may be used
directly in sequence extraction. Note that when a normal IRanges is given as the index, the
result is a subsequence, as no elements are repeated or reordered. If the sequence is a Vector
subclass (i.e. not an ordinary vector), the canonical [function accepts an IRanges object.

> set.seed(0)

> lambda <- c(rep(0.001, 4500), seq(0.001, 10, length=500),

+ seq(10, 0.001, length=500))

> xVector <- rpois(1e7, lambda)

> yVector <- rpois(1e7, lambda[c(251:length(lambda), 1:250)])

> xRle <- Rle(xVector)

> yRle <- Rle(yVector)

> irextract <- IRanges(start=c(4501, 4901) , width=100)

> xRle[irextract]

integer-Rle of length 200 with 159 runs

Lengths: 12 1 1 1 2 1 1 1 1 2 ... 1 1 1 1 1 1 1 1 1

Values : 0 1 0 2 0 1 0 1 0 1 ... 9 12 6 5 10 9 6 9 12

2.4 Finding Overlapping Ranges
The function findOverlaps detects overlaps between two IRanges objects.

5

http://bioconductor.org/packages/IRanges
http://bioconductor.org/packages/IRanges

An Overview of the IRanges package

ir

0 10 20 30 40

0
3

Figure 3: Plot of ranges with accumulated coverage

> ol <- findOverlaps(ir, reduce(ir))

> as.matrix(ol)

queryHits subjectHits

[1,] 1 1

[2,] 2 1

[3,] 3 1

[4,] 4 1

[5,] 5 1

[6,] 6 2

[7,] 7 3

2.5 Counting Overlapping Ranges
The function coverage counts the number of ranges over each position.

> cov <- coverage(ir)

> plotRanges(ir)

> cov <- as.vector(cov)

> mat <- cbind(seq_along(cov)-0.5, cov)

> d <- diff(cov) != 0

> mat <- rbind(cbind(mat[d,1]+1, mat[d,2]), mat)

> mat <- mat[order(mat[,1]),]

> lines(mat, col="red", lwd=4)

> axis(2)

2.6 Finding Neighboring Ranges
The nearest function finds the nearest neighbor ranges (overlapping is zero distance). The
precede and follow functions find the non-overlapping nearest neighbors on a specific side.

2.7 Transforming Ranges
Utilities are available for transforming an IRanges object in a variety of ways. Some transfor-
mations, like reduce introduced above, can be dramatic, while others are simple per-range
adjustments of the starts, ends or widths.

2.7.1 Adjusting starts, ends and widths

Perhaps the simplest transformation is to adjust the start values by a scalar offset, as per-
formed by the shift function. Below, we shift all ranges forward 10 positions.

6

http://bioconductor.org/packages/IRanges

An Overview of the IRanges package

> shift(ir, 10)

IRanges object with 7 ranges and 0 metadata columns:

start end width

<integer> <integer> <integer>

[1] 11 22 12

[2] 18 23 6

[3] 24 29 6

[4] 25 39 15

[5] 29 34 6

[6] 44 45 2

[7] 50 56 7

There are several other ways to transform ranges. These include narrow, resize, flank, re
flect, restrict, and threebands. For example narrow supports the adjustment of start, end
and width values, which should be relative to each range. These adjustments are vectorized
over the ranges. As its name suggests, the ranges can only be narrowed.

> narrow(ir, start=1:5, width=2)

IRanges object with 7 ranges and 0 metadata columns:

start end width

<integer> <integer> <integer>

[1] 1 2 2

[2] 9 10 2

[3] 16 17 2

[4] 18 19 2

[5] 23 24 2

[6] 34 35 2

[7] 41 42 2

The restrict function ensures every range falls within a set of bounds. Ranges are contracted
as necessary, and the ranges that fall completely outside of but not adjacent to the bounds
are dropped, by default.

> restrict(ir, start=2, end=3)

IRanges object with 1 range and 0 metadata columns:

start end width

<integer> <integer> <integer>

[1] 2 3 2

The threebands function extends narrow so that the remaining left and right regions adjacent
to the narrowed region are also returned in separate IRanges objects.

> threebands(ir, start=1:5, width=2)

$left

IRanges object with 7 ranges and 0 metadata columns:

start end width

<integer> <integer> <integer>

[1] 1 0 0

[2] 8 8 1

[3] 14 15 2

7

http://bioconductor.org/packages/IRanges

An Overview of the IRanges package

[4] 15 17 3

[5] 19 22 4

[6] 34 33 0

[7] 40 40 1

$middle

IRanges object with 7 ranges and 0 metadata columns:

start end width

<integer> <integer> <integer>

[1] 1 2 2

[2] 9 10 2

[3] 16 17 2

[4] 18 19 2

[5] 23 24 2

[6] 34 35 2

[7] 41 42 2

$right

IRanges object with 7 ranges and 0 metadata columns:

start end width

<integer> <integer> <integer>

[1] 3 12 10

[2] 11 13 3

[3] 18 19 2

[4] 20 29 10

[5] 25 24 0

[6] 36 35 0

[7] 43 46 4

The arithmetic operators +, - and * change both the start and the end/width by symmetrically
expanding or contracting each range. Adding or subtracting a numeric (integer) vector to an
IRanges causes each range to be expanded or contracted on each side by the corresponding
value in the numeric vector.

> ir + seq_len(length(ir))

IRanges object with 7 ranges and 0 metadata columns:

start end width

<integer> <integer> <integer>

[1] 0 13 14

[2] 6 15 10

[3] 11 22 12

[4] 11 33 23

[5] 14 29 16

[6] 28 41 14

[7] 33 53 21

The * operator symmetrically magnifies an IRanges object by a factor, where positive con-
tracts (zooms in) and negative expands (zooms out).

> ir * -2 # double the width

IRanges object with 7 ranges and 0 metadata columns:

8

http://bioconductor.org/packages/IRanges

An Overview of the IRanges package

disjoin(ir)

0 10 20 30 40

Figure 4: Plot of disjoined ranges

start end width

<integer> <integer> <integer>

[1] -5 18 24

[2] 5 16 12

[3] 11 22 12

[4] 7 36 30

[5] 16 27 12

[6] 33 36 4

[7] 36 49 14

WARNING: The semantic of these arithmetic operators might be revisited at some point.
Please restrict their use to the context of interactive visualization (where they arguably provide
some convenience) but avoid to use them programmatically.

2.7.2 Making ranges disjoint

A more complex type of operation is making a set of ranges disjoint, i.e. non-overlapping.
For example, threebands returns a disjoint set of three ranges for each input range.

The disjoin function makes an IRanges object disjoint by fragmenting it into the widest
ranges where the set of overlapping ranges is the same.

> disjoin(ir)

IRanges object with 10 ranges and 0 metadata columns:

start end width

<integer> <integer> <integer>

[1] 1 7 7

[2] 8 12 5

[3] 13 13 1

[4] 14 14 1

[5] 15 18 4

[6] 19 19 1

[7] 20 24 5

[8] 25 29 5

[9] 34 35 2

[10] 40 46 7

> plotRanges(disjoin(ir))

A variant of disjoin is disjointBins, which divides the ranges into bins, such that the
ranges in each bin are disjoint. The return value is an integer vector of the bins.

9

http://bioconductor.org/packages/IRanges

An Overview of the IRanges package

> disjointBins(ir)

[1] 1 2 1 2 3 1 1

2.7.3 Other transformations

Other transformations include reflect and flank. The former “flips” each range within a
set of common reference bounds.

> reflect(ir, IRanges(start(ir), width=width(ir)*2))

IRanges object with 7 ranges and 0 metadata columns:

start end width

<integer> <integer> <integer>

[1] 13 24 12

[2] 14 19 6

[3] 20 25 6

[4] 30 44 15

[5] 25 30 6

[6] 36 37 2

[7] 47 53 7

The flank returns ranges of a specified width that flank, to the left (default) or right, each
input range. One use case of this is forming promoter regions for a set of genes.

> flank(ir, width=seq_len(length(ir)))

IRanges object with 7 ranges and 0 metadata columns:

start end width

<integer> <integer> <integer>

[1] 0 0 1

[2] 6 7 2

[3] 11 13 3

[4] 11 14 4

[5] 14 18 5

[6] 28 33 6

[7] 33 39 7

2.8 Set Operations
Sometimes, it is useful to consider an IRanges object as a set of integers, although there is
always an implicit ordering. This is formalized by NormalIRanges, above, and we now present
versions of the traditional mathematical set operations complement, union, intersect, and
difference for IRanges objects. There are two variants for each operation. The first treats
each IRanges object as a set and returns a normal value, while the other has a “parallel”
semantic like pmin/pmax and performs the operation for each range pairing separately.

The complement operation is implemented by the gaps and pgap functions. By default, gaps
will return the ranges that fall between the ranges in the (normalized) input. It is possible to
specify a set of bounds, so that flanking ranges are included.

> gaps(ir, start=1, end=50)

10

http://bioconductor.org/packages/IRanges

An Overview of the IRanges package

gaps(ir, start = 1, end = 50)

0 10 20 30 40 50

Figure 5: Plot of gaps from ranges

IRanges object with 3 ranges and 0 metadata columns:

start end width

<integer> <integer> <integer>

[1] 30 33 4

[2] 36 39 4

[3] 47 50 4

> plotRanges(gaps(ir, start=1, end=50), c(1,50))

pgap considers each parallel pairing between two IRanges objects and finds the range, if any,
between them. Note that the function name is singular, suggesting that only one range is
returned per range in the input.

The remaining operations, union, intersect and difference are implemented by the [p]union,
[p]intersect and [p]setdiff functions, respectively. These are relatively self-explanatory.

3 Vector Views
The IRanges package provides the virtual Views class, which stores a vector-like object,
referred to as the “subject”, together with an IRanges object defining ranges on the subject.
Each range is said to represent a view onto the subject.

Here, we will demonstrate the RleViews class, where the subject is of class Rle. Other Views
implementations exist, such as XStringViews in the Biostrings package.

3.1 Creating Views
There are two basic constructors for creating views: the Views function based on indicators
and the slice based on numeric boundaries.

> xViews <- Views(xRle, xRle >= 1)

> xViews <- slice(xRle, 1)

> xRleList <- RleList(xRle, 2L * rev(xRle))

> xViewsList <- slice(xRleList, 1)

Note that RleList objects will be covered later in more details in the “Lists of Atomic Vectors”
section of this document.

3.2 Aggregating Views
While sapply can be used to loop over each window, the native functions viewMaxs, viewMins,
viewSums, and viewMeans provide fast looping to calculate their respective statistical sum-
maries.

11

http://bioconductor.org/packages/IRanges
http://bioconductor.org/packages/IRanges
http://bioconductor.org/packages/Biostrings

An Overview of the IRanges package

> head(viewSums(xViews))

[1] 1 1 1 1 1 2

> viewSums(xViewsList)

IntegerList of length 2

[[1]] 1 1 1 1 1 2 1 1 2 3 1 6 1 3 4 ... 12 6 37 10 8 11 6 4 5 1 1 5 1 1

[[2]] 2 2 10 2 2 10 8 12 22 16 20 74 12 ... 2 12 2 6 4 2 2 4 2 2 2 2 2

> head(viewMaxs(xViews))

[1] 1 1 1 1 1 2

> viewMaxs(xViewsList)

IntegerList of length 2

[[1]] 1 1 1 1 1 2 1 1 1 2 1 2 1 2 3 1 ... 3 5 2 5 6 2 8 3 2 2 1 1 2 1 1

[[2]] 2 2 4 2 2 4 4 6 16 4 12 10 4 10 6 ... 4 2 4 2 4 2 2 2 4 2 2 2 2 2

4 Lists of Atomic Vectors
In addition to the range-based objects described in the previous sections, the IRanges package
provides containers for storing lists of atomic vectors such as integer or Rle objects. The
IntegerList and RleList classes represent lists of integer vectors and Rle objects respectively.
They are subclasses of the AtomicList virtual class which is itself a subclass of the List virtual
class defined in the S4Vectors package.

> showClass("RleList")

Virtual Class "RleList" [package "IRanges"]

Slots:

Name: elementType elementMetadata metadata

Class: character DataFrame_OR_NULL list

Extends:

Class "AtomicList", directly

Class "List", by class "AtomicList", distance 2

Class "Vector", by class "AtomicList", distance 3

Class "list_OR_List", by class "AtomicList", distance 3

Class "Annotated", by class "AtomicList", distance 4

Class "vector_OR_Vector", by class "AtomicList", distance 4

Known Subclasses: "SimpleRleList", "RleViews", "CompressedRleList"

As the class definition above shows, the RleList class is virtual with subclasses SimpleRleList
and CompressedRleList. A SimpleRleList class uses an ordinary R list to store the underlying
elements and the CompressedRleList class stores the elements in an unlisted form and keeps
track of where the element breaks are. The former “simple list" class is useful when the Rle
elements are long and the latter “compressed list" class is useful when the list is long and/or
sparse (i.e. a number of the list elements have length 0).

12

http://bioconductor.org/packages/IRanges
http://bioconductor.org/packages/IRanges
http://bioconductor.org/packages/S4Vectors

An Overview of the IRanges package

In fact, all of the atomic vector types (logical, integer, numeric, complex, character, raw, and
factor) have similar list classes that derive from the List virtual class. For example, there is
an IntegerList virtual class with subclasses SimpleIntegerList and CompressedIntegerList.

Each of the list classes for atomic sequences, be they stored as vectors or Rle objects, have a
constructor function with a name of the appropriate list virtual class, such as IntegerList, and
an optional argument compress that takes an argument to specify whether or not to create
the simple list object type or the compressed list object type. The default is to create the
compressed list object type.

> args(IntegerList)

function (..., compress = TRUE)

NULL

> cIntList1 <- IntegerList(x=xVector, y=yVector)

> cIntList1

IntegerList of length 2

[["x"]] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

[["y"]] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

> sIntList2 <- IntegerList(x=xVector, y=yVector, compress=FALSE)

> sIntList2

IntegerList of length 2

[["x"]] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

[["y"]] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

> ## sparse integer list

> xExploded <- lapply(xVector[1:5000], function(x) seq_len(x))

> cIntList2 <- IntegerList(xExploded)

> sIntList2 <- IntegerList(xExploded, compress=FALSE)

> object.size(cIntList2)

33208 bytes

> object.size(sIntList2)

294016 bytes

The length function returns the number of elements in a Vector -derived object and, for a
List-derived object like “simple list" or “compressed list", the lengths function returns an
integer vector containing the lengths of each of the elements:

> length(cIntList2)

[1] 5000

> Rle(lengths(cIntList2))

integer-Rle of length 5000 with 427 runs

Lengths: 780 1 208 1 1599 1 ... 1 1 1 1 1

Values : 0 1 0 1 0 1 ... 10 9 6 9 12

13

http://bioconductor.org/packages/IRanges

An Overview of the IRanges package

Just as with ordinary R list objects, List-derived object support the [[for element extraction,
c for concatenating, and lapply/sapply for looping. When looping over sparse lists, the
“compressed list" classes can be much faster during computations since only the non-empty
elements are looped over during the lapply/sapply computation and all the empty elements
are assigned the appropriate value based on their status.

> system.time(sapply(xExploded, mean))

user system elapsed

0.025 0.000 0.026

> system.time(sapply(sIntList2, mean))

user system elapsed

0.026 0.000 0.026

> system.time(sapply(cIntList2, mean))

user system elapsed

0.027 0.000 0.027

> identical(sapply(xExploded, mean), sapply(sIntList2, mean))

[1] TRUE

> identical(sapply(xExploded, mean), sapply(cIntList2, mean))

[1] TRUE

Unlike ordinary R list objects, AtomicList objects support the Ops (e.g. +, ==, &), Math (e.g.
log, sqrt), Math2 (e.g. round, signif), Summary (e.g. min, max, sum), and Complex (e.g. Re,
Im) group generics.

> xRleList > 0

RleList of length 2

[[1]]

logical-Rle of length 10000000 with 197127 runs

Lengths: 780 1 208 1 1599 ... 1 91 1 927

Values : FALSE TRUE FALSE TRUE FALSE ... TRUE FALSE TRUE FALSE

[[2]]

logical-Rle of length 10000000 with 197127 runs

Lengths: 927 1 91 1 5 ... 1 208 1 780

Values : FALSE TRUE FALSE TRUE FALSE ... TRUE FALSE TRUE FALSE

> yRleList <- RleList(yRle, 2L * rev(yRle))

> xRleList + yRleList

RleList of length 2

[[1]]

integer-Rle of length 10000000 with 1957707 runs

Lengths: 780 1 208 1 13 1 413 ... 5 1 91 1 507 1 419

Values : 0 1 0 1 0 1 0 ... 0 1 0 1 0 1 0

[[2]]

integer-Rle of length 10000000 with 1957707 runs

Lengths: 419 1 507 1 91 1 5 ... 413 1 13 1 208 1 780

14

http://bioconductor.org/packages/IRanges

An Overview of the IRanges package

Values : 0 2 0 2 0 2 0 ... 0 2 0 2 0 2 0

> sum(xRleList > 0 | yRleList > 0)

[1] 2105185 2105185

Since these atomic lists inherit from List, they can also use the looping function endoapply

to perform endomorphisms.

> safe.max <- function(x) { if(length(x)) max(x) else integer(0) }

> endoapply(sIntList2, safe.max)

IntegerList of length 5000

[[1]] integer(0)

[[2]] integer(0)

[[3]] integer(0)

[[4]] integer(0)

[[5]] integer(0)

[[6]] integer(0)

[[7]] integer(0)

[[8]] integer(0)

[[9]] integer(0)

[[10]] integer(0)

...

<4990 more elements>

> endoapply(cIntList2, safe.max)

IntegerList of length 5000

[[1]] integer(0)

[[2]] integer(0)

[[3]] integer(0)

[[4]] integer(0)

[[5]] integer(0)

[[6]] integer(0)

[[7]] integer(0)

[[8]] integer(0)

[[9]] integer(0)

[[10]] integer(0)

...

<4990 more elements>

> endoapply(sIntList2, safe.max)[[1]]

integer(0)

5 Session Information
Here is the output of sessionInfo() on the system on which this document was compiled:

R version 4.1.1 (2021-08-10)

Platform: x86_64-pc-linux-gnu (64-bit)

Running under: Ubuntu 20.04.3 LTS

15

http://bioconductor.org/packages/IRanges

An Overview of the IRanges package

Matrix products: default

BLAS: /home/biocbuild/bbs-3.14-bioc/R/lib/libRblas.so

LAPACK: /home/biocbuild/bbs-3.14-bioc/R/lib/libRlapack.so

locale:

[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C

[3] LC_TIME=en_GB LC_COLLATE=C

[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8

[7] LC_PAPER=en_US.UTF-8 LC_NAME=C

[9] LC_ADDRESS=C LC_TELEPHONE=C

[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C

attached base packages:

[1] stats4 stats graphics grDevices utils datasets

[7] methods base

other attached packages:

[1] IRanges_2.28.0 S4Vectors_0.32.0 BiocGenerics_0.40.0

loaded via a namespace (and not attached):

[1] BiocManager_1.30.16 compiler_4.1.1 fastmap_1.1.0

[4] BiocStyle_2.22.0 htmltools_0.5.2 tools_4.1.1

[7] yaml_2.2.1 rmarkdown_2.11 knitr_1.36

[10] digest_0.6.28 xfun_0.27 rlang_0.4.12

[13] evaluate_0.14

16

http://bioconductor.org/packages/IRanges

	1 Introduction
	2 IRanges objects
	2.1 Normality
	2.2 Lists of IRanges objects
	2.3 Vector Extraction
	2.4 Finding Overlapping Ranges
	2.5 Counting Overlapping Ranges
	2.6 Finding Neighboring Ranges
	2.7 Transforming Ranges
	2.7.1 Adjusting starts, ends and widths
	2.7.2 Making ranges disjoint
	2.7.3 Other transformations

	2.8 Set Operations

	3 Vector Views
	3.1 Creating Views
	3.2 Aggregating Views

	4 Lists of Atomic Vectors
	5 Session Information

