
GeneGeneInteR vignette

Introduction

Mathieu Emily and Magalie Houée-Bigot

October 26, 2021

This vignette gives an overview of the main functions and tools proposed in the package GeneGeneInteR. Readers
that would like to have more technical details about the statistical methods implemented in the package are
encouraged to read the vignette GenePair.

1 Introduction

The package GeneGeneInteR aims at providing a collection of statistical methods to search for interaction
between genes in case-control association studies. These methods are dedicated to the analysis of biallelic SNPs
(Single Nucleotide Polymorphism) genotype data. This vignette describes the complete analysis pipeline of a
set of k > 2 genes, going from data importation to results visualization via data manipulation and statistical
analysis.

In the remainder of this vignette, we illustrate our pipeline through the analysis of a case-control dataset publicly
available in the NCBI repository GSE39428 series [Chang et al., 2013]. The dataset contains the genotypes of
312 SNPs from 17 genes in a total of 429 patients (266 individuals affected by Rheumatoid Arthritis and 163
Health controls) and is attached to our package GeneGeneInteR as an external file in the ped format.

2 Data importation and manipulation

2.1 Importation of genotype data

At first, the path for the files containing genotype data and information regarding the SNP set are loaded:

> ped <- system.file("extdata/example.ped", package="GeneGeneInteR")

> info <- system.file("extdata/example.info", package="GeneGeneInteR")

> ## Information about position of the snps

> posi <- system.file("extdata/example.txt", package="GeneGeneInteR")

The importation is performed with the importFile function:

> data <- importFile(file=ped, snps=info, pos=posi, pos.sep="\t")

The object data is a list of 3 elements: status, snpX (a SnpMatrix object) and genes.info (a data.frame).
The status is available only if the imported format is ped.

> summary(data)

Length Class Mode

status 429 factor numeric

snpX 133848 SnpMatrix raw

genes.info 4 data.frame list

1

We can check that the snpX object contains the genotype of 429 individuals for 312 SNPs.

> data$snpX

A SnpMatrix with 429 rows and 312 columns

Row names: H97 ... RA345

Col names: rs1002788 ... rs9502656

The genes.info is a data.frame with exactly four columns that are named as follows: Chromosome, Genenames,
SNPnames and Position.

> summary(data$genes.info)

Chromosome Genenames SNPnames Position

Min. : 1.000 PCSK6 : 74 rs1002788 : 1 Min. : 7881078

1st Qu. : 6.000 TXNDC5 : 69 rs1005753 : 1 1st Qu. : 11712674

Median : 8.000 DNAH9 : 41 rs1006273 : 1 Median : 47863803

Mean : 9.962 CA1 : 38 rs10152164 : 1 Mean : 52968484

3rd Qu. : 15.000 VDR : 19 rs10184179 : 1 3rd Qu. : 97191582

Max. : 17.000 Gc : 12 rs1032551 : 1 Max. : 123157722

(Other) : 59 (Other) : 306

2.2 Phenotype importation

Similar to functions introduced to analyze a single pair of genes (see vignette “Statistical analysis of the inter-
action between a pair of genes.”), the case-control status is stored in a numeric or a factor vector with exactly
two distinct values. If the phenotype is saved in a separate file in table form, it can thus be imported simply
by using the read.table such as for example:

> Y <- read.table(system.file("/extdata/response.txt",package="GeneGeneInteR"),sep=";")

If the case-control status is provided in the ped file, it can be uploaded as follows:

> Y <- data$status

2.3 Data filtering

Before performing the statistical analysis, it is very common to remove some SNPs in order to improve the
quality of the data. Such a cleaning step can be performed in our GeneGeneInteR package by using the function
snpMatrixScour. snpMatrixScour aims at modifying a SnpMatrix object by removing SNPs that does not
meet criteria regarding the Minor Allele Frequency (MAF), deviation to Hardy-Weinberg Equilibrium (HWE)
and the proportion of missing values. In the following example, SNPs with MAF lower than 0.05 or SNPs with
p-value for HWE lower than 0.001 or SNPs with a call rate lower than 0.9 are removed from the object data.

> data <- snpMatrixScour(data$snpX,genes.info=data$genes.info,min.maf=0.05

+ ,min.eq=1e-3,call.rate=0.9)

The following lines show that the dataset now contains only 209 SNPs, meaning that 103 SNPs have been
filtered out.

> data$snpX

A SnpMatrix with 429 rows and 209 columns

Row names: H97 ... RA345

Col names: rs10510123 ... rs4328262

Since the use of stringent filters could lead to the elimination of all SNPs within a gene, care has to be taken
during the filtering step. However, in such a situation the gene without SNP is removed from the dataset and
a warning message is provided for the user.

2

In other situations, the user might be interested in performing the analysis on a predefined subset of SNPs. For
that purpose, the selectSnps function provides three options to extract of collection of SNPs by specifying the
argument select that should be one of the following:

� a numeric vector with only the column number in the snpMatrix (or row number for genes.info) of each
selected SNP. The following line allow the extraction of the 10 first SNPs:

> selec <- selectSnps(data$snpX, data$genes.info, select=1:10)

� a character vector with the names of each selected SNP or each selected gene. The following example is
used to extract genes DNAH9 and TXNDC5:

> selec <- selectSnps(data$snpX, data$genes.info, c("DNAH9","TXNDC5"))

� a character vector which elements are position bounds of genes. Each element of the vector is either of
the form “begin:end”, or “chr:begin:end” if you have to precise the chromosome of the gene. The following
code allow to select SNPs from position 101342000 to 101490000 on chromosome 15:

> selec <- selectSnps(data$snpX, data$genes.info, c("15:101342000:101490000"))

2.4 Imputation

Since our pipeline of analysis does not handle with missing values, SNPs filtering as well as SNPs selection
can help removing missing data. This can be done easily by applying the snpMatrixScour with call.rate=1

argument. However, in that case, SNPs with an acceptable call rate are also removed and the lost information
is likely to be critical. Genotype imputation is then commonly performed to keep most of the informative SNPs
in the dataset. Since our genotype data are stored into SnpMatrix object, we implement the imputeSnpMatrix

function that wraps snp.imputation and impute.snps functions from snpStats package. Our imputeSnpMa-

trix function mimics a Leave-One-Out process where missing SNP are imputed for an individual based on a
model trained on all other individuals.

In our example, the following lines show that after the filtering step, 844 missing values still remain in the
dataset.

> sum(is.na(data$snpX))

[1] 844

To impute those missing values, we simply used our imputeSnpMatrix function as follows:

> data <- imputeSnpMatrix(data$snpX,data$genes.info)

|---------------------------------------| 100%

A simple check of the dataset show that all missing values have been imputed:

> sum(is.na(data$snpX))

[1] 0

When the amount of missing values is so important that snp.imputation is not able to find a rule of imputation,
some missing values may remain. In that case, the user can specify the action to be done thanks to the om.rem

arguments:

� om.rem="none": leave the dataset as it is,

� om.rem="SNP": remove all SNPs with remaining missing values,

� om.rem="ind": remove all individuals with remaining missing values.

3

It is noteworthy that removing all SNPs is often more parsimonious than removing individuals and allows to
get a dataset without any missing values with minimum information-loss.

Although, function snp.imputation can calculate accurate rules for imputation, we encouraged the user to
first input missing genotype with an external software (such as IMPUTE2 [Howie et al., 2009]) prior to the
importation step.

3 Statistical analysis

The statistical analysis of a set of genes, as implemented in the GGI function, consists in performing all possible
pairwise tests between two genes. Pairwise tests are conducted by using the method argument with one of the
ten methods detailed in the vignette “Statistical analysis of the interaction between a pair of genes”. The GGI

function takes two further mandatory arguments: Y the vector of case-control status and snpX, a SnpMatrix

object that store the genotypes for all SNPs. It is assumed that SNPs within the same gene are consecutive in
the snpX argument. Furthermore, gene information, such as gene ordering and the number of SNPs within each
gene, has to be provided either in the genes.length or in the gene.info argument.

The following line allow the computation of all pairwise tests between the 17 genes of our example dataset with
the PCA-based method.

> GGI.res <- GGI(Y=Y, snpX=data$snpX, genes.info=data$genes.info,method="PCA")

The output of the GGI function is a an object of class GGInetwork.

> class(GGI.res)

[1] "GGInetwork"

The class GGInetwork is an S3 class based on a list of 4 elements statistic, p.value, method and parameter.
When method="PCA", a fifth element, called df, is added to the GGInetwork.

> names(GGI.res)

[1] "statistic" "p.value" "df" "method" "parameter"

Elements statistic, p.value and statistic, df are squared matrices with M rows and M columns where
M is the number of genes in the dataset. The general terms of each matrices are respectively the statistic, the
p-value and the degrees of freedom of the Likelihood Ratio Test. The element method is the name of the method
used to perform the pairwise interaction tests. Finally, the element parameter is a list of the parameters used
to perform the pairwise interaction tests.

As example, the GGI.res object generated in the previous example is a list of 5 elements. Each cell of the
output p.value matrix is the p-value of the corresponding pairwise test. The pairwise p-values obtained for
the 4 first genes (bub3, CA1, CDSN, DNAH9) of our dataset can be observed as follows:

> round(GGI.res$p.value[1:4,1:4],digits=4)

bub3 CA1 CDSN DNAH9

bub3 0.0000 0.1684 0.3179 0.1851

CA1 0.1684 0.0000 0.0697 0.0000

CDSN 0.3179 0.0697 0.0000 0.4539

DNAH9 0.1851 0.0000 0.4539 0.0000

Significant results can be summarized using the S3 method summary for class GGInetwork. The method summary

prints the pairs of genes with a interaction p-value lower than 0.05 after (1) no correction (2) a bonferroni
correction and (3) Benjamini & Hochberg correction for multiple testing.

4

> summary(GGI.res)

Gene-gene interaction network of 17 genes performed with:

Principal Component Analysis

Significant interaction with no correction at the level of 0.05

Gene1 Gene2 Uncorrected p-value

1 TXNDC5 VDR 8.9e-10

2 DNAH9 TXNDC5 1.9e-09

...

Significant interaction with a bonferroni correction at the level of 0.05

Gene1 Gene2 bonferroni p-value

1 TXNDC5 VDR 1.2e-07

2 DNAH9 TXNDC5 2.6e-07

...

Significant interaction with a Benjamini & Hochberg correction at the level of 0.05

Gene1 Gene2 BH p-value

1 TXNDC5 VDR 1.2e-07

2 DNAH9 TXNDC5 1.3e-07

4 Visualization

The visualization of the results can be performed with the S3 method plot for class GGInetwork. Given a
GGInetwork object obtained from the analysis of M genes with our GGI function, results can be visualized
through two types of representation: an heatmap-like visualization with the method="heatmap" argument and
a network-like representation with the method="network" argument.

4.1 Heatmap-like visualization

The plot method can be simply used with the GGInetwork object as the single input argument. Figure 1 (a)
and (b) show the graphical representation where all pairwise interactions are plotted (Fig. 1 (a)) or only the
interaction between the 3 genes CA1, Gc and PADI1 with the argument genes (Fig. 1 (b)).

(a) > plot(GGI.res) (b) > plot(GGI.res,genes=c("CA1","Gc","PADI1"))

Figure 1: Default output of the function GGI.plot considering (a) the whole set of genes or (b) a restricted
set of 3 genes.

5

When the number of genes is below 15, p-values and names are drawn to make matrix reading easier (see
Figure 1(b)). However, when the number of genes is larger than 15, p-values are not drawn and gene names
are kept while if the number of genes is larger than 25, none of the lvalues or the gene names are displayed
(see Figure 1(a)). In that case, the default behavior of the function is to start an interactive process where user
can click on a cell of interest to open a tooltip displaying which genes are involved in the selected interaction
and the p-value of the interaction test. Tooltips can be closed if user clicks anywhere else than on a cell. This
process stops when the user presses the escape button (or terminates the locator procedure in general) or when
the user clicks on any place other than a cell when no tooltip window is open.

Several arguments can further be specified to customize the output graphics such as colors (arguments col

and NA.col), width of the bar for colors (argument colbar.width), and titles (argument title). User can
also decide whether p-values (argument draw.pvals) and gene names (argument draw.names) should be drawn
and is allowed to disable the interactivity of plot (argument interact). To further improve plot clarity and
hence allowing a better interpretation of the results, (1) genes can be ordered according to a hierarchical
clustering (argument hclust.order), (2) p-values can be reported in -log10 scale (argument use.log) and
(3) a threshold can be applied to the p-values in order to distinguish between significant and non-significant
interactions (argument threshold).

Figures 2 and 3 provide two plots resulting from different sets of arguments passed to the plot function.

> plot(GGI.res,col=c("black","cyan","white"),colbar.width=0.25,title="Interaction

between 17 genes",hclust.order=TRUE,use.log=TRUE,threshold=NULL,NA.col

="#D3D3D3",draw.pvals=FALSE,draw.names=TRUE,interact=FALSE)

Figure 2: Example of the use of plot arguments when no threshold is applied to the p-values.

6

> plot(GGI.res,col=c("black","cyan","white"),colbar.width=0.05,title="Interaction

between 17 genes",hclust.order=TRUE,use.log=FALSE,threshold=0.05,NA.col

="#D3D3D3",draw.pvals=FALSE,draw.names=TRUE,interact=FALSE)

Figure 3: Example of the use of plot arguments when a threshold of 0.05 is applied to the p-values.

4.2 Network-like visualization

The plot function with method="network" aims at drawing a graph between genes where two genes are adjacent
if the pvalues between these two genes is below a given threshold (argument threshold with a default value
equal to 0.05). The display of the network is performed by utilizing the graph_from_data_frame from the
igraph R package [Csardi and Nepusz, 2006].

Two additional arguments can be used to customize the network. First, user can focus on a specific subset of
genes with the argument genes and secondly, gene(s) not linked to other genes can be removed from the graph
with argument plot.nointer.

Figure 4 displays the default network obtained with all genes. In figure 5, a subset of only 12 genes have been
selected to be the vertices of the graph. However, genes bub3 and PADI1 does not have a pvalue below the
threshold of 0.05 with any of the other selected genes. Since the argument plot.nointer is set to TRUE, the
two genes bub3 and PADI1 are not drawn in the resulting network.

7

>set.seed(1234)

>plot(GGI.res,method="network")

Figure 4: Default output of draw.network

8

> set.seed(1234)

> plot(GGI.res,method="network",genes=c("bub3","CDSN","Gc","GLRX","PADI1","PADI2","PADI4",

"PADI6","PRKD3","PSORS1C1","SERPINA1","SORBS1"),

threshold=0.05,plot.nointer=FALSE)

Figure 5: Output of draw.network with a customized set of arguments.

References

[Chang et al., 2013] Chang, X., Xu, B., Wang, L., Wang, Y., Wang, Y., and Yan, S. (2013). Investigating a
pathogenic role for txndc5 in tumors. International Journal of Oncology, 43(43):1871–1884.

[Csardi and Nepusz, 2006] Csardi, G. and Nepusz, T. (2006). The igraph software package for complex network
research. InterJournal, Complex Systems:1695.

[Howie et al., 2009] Howie, B. N., Donnelly, P., and Marchini, J. (2009). A flexible and accurate genotype
imputation method for the next generation of genome-wide association studies. PLoS Genetics, 5(6):e1000529.

9

	Introduction
	Data importation and manipulation
	Importation of genotype data
	Phenotype importation
	Data filtering
	Imputation

	Statistical analysis
	Visualization
	Heatmap-like visualization
	Network-like visualization

