
Optimizing gene expression with GeneGA

Zhenpeng Li, Xiaochen Bo

October 26, 2021

Contents

1 Introduction 1

2 Implementation 1

3 Functions and examples 2

4 Installation notes 7

1 Introduction

Biological engineering has driven the demand of achieving high-level expression
of heterologous genes. There are many factors that can influence the gene ex-
pression, and these factors can be divided into two categories, one relating to
the synonymous mutaions of gene, such as codon bias, mRNA secondary struc-
ture and the other having no relationship with synonymous mutations, such as
expression vectors design, gene dosage and promoter strength. Codon bias and
folding energy have been deemed as two main mechanisms of synonymous mu-
tations to modulate the protein abundance[Tuller et al., 2010b]. A recent study
of expression of a diverse library of GFP gene in E.coli concluded that mRNA
folding and associated rates of translation initiation play a predominant role
in shaping expression levels of individual genes, whereas codon bias influences
global translation efficiency and cellular fitness[Kudla et al., 2009]. Many tools
have been developed to optimize gene for increasing its expression level, such as
OPTIMIZER, GeneDesign and Gene Designer, while almost all of them merely
consider codon bias to optimize genes. Here, we put forward a framework to
optimize gene considering both codon bias and mRNA secondary structure us-
ing Genetic algorithm. The GeneGA package includes the information of highly
expressed genes of almost 200 genomes and can be used to optimize the expres-
sion level of a gene for heterologous gene expression using rules that have been
found or to explore the rules dominating gene expression.

2 Implementation

GeneGA uses genetic algorithm to optimize the relationship between codon bias
and mRNA secondary structure. Codon adaption index(CAI) is used to quantify
codon bias, which can be computed by cai function in seqinr package, while

1



minimum free energy is used to quantify mRNA secondary structure, which can
be computed by fold function. Certain region can be specified to optimize the
relationship between codon bias and mRNA secondary structure, while codons
in the other regions will be replaced by their correspondence most preference
codons. Meanwhile, GeneGA also has the option to let the user specify the ramp
region[Tuller et al., 2010a], i.e. the first 30-50 codons of genes, which has been
suggested to have low translation efficiency and serve as an optimal and robust
means to reduce ribosomal traffic jams. When ramp and the specified region
are intersecting, the intersectant region will be optimized to have lower CAI and
higher minimum free energy, while the other region will be optimized to have
higher CAI and higher minimum free energy.
The GA procedure is as follows:
1) Generating a population
At the start, the specified sequence is translated to amino acid sequence, then
popSize random sequences are generated by sampling the synonymous codon of
each amino acid.
2) Calculating the objective function values
Calculate the value of objective function for each member of the population.
If the ramp is not considered or the end of the ramp region does not lie in the
selected region while ramp is considered:
E = R(CAI)2 + R(MFE)2,
If the end of the ramp region lies in the selected region:
E = R(1/CAI1)2 + R(CAI2)2 + R(MFE)2,
If the end of the ramp region lies after the position of selected region:
E = R(1/CAI)2 + R(MFE)2,
In the formulas, R(X) represents the rank number of X in the population by
increasing order. CAI and MFE denote the CAI value and minimum free energy
of the member in the population respectively, while CAI1 and CAI2 denote
the intersectant region of ramp and selected region and the region that is not
intersected respectively.
3) Selection
Compute the expect number of each sequence based on the objective function
values, the number of that sequence in the new population is determined by the
integer part of expect number, while the digit part of expect number will be
undergone roulette algorithm to determine its number in the new population.
4) Crossover
With probability crossoverRate, two member of the population exchange their
sequences at random chosen point.
5) Mutation
With probability mutationChance, each codon of sequence will change its codon
by random sampling from its synonymous codons.

3 Functions and examples

Users are free to choose the factors to optimize the gene. The function GeneGA
considers both codon bias and mRNA secondary structure to optimize their
relationship, GeneFoldGA only takes mRNA secondary structure into account
and result in the largest minimum free energy of the mRNA or selected region,
while GeneCodon merely optimizes the codon bias of gene. Detailed description

2



of these functions can be accessed from the reference manual. Two show methods
are provided to display the results of GeneGA and GeneFoldGA, meanwhile,
two plotGeneGA methods can be used to visualize the variation of optimized
and mean overall evaluation values and variable values during the optimizing
progress. Moreover, the package also contains wSet, which is a data frame with
200 genomes on 64 codons. Users can also compute w table by themselves using
specified highly expressed genes of given species or tissue and use the w table
by adding it to wSet. For example, on the assumption that ”EGFP.fasta” is file
containing highly expressed gene. By using the following codes, w table can be
computed:

> library(GeneGA)

> seqfile=system.file("sequence", "EGFP.fasta", package="GeneGA")

> aa=read.fasta(seqfile)

> rscu=uco(unlist(aa), index="rscu")

> w_value=rscu # w_value is the w table we need computing

> names(w_value)=names(rscu)

> names=sapply(names(rscu), function(x) translate(s2c(x)))

> amino=hash()

> for(i in unique(names)){

+ amino[[i]]=max(rscu[which(names==i)])

+ }

> for(i in 1:length(names)){

+ w_value[i]=rscu[[names(rscu)[i]]]/amino[[translate(s2c(names(rscu)[i]))]]

+ }

Taking Enhanced Green Fluorescent Protein(EGFP) as an example, we use
GeneGA to optimize EGFP by both considering its codon bias and mRNA
secondary structure. The procedure is as follows:
1) Input the gene sequence. Users can input the sequence as string directly or
read the sequence of fasta format, take fasta format sequence as example:

> seqfile=system.file("sequence", "EGFP.fasta", package="GeneGA")

> seq=unlist(getSequence(read.fasta(seqfile), as.string=TRUE))

2) Implementation of the GeneGA, the region is specified between 1 and 60. It
should be noted that the designated region must be a multiple of three and in
accordance with the ORF(Open reading frame) of gene. Users can also option-
ally add the regulatory segment before the start codon or design ramp region by
using frontSeq or ramp parameters. Meanwhile, the parameters controling the
Genetic algorithm processes, such as popSize, iters, crossoverRate and muta-
tionChance, can be flexibly adjusted to archive ideal results. Generally, longer
region needs larger popSize and iters, while larger crossoverRate and mutation-
Chance can archive a sooner convergence of results.

> GeneGA.result=GeneGA(sequence=seq, popSize=40, iters=150, crossoverRate=0.3, mutationChance=0.05, region=c(1,60), organism="ec", showGeneration=FALSE)

3) Display the results and plot the variation of optimized and mean overall
evaluation values and variable values during the optimizing progress. The show
method will display the first three distinctive and optimum sequences, as well
as their overall evaluation values, CAI values and minimum free energys. The
plotGeneGA method can visualize the variation of optimized and mean overall

3



evaluation values and variable values during the progress that genetic algorithm
performed.

> show(GeneGA.result)

GA Settings:

Population size = 40

Number of Generations = 150

crossoverRate = 0.3

Mutation Chance = 0.05

evaluaton value = 2066

free energy = -5.2

CAI value = 0.6670852

ATGGTTTCTAAAGGCGAAGAACTGTTCACTGGTGTAGTCCCGATCCTGGTTGAATTAGACGGTGACGTTA

ACGGTCACAAATTCTCTGTTTCTGGTGAAGGTGAAGGTGACGCTACCTACGGTAAACTGACCCTGAAATT

CATCTGCACCACCGGTAAACTGCCGGTTCCGTGGCCGACCCTGGTTACCACCCTGACCTACGGTGTTCAG

TGCTTCTCTCGTTACCCGGACCACATGAAACAGCACGACTTCTTCAAATCTGCTATGCCGGAAGGTTACG

TTCAGGAACGTACCATCTTCTTCAAAGACGACGGTAACTACAAAACCCGTGCTGAAGTTAAATTCGAAGG

TGACACCCTGGTTAACCGTATCGAACTGAAAGGTATCGACTTCAAAGAAGACGGTAACATCCTGGGTCAC

AAACTGGAATACAACTACAACTCTCACAACGTTTACATCATGGCTGACAAACAGAAAAACGGTATCAAAG

TTAACTTCAAAATCCGTCACAACATCGAAGACGGTTCTGTTCAGCTGGCTGACCACTACCAGCAGAACAC

CCCGATCGGTGACGGTCCGGTTCTGCTGCCGGACAACCACTACCTGTCTACCCAGTCTGCTCTGTCTAAA

GACCCGAACGAAAAACGTGACCACATGGTTCTGCTGGAATTCGTTACCGCTGCTGGTATCACCCTGGGTA

TGGACGAACTGTACAAATAA

evaluaton value = 1844

free energy = -7.1

CAI value = 0.8195978

ATGGTTTCTAAAGGCGAAGAACTGTTCACTGGTGTAGTCCCGATCCTGGTTGAACTGGACGGTGACGTTA

ACGGTCACAAATTCTCTGTTTCTGGTGAAGGTGAAGGTGACGCTACCTACGGTAAACTGACCCTGAAATT

CATCTGCACCACCGGTAAACTGCCGGTTCCGTGGCCGACCCTGGTTACCACCCTGACCTACGGTGTTCAG

TGCTTCTCTCGTTACCCGGACCACATGAAACAGCACGACTTCTTCAAATCTGCTATGCCGGAAGGTTACG

TTCAGGAACGTACCATCTTCTTCAAAGACGACGGTAACTACAAAACCCGTGCTGAAGTTAAATTCGAAGG

TGACACCCTGGTTAACCGTATCGAACTGAAAGGTATCGACTTCAAAGAAGACGGTAACATCCTGGGTCAC

AAACTGGAATACAACTACAACTCTCACAACGTTTACATCATGGCTGACAAACAGAAAAACGGTATCAAAG

TTAACTTCAAAATCCGTCACAACATCGAAGACGGTTCTGTTCAGCTGGCTGACCACTACCAGCAGAACAC

CCCGATCGGTGACGGTCCGGTTCTGCTGCCGGACAACCACTACCTGTCTACCCAGTCTGCTCTGTCTAAA

GACCCGAACGAAAAACGTGACCACATGGTTCTGCTGGAATTCGTTACCGCTGCTGGTATCACCCTGGGTA

TGGACGAACTGTACAAATAA

evaluaton value = 1717

free energy = -4.6

CAI value = 0.6213014

ATGGTTTCTAAAGGCGAAGAACTGTTCACTGGTGTAGTCCCGATCCTGGTTGAGTTAGACGGTGACGTTA

ACGGTCACAAATTCTCTGTTTCTGGTGAAGGTGAAGGTGACGCTACCTACGGTAAACTGACCCTGAAATT

CATCTGCACCACCGGTAAACTGCCGGTTCCGTGGCCGACCCTGGTTACCACCCTGACCTACGGTGTTCAG

TGCTTCTCTCGTTACCCGGACCACATGAAACAGCACGACTTCTTCAAATCTGCTATGCCGGAAGGTTACG

TTCAGGAACGTACCATCTTCTTCAAAGACGACGGTAACTACAAAACCCGTGCTGAAGTTAAATTCGAAGG

TGACACCCTGGTTAACCGTATCGAACTGAAAGGTATCGACTTCAAAGAAGACGGTAACATCCTGGGTCAC

AAACTGGAATACAACTACAACTCTCACAACGTTTACATCATGGCTGACAAACAGAAAAACGGTATCAAAG

TTAACTTCAAAATCCGTCACAACATCGAAGACGGTTCTGTTCAGCTGGCTGACCACTACCAGCAGAACAC

CCCGATCGGTGACGGTCCGGTTCTGCTGCCGGACAACCACTACCTGTCTACCCAGTCTGCTCTGTCTAAA

4



GACCCGAACGAAAAACGTGACCACATGGTTCTGCTGGAATTCGTTACCGCTGCTGGTATCACCCTGGGTA

TGGACGAACTGTACAAATAA

> plotGeneGA(GeneGA.result, type=1)

0 50 100 150

0.
2

0.
3

0.
4

0.
5

0.
6

0 50 100 150

0.
2

0.
3

0.
4

0.
5

0.
6

Generation

C
A

I V
al

ue

> plotGeneGA(GeneGA.result, type=2)

5



0 50 100 150

−
12

−
10

−
8

−
6

0 50 100 150

−
12

−
10

−
8

−
6

Generation

F
re

e 
E

ne
rg

y

> plotGeneGA(GeneGA.result, type=3)

0.2 0.3 0.4 0.5 0.6

−
12

−
10

−
8

−
6

0.2 0.3 0.4 0.5 0.6

−
12

−
10

−
8

−
6

CAI Value

F
re

e 
E

ne
rg

y

6



4 Installation notes

The GeneGA package depends on three other R packages: one Bioconductor
package and two CRAN packages. Other than these R packages, Vienna RNA
Package(http://www.tbi.univie.ac.at/ ivo/RNA/) should also be installed on
your operating system.

References

G. Kudla, A.W. Murray, D. Tollervey, and J.B. Plotkin. Coding-sequence de-
terminants of gene expression in Escherichia coli. Science, 324(5924):255,
2009.

T. Tuller, A. Carmi, K. Vestsigian, S. Navon, Y. Dorfan, J. Zaborske, T. Pan,
O. Dahan, I. Furman, and Y. Pilpel. An Evolutionarily Conserved Mechanism
for Controlling the Efficiency of Protein Translation. Cell, 141(2):344–354,
2010a.

T. Tuller, Y.Y. Waldman, M. Kupiec, and E. Ruppin. Translation efficiency
is determined by both codon bias and folding energy. Proceedings of the
National Academy of Sciences, 107(8):3645, 2010b.

7


