
Working with aligned nucleotides (WORK-
IN-PROGRESS!)

Hervé Pagès

Last modified: January 2014; Compiled: October 26, 2021

Contents

1 Introduction . 1

2 Load the aligned reads and their sequences from a BAM file . . 2

3 Compute the original query sequences 4

4 Mismatches, indels, and gaps. 4

5 Put the read sequences and reference sequences “side by
side” . 5

6 OLD STUFF (needs to be recycled/updated) 5

6.1 Load paired-end reads from a BAM file 5

7 sessionInfo() . 8

1 Introduction
This vignette belongs to the GenomicAlignments package. It illustrates how to use the
package for working with the nucleotide content of aligned reads.

After the reads generated by a high-throughput sequencing experiment have been aligned to
a reference genome, the questions that are being asked about these alignments typically fall
in two broad categories: positional only and nucleotide-related.

Positional only questions are about the position of the alignments with respect to the
reference genome. Note that the position of an alignment is actually better described in terms
of genomic ranges (1 range for an alignment with no gaps, 2 or more ranges for an alignment
with gaps). Knowing the ranges of the alignments is sufficient to perform common tasks
like read counting or for computing the coverage. Read counting is the process of counting
the number of aligned reads per gene or exon and is typically performed in the context of
a differential analysis. This task can be accomplished with the summarizeOverlaps function
provided in the GenomicAlignments package and is explained in details in the “Counting reads
with summarizeOverlaps” vignette (also located in this package). Computing the coverage
is often the preliminary step to peak detection (ChIP-seq analysis) or to a copy number
analysis. It can be accomplished with the coverage function. See ?`coverage-methods` for
more information.

Working with aligned nucleotides (WORK-IN-PROGRESS!)

Nucleotide-related questions are about the nucleotide content of the alignments. In par-
ticular how this content compares to the corresponding nucleotides in the reference genome.
These questions typically arise in the context of small genetic variation detection between
one or more samples and a reference genome.

The GenomicAlignments package provides a suite of low- to mid-level tools for dealing with
nucleotide-related questions about the alignments. In this vignette we illustrate their use
on the single-end and paired-end reads of an RNA-seq experiment.

Note that these tools do NOT constitute a complete variant toolbox. If this is what you’re
looking for, other Bioconductor packages might be more appropriate. See the GeneticVariabil-
ity and SNP views at this URL http://bioconductor.org/packages/release/BiocViews.html#
___AssayDomains for a complete list of packages that deal with small genetic variations.
Most of them provide tools of higher level than the tools described in this vignette. See for
example the VariantTools and VariantAnnotation packages for a complete variant toolbox
(including variant calling capabilities).

2 Load the aligned reads and their sequences from
a BAM file
In this section, we illustrate how aligned reads and their sequences can be loaded from a
BAM file. The reads we’re going to use for this are paired-end reads from a published study
by Zarnack et al., 2012. A subset of these reads are stored in the BAM files located in the
RNAseqData.HNRNPC.bam.chr14 data package. The package contains 8 BAM files, 1 per
sequencing run:

> library(RNAseqData.HNRNPC.bam.chr14)

> bamfiles <- RNAseqData.HNRNPC.bam.chr14_BAMFILES

> names(bamfiles) # the names of the runs

[1] "ERR127306" "ERR127307" "ERR127308" "ERR127309" "ERR127302" "ERR127303"

[7] "ERR127304" "ERR127305"

Each BAM file was obtained by (1) aligning the reads (paired-end) to the full hg19 genome
with TopHat2, and then (2) subsetting to keep only alignments on chr14. See ?RNAseq

Data.HNRNPC.bam.chr14 for more information about this data set.

As a preliminary step, we check whether the BAM files contain single- or paired-end align-
ments. This can be done with the quickBamFlagSummary utility from the Rsamtools package:

> library(Rsamtools)

> quickBamFlagSummary(bamfiles[1], main.groups.only=TRUE)

group | nb of | nb of | mean / max

of | records | unique | records per

records | in group | QNAMEs | unique QNAME

All records........................ A | 800484 | 393300 | 2.04 / 10

o template has single segment.... S | 0 | 0 | NA / NA

o template has multiple segments. M | 800484 | 393300 | 2.04 / 10

- first segment.............. F | 400242 | 393300 | 1.02 / 5

- last segment............... L | 400242 | 393300 | 1.02 / 5

- other segment.............. O | 0 | 0 | NA / NA

2

http://bioconductor.org/packages/release/BiocViews.html#___AssayDomains
http://bioconductor.org/packages/release/BiocViews.html#___AssayDomains

Working with aligned nucleotides (WORK-IN-PROGRESS!)

1http://samtools.
sourceforge.net/

Note that (S, M) is a partitioning of A, and (F, L, O) is a partitioning of M.

Indentation reflects this.

This confirms that all the alignments in the 1st BAM file (run ERR127306) are paired-end.
This means that we should preferably load them with the readGAlignmentPairs function from
the GenomicAlignments package. However for the purpose of keeping things simple, we will
ignore the pairing for now and load only the alignments corresponding to the first segment of
the pairs. We will use the readGAlignments function from the GenomicAlignments package
for this, together with a ScanBamParam object for the filtering. See ?ScanBamParam in the
Rsamtools package for the details.

Furthermore, while preparing the ScanBamParam object to perform the filtering, we’ll also
get rid of the PCR or optical duplicates (flag bit 0x400 in the SAM format, see the SAM
Spec 1 for the details), as well as reads not passing quality controls (flag bit 0x200 in the
SAM format).

Finally we also request the read sequences (a.k.a. the segment sequences in the SAM Spec,
stored in the SEQ field) via the ScanBamParam object:

> flag1 <- scanBamFlag(isFirstMateRead=TRUE, isSecondMateRead=FALSE,

+ isDuplicate=FALSE, isNotPassingQualityControls=FALSE)

> param1 <- ScanBamParam(flag=flag1, what="seq")

We’re now ready to load the alignments and their sequences. Note that we use use.names=TRUE
in order to also load the query names (a.k.a. the query template names in the SAM Spec,
stored in the QNAME field) from the BAM file. readGAlignments will use them to set the
names of the returned object:

> library(GenomicAlignments)

> gal1 <- readGAlignments(bamfiles[1], use.names=TRUE, param=param1)

This returns a GAlignments object. The read sequences are stored in the seq metadata
column of the object:

> mcols(gal1)$seq

DNAStringSet object of length 400242:

width seq

[1] 72 TGAGAATGATGATTTCCAATTTCATCCATGT...GACATGAACTCATCATTTTTTATGGCTGCAT

[2] 72 CCCCAGGTATACACTGGACTCCAGGTGGACA...GTTGGATACACACACTCAAGGTGGACACCAG

[3] 72 CATAGATGCAAGAATCCTCAATCAAATACTA...TTCAACAGCACATTAAAAAGATAACTTACCA

[4] 72 TGCTGGTGCAGGATTTATTCTACTAAGCAAT...ATCAAATCCACTTTCTTATCTCAGGAATCAG

[5] 72 CAGGAGGTAGGCTGTGCGTTCAGCAGTTGGT...GGTACTGGTTGATCACCTTGACTGTCTGGTC

...

[400238] 72 GGGAGGCCCTTTATATAACCATCAGGTCTTG...CTCACTAATAGGATAAAAGCATGGAGAGAAC

[400239] 72 CCTGAGAGCCCCTTGCTGTCCTGAGCACCTC...GAGCGCCCTCTGGTGTTCTGATCACTCTCTG

[400240] 72 CAACTTTTATTTCTTAAACACAAGACATTCC...CTGTTCTCAGGTGAGCTGTCGAGCAGGGAGG

[400241] 72 CAAAGCTGGATGTGTCTAGTGTTTTTATCAG...CCGTAATAAGAGCATGTGTGGTTTTGCTGCC

[400242] 72 CATGACTTGATGGCTGGAACAAATACATTTA...CTCCAATACTAGCCTTTGCCATACAGTATTT

3

http://samtools.sourceforge.net/
http://samtools.sourceforge.net/

Working with aligned nucleotides (WORK-IN-PROGRESS!)

3 Compute the original query sequences
Because the BAM format imposes that the read sequence is “reverse complemented” when
a read aligns to the minus strand, we need to “reverse complement” it again to restore the
original query sequences (i.e. the sequences before alignment, that is, as they can be seen in
the FASTQ file assuming that the aligner didn’t perform any hard-clipping on them):

> oqseq1 <- mcols(gal1)$seq

> is_on_minus <- as.logical(strand(gal1) == "-")

> oqseq1[is_on_minus] <- reverseComplement(oqseq1[is_on_minus])

Because the aligner used to align the reads can report more than 1 alignment per read (i.e.
per sequence stored in the FASTQ file), we shouldn’t expect the names of gal1 to be unique:

> is_dup <- duplicated(names(gal1))

> table(is_dup)

is_dup

FALSE TRUE

393300 6942

However, sequences with the same query name should correspond to the same original query
and therefore should be the same. Let’s do a quick sanity check:

> dup2unq <- match(names(gal1), names(gal1))

> stopifnot(all(oqseq1 == oqseq1[dup2unq]))

Finally, let’s reduce oqseq1 to one original query sequence per unique query name (like in the
FASTQ file containing the 1st end of the unaligned reads):

> oqseq1 <- oqseq1[!is_dup]

4 Mismatches, indels, and gaps
Because the aligner possibly tolerated a small number of mismatches, indels, and/or gaps
during the alignment process, the sequences in mcols(gal1)$seq gnerally don’t match exactly
the reference genome.

The information of where indels and/or gaps occur in the alignments is represented in the
CIGAR strings. Let’s have a look at these string. First the most frequent cigars:

> head(sort(table(cigar(gal1)), decreasing=TRUE))

72M 35M123N37M 64M316N8M 38M670N34M 18M123N54M 2M131N70M

301920 134 134 133 119 96

Then a summary of the total number of insertions (I), deletions (D), and gaps (N):

> colSums(cigarOpTable(cigar(gal1)))

M I D N S H P =

28815928 1496 818 330945002 0 0 0 0

X

0

4

Working with aligned nucleotides (WORK-IN-PROGRESS!)

This tells us that the aligner that was used supports indels (I/D) and junction reads (N).

Finally we count and summarize the number of gaps per alignment:

> table(njunc(gal1))

0 1 2 3

303622 94557 2052 11

Some reads contain up to 3 gaps (i.e. span 3 splice junctions).

5 Put the read sequences and reference sequences
“side by side”
TODO (with sequenceLayer)

6 OLD STUFF (needs to be recycled/updated)

6.1 Load paired-end reads from a BAM file
BAM file untreated3_chr4.bam (located in the pasillaBamSubset data package) contains
paired-end reads from the “Pasilla” experiment and aligned against the dm3 genome (see
?untreated3_chr4 in the pasillaBamSubset package for more information about those reads).
We use the readGAlignmentPairs function to load them into a GAlignmentPairs object:

> library(pasillaBamSubset)

> flag0 <- scanBamFlag(isDuplicate=FALSE, isNotPassingQualityControls=FALSE)

> param0 <- ScanBamParam(flag=flag0)

> U3.galp <- readGAlignmentPairs(untreated3_chr4(), use.names=TRUE, param=param0)

> head(U3.galp)

GAlignmentPairs object with 6 pairs, strandMode=1, and 0 metadata columns:

seqnames strand : ranges -- ranges

<Rle> <Rle> : <IRanges> -- <IRanges>

SRR031715.1138209 chr4 + : 169-205 -- 326-362

SRR031714.756385 chr4 + : 943-979 -- 1086-1122

SRR031714.2355189 chr4 + : 944-980 -- 1119-1155

SRR031714.5054563 chr4 + : 946-982 -- 986-1022

SRR031715.1722593 chr4 + : 966-1002 -- 1108-1144

SRR031715.2202469 chr4 + : 966-1002 -- 1114-1150

seqinfo: 8 sequences from an unspecified genome

The show method for GAlignmentPairs objects displays two ranges columns, one for the first
alignment in the pair (the left column), and one for the last alignment in the pair (the right
column). The strand column corresponds to the strand of the first alignment.

> head(first(U3.galp))

GAlignments object with 6 alignments and 0 metadata columns:

seqnames strand cigar qwidth start end

5

Working with aligned nucleotides (WORK-IN-PROGRESS!)

<Rle> <Rle> <character> <integer> <integer> <integer>

SRR031715.1138209 chr4 + 37M 37 169 205

SRR031714.756385 chr4 + 37M 37 943 979

SRR031714.2355189 chr4 + 37M 37 944 980

SRR031714.5054563 chr4 + 37M 37 946 982

SRR031715.1722593 chr4 + 37M 37 966 1002

SRR031715.2202469 chr4 + 37M 37 966 1002

width njunc

<integer> <integer>

SRR031715.1138209 37 0

SRR031714.756385 37 0

SRR031714.2355189 37 0

SRR031714.5054563 37 0

SRR031715.1722593 37 0

SRR031715.2202469 37 0

seqinfo: 8 sequences from an unspecified genome

> head(last(U3.galp))

GAlignments object with 6 alignments and 0 metadata columns:

seqnames strand cigar qwidth start end

<Rle> <Rle> <character> <integer> <integer> <integer>

SRR031715.1138209 chr4 - 37M 37 326 362

SRR031714.756385 chr4 - 37M 37 1086 1122

SRR031714.2355189 chr4 - 37M 37 1119 1155

SRR031714.5054563 chr4 - 37M 37 986 1022

SRR031715.1722593 chr4 - 37M 37 1108 1144

SRR031715.2202469 chr4 - 37M 37 1114 1150

width njunc

<integer> <integer>

SRR031715.1138209 37 0

SRR031714.756385 37 0

SRR031714.2355189 37 0

SRR031714.5054563 37 0

SRR031715.1722593 37 0

SRR031715.2202469 37 0

seqinfo: 8 sequences from an unspecified genome

According to the SAM format specifications, the aligner is expected to mark each alignment
pair as proper or not (flag bit 0x2 in the SAM format). The SAM Spec only says that a pair
is proper if the first and last alignments in the pair are “properly aligned according to the
aligner”. So the exact criteria used for setting this flag is left to the aligner.

We use isProperPair to extract this flag from the GAlignmentPairs object:

> table(isProperPair(U3.galp))

FALSE TRUE

29581 45828

Even though we could do overlap encodings with the full object, we keep only the proper
pairs for our downstream analysis:

6

Working with aligned nucleotides (WORK-IN-PROGRESS!)

> U3.GALP <- U3.galp[isProperPair(U3.galp)]

Because the aligner used to align those reads can report more than 1 alignment per original
query template (i.e. per pair of sequences stored in the input files, typically 1 FASTQ file for
the first ends and 1 FASTQ file for the last ends), we shouldn’t expect the names of U3.GALP
to be unique:

> U3.GALP_names_is_dup <- duplicated(names(U3.GALP))

> table(U3.GALP_names_is_dup)

U3.GALP_names_is_dup

FALSE TRUE

43659 2169

Storing the query template names in a factor will be useful:

> U3.uqnames <- unique(names(U3.GALP))

> U3.GALP_qnames <- factor(names(U3.GALP), levels=U3.uqnames)

as well as having the mapping between each query template name and its first occurence in
U3.GALP_qnames:

> U3.GALP_dup2unq <- match(U3.GALP_qnames, U3.GALP_qnames)

Our reads can have up to 1 gap per end:

> head(unique(cigar(first(U3.GALP))))

[1] "37M" "6M58N31M" "25M56N12M" "19M62N18M" "29M222N8M" "9M222N28M"

> head(unique(cigar(last(U3.GALP))))

[1] "37M" "19M58N18M" "12M58N25M" "27M2339N10M" "29M2339N8M"

[6] "9M222N28M"

> table(njunc(first(U3.GALP)), njunc(last(U3.GALP)))

0 1

0 44510 596

1 637 85

Like for our single-end reads, the following tables indicate that indels were not allowed/supported
during the alignment process:

> colSums(cigarOpTable(cigar(first(U3.GALP))))

M I D N S H P = X

1695636 0 0 673919 0 0 0 0 0

> colSums(cigarOpTable(cigar(last(U3.GALP))))

M I D N S H P = X

1695636 0 0 630395 0 0 0 0 0

7

Working with aligned nucleotides (WORK-IN-PROGRESS!)

7 sessionInfo()

> sessionInfo()

R version 4.1.1 (2021-08-10)

Platform: x86_64-pc-linux-gnu (64-bit)

Running under: Ubuntu 20.04.3 LTS

Matrix products: default

BLAS: /home/biocbuild/bbs-3.14-bioc/R/lib/libRblas.so

LAPACK: /home/biocbuild/bbs-3.14-bioc/R/lib/libRlapack.so

locale:

[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C

[3] LC_TIME=en_GB LC_COLLATE=C

[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8

[7] LC_PAPER=en_US.UTF-8 LC_NAME=C

[9] LC_ADDRESS=C LC_TELEPHONE=C

[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C

attached base packages:

[1] stats4 stats graphics grDevices utils datasets methods

[8] base

other attached packages:

[1] RNAseqData.HNRNPC.bam.chr14_0.31.0

[2] BSgenome.Dmelanogaster.UCSC.dm3_1.4.0

[3] BSgenome_1.62.0

[4] rtracklayer_1.54.0

[5] TxDb.Dmelanogaster.UCSC.dm3.ensGene_3.2.2

[6] GenomicFeatures_1.46.0

[7] AnnotationDbi_1.56.0

[8] pasillaBamSubset_0.31.0

[9] GenomicAlignments_1.30.0

[10] Rsamtools_2.10.0

[11] Biostrings_2.62.0

[12] XVector_0.34.0

[13] SummarizedExperiment_1.24.0

[14] Biobase_2.54.0

[15] MatrixGenerics_1.6.0

[16] matrixStats_0.61.0

[17] GenomicRanges_1.46.0

[18] GenomeInfoDb_1.30.0

[19] IRanges_2.28.0

[20] S4Vectors_0.32.0

[21] BiocGenerics_0.40.0

loaded via a namespace (and not attached):

[1] httr_1.4.2 bit64_4.0.5 assertthat_0.2.1

[4] BiocManager_1.30.16 BiocFileCache_2.2.0 blob_1.2.2

[7] GenomeInfoDbData_1.2.7 yaml_2.2.1 progress_1.2.2

8

Working with aligned nucleotides (WORK-IN-PROGRESS!)

[10] pillar_1.6.4 RSQLite_2.2.8 lattice_0.20-45

[13] glue_1.4.2 digest_0.6.28 htmltools_0.5.2

[16] Matrix_1.3-4 XML_3.99-0.8 pkgconfig_2.0.3

[19] biomaRt_2.50.0 zlibbioc_1.40.0 purrr_0.3.4

[22] BiocParallel_1.28.0 tibble_3.1.5 KEGGREST_1.34.0

[25] generics_0.1.1 ellipsis_0.3.2 cachem_1.0.6

[28] magrittr_2.0.1 crayon_1.4.1 memoise_2.0.0

[31] evaluate_0.14 fansi_0.5.0 xml2_1.3.2

[34] tools_4.1.1 prettyunits_1.1.1 hms_1.1.1

[37] BiocStyle_2.22.0 BiocIO_1.4.0 lifecycle_1.0.1

[40] stringr_1.4.0 DelayedArray_0.20.0 compiler_4.1.1

[43] rlang_0.4.12 grid_4.1.1 RCurl_1.98-1.5

[46] rstudioapi_0.13 rjson_0.2.20 rappdirs_0.3.3

[49] bitops_1.0-7 rmarkdown_2.11 restfulr_0.0.13

[52] DBI_1.1.1 curl_4.3.2 R6_2.5.1

[55] knitr_1.36 dplyr_1.0.7 fastmap_1.1.0

[58] bit_4.0.4 utf8_1.2.2 filelock_1.0.2

[61] stringi_1.7.5 parallel_4.1.1 Rcpp_1.0.7

[64] vctrs_0.3.8 png_0.1-7 dbplyr_2.1.1

[67] tidyselect_1.1.1 xfun_0.27

9

	1 Introduction
	2 Load the aligned reads and their sequences from a BAM file
	3 Compute the original query sequences
	4 Mismatches, indels, and gaps
	5 Put the read sequences and reference sequences ``side by side''
	6 OLD STUFF (needs to be recycled/updated)
	6.1 Load paired-end reads from a BAM file

	7 sessionInfo()

