Finding Chimeric Sequences

Erik S. Wright
October 26, 2021

Contents
(I__Introductionl| 1
2 Chimera Finding Problems| 1
3 Getting Started| 2
[4 Obtaining/Building A Reference Database] 2
[> Steps to Find Chimeras| 4
[>.1 Assigning Sequences to Reference Groups| oL oL oL 4
b.1.1 Training the Classifier| 4
5.1.2 Creating a Query sequence Database oo 4
[0.1.3 Assigning to Groups| Lo e 4
(5.2 Finding Chimeras|.« . 4
6 Sossion Tuf. . 5

1 Introduction

This document illustrates how to detect chimeric sequences using the DECIPHER package through the use
of the FindChimeras function. The function finds chimeric sequences present in a database (dbFile) of
sequences by making use of a reference database (dbFileReference) of good sequences. The examples in this
document are directed towards finding chimeric 16S rRNA sequences, although a similar strategy could be
used with any type of sequence. For 16S sequences the functionality of FindChimeras is implemented as a
web tool available at http://DECIPHER. codes.

2 Chimera Finding Problems

Chimeras are a common type of sequence anomaly that result from the use of PCR amplification. Chimeras
masquerade as normal sequences, but actually are made up of several different sequence parts that do not
exist together in reality. Undetected chimeras can have insidious effects, such as causing incorrect assessments
of sequence diversity or primer/probe specificity. Chimeras are very difficult to detect, and several detection
methods have been proposed with varying degrees of success. The basic problem can be described as the
search for one or more regions of a sequence that do not belong with the rest of the sequence.

The FindChimeras algorithm works by finding suspect sequence fragments that are uncommon in the
group where the sequence belongs, but very common in another group where the sequence does not belong.
Each sequence in the dbFile is tiled into short sequence segments called fragments. If the fragments are

http://DECIPHER.codes

infrequent in their respective group in the dbFileReference then they are considered suspect. If enough
suspect fragments from a sequence meet the specified constraints then the sequence is flagged as a chimera.

3 Getting Started

To get started we need to load the DECIPHER package, which automatically loads several other required
packages.

> library (DECIPHER)
Help for any DECIPHER function, such as FindChimeras, can be accessed through:
> ? FindChimeras
If DECIPHER is installed on your system, the code in each example can be obtained via:

> browseVignettes ("DECIPHER")

4 Obtaining/Building A Reference Database

The first step necessary to use FindChimeras is to obtain a reference database (dbFileReference) of good
sequences. In order for the algorithm to work accurately, it is crucial that the reference database is free
of any chimeras. The examples given in this document use 16S rRNA sequences, and a suitable reference
database can be found at http://DECIPHER.codes/Download.html.

If a reference database is not present then it is feasible to create one if a significantly large repository of
sequences is available. By using the input database as the reference database it is possible to remove chimeras
from the database. Iteratively repeating the process can eventually result in a clean reference database that
is chimera free.

The reference database is required to have several fields of information that are not found in a newly created
sequence database:

1. bases and monbases as provided by the function IdLengths.

2. origin as provided by the function FormGroups. The origin column contains the taxonomic rank above
the level shared by the whole group. For example, the origin of the group Nanoarchaeum would be
Root; Archaea; Nanoarchaeota. Without the taxonomic classifications it would be possible to substitute
numbers. For example, the rank 3.1.4.2 with a group named 4 that included 4.1 and 4.2 would have
origin 3.1. These numbers could be generated using IdClusters with multiple cutoffs.

Below is an example of building a reference database de novo from a FASTA file of ribosomal RNA (rRNA)
sequences downloaded from SILVA (http://www.arb-silva.de/)). Of course, the reference database must
match the type of the query sequences, so in the remainder of this vignette we use a comprehensive SSU
rRNA (16S) database. The information in this section is only given as an example of how to build a reference
database from scratch.

> dbRef <- dbConnect(SQLite(), "<<path to reference database>>")
> Seqs2DB("<<path to reference sequences>>", "FASTA", dbRef, "")
645151 total sequences in table Segs.

Time difference of 172.81 secs

When importing a GenBank file the rank (classification) information is automatically imported from the
ORGANISM field. The classification is simply each level of taxonomic rank separated by semicolons. In this
case the classification must be parsed from each sequence’s description information following the “>” symbol.

http://DECIPHER.codes/Download.html
http://www.arb-silva.de/

It is

> ns <- dbGetQuery(dbRef, "select description from Segs")

> ns$rank <- gsub("(.+) (.+)?", "\\2", ns$description)

> ns$rank <- gsub("(.+)7;(.*)$", "\\2\nRoot;\\1", ns$rank)

> ns$description <- gsub("(.+) (.+)?", "\\1", ns$description)

> Add2DB(ns, dbRef)

Expression:

update Seqs set description = :description where row_names = :row_names
Expression:

alter table Seqs add column rank TEXT

Expression:
update Seqs set rank = :rank where row_names = :row_names

Added to table Segs: "description" and "rank".

Time difference of 883.32 secs

necessary to perform two more steps before we can use the reference database for chimera finding:

> lengths <- IdLengths(dbRef, add2tbl=TRUE)

| | 100%
Lengths counted for 645151 sequences.
Added to Seqs: '"bases", "nonbases", and "width".
Time difference of 3924.83 secs
> groups <- FormGroups(dbRef, add2tbl=TRUE)
| | 100%

Updating column: "identifier"...

Updating column: "origin"...

Formed 1760 distinct groups.

Added to table Seqgs: "identifier", "origin".

Time difference of 19860.67 secs

We can now screen the reference database for chimeras. This process can be repeated until no new chimeras
can be found in the reference database, at which point the reference database will be ready for checking new
sequences.

> chimeras <- FindChimeras(dbRef, dbFileReference=dbRef, add2tbl=TRUE)
Found 102 possible chimeras.

Added to table Segs: '"chimera".

Time difference of 13387.34 secs

Note that sequences in the reference database must be in the same orientation as the query sequences. The
function OrientNucleotides can be used to reorient the query sequences, if necessary.

5 Steps to Find Chimeras

5.1 Assigning Sequences to Reference Groups
5.1.1 Training the Classifier

In order to assign new sequences to a group in the reference database, it is necessary to first classify the
sequences. We can use the functions LearnTaxa and IdTaxa to assign groups to the query sequences. See
the “Classify Sequences” vignette for a more detailed description of this process.

> ids <- dbGetQuery(dbRef, "select identifier, origin from Seqs")
> ids <- paste(ids$origin, ids$identifier, sep=";")

> dna <- SearchDB(dbRef, type="DNAStringSet", remove="all")

> trainingSet <- LearnTaxa(dna, ids)

5.1.2 Creating a Query Sequence Database

Chimera finding requires two database tables, one for the reference sequences and one for the query sequences.
Now that we have finished creating the chimera-free reference sequence database and training a classifer to
its taxonomy, it is not time to make the query sequence database. This can be accomplished by specifying
a new table within the reference sequence database or creating a new database file for the query sequences,
as shown here.

> dbConn <- dbConnect(SQLite(), '<<path to query database>>')
> Seqs2DB('<<path to query sequences>>', 'FASTA', dbConn, '')

5.1.3 Assigning to Groups

We can now classify each of the query sequences and assign them to the corresponding group in the reference
database. Note that the query sequences need to be in the same orientation as sequences in the reference
sequence database.

query <- SearchDB(dbConn, remove="all")

groups <- IdTaxa(query, trainingSet, strand="top", threshold=0, processors=1)

groups <- sapply(groups, function(x) tail (x$taxon, n=1))

groups <- data.frame(identifier=groups, row.names=seq_along(groups), stringsAsFactors=FALSE)
Add2DB(groups, dbConn)

V V V Vv V

5.2 Finding Chimeras

Finally, we can use the FindChimeras function to search for chimeras in our sequences.
> # full-length sequences
> chimeras <- FindChimeras(dbConn, dbFileReference=dbRef, add2tbl=TRUE)

Group of Sequence (Number of Sequences):
| | 100%

Searching Other Groups:
| | 100%

Found 19 possible chimeras.
Added to table Seqgs: '"chimera".
Time difference of 981.21 secs

If any chimeras were found then they are stored in the chimeras data.frame. There are several ways to
determine which sequences were found to be chimeric.

> # outputs the number of chimeras that were found
> cat("Number of chimeras =", dim(chimeras) [1])
Number of chimeras = 19
> # get the indices of chimeric sequences in the set
> as.numeric(row.names(chimeras))
[1] 147 89 87 90 88 132 139 97 5 120 123 13
[13] 118 114 173 174 175 18 124
> # allows viewing the chimera results in a web browser
> BrowseDB(dbConn)
[1]1 TRUE
> # returns the FASTA description of the chimeric sequences
> dbGetQuery(dbConn, "select description from Seqs where chimera is not null")
1 uncultured bacterium; Fin_CL-100633_0TU-22.

2 uncultured bacterium; Fin_CL-030731_0TU-12.
3 uncultured bacterium; Fin_CL-050647_0TU-9.
4 uncultured bacterium; Pro_CL-100643_0TU-10.
5 uncultured bacterium; L0O1_CL-100643_0TU-3.
6 uncultured bacterium; L03_CL-100641_0TU-3.
7 uncultured bacterium; UWH_CL-010711_0TU-13.
8 uncultured bacterium; Chlplus_CL-120529_0TU-35.
9 uncultured bacterium; UWH_CL-110523_0TU-35.
10 uncultured bacterium; UWH_CL-100636_0TU-11.
11 uncultured bacterium; Chlminus_CL-090519_0TU-14.
12 uncultured bacterium; UWL_CL-080514_0TU-34.
13 uncultured bacterium; UWL_CL-080545_0TU-12.
14 uncultured bacterium; Pro_CL-100633_0TU-7.
15 uncultured bacterium; UWL_CL-110645_0TU-15.
16 uncultured bacterium; UWL_CL-09061_0TU-5.
17 uncultured bacterium; Fin_CL-03079_0TU-21.
18 uncultured bacterium; UWL_CL-110518_0TU-11.
19 uncultured bacterium; UWL_CL-110548_0TU-32.

> dbDisconnect (dbRef)
[1] TRUE
> dbDisconnect (dbConn)
[1] TRUE

6 Session Information

All of the output in this vignette was produced under the following conditions:
e R version 4.1.1 (2021-08-10), x86_64-pc-linux-gnu

e Running under: Ubuntu 20.04.3 LTS

Matrix products: default

BLAS: /home/biocbuild/bbs-3.14-bioc/R/1ib/1ibRblas.so

LAPACK: /home/biocbuild/bbs-3.14-bioc/R/1ib/1libRlapack.so

Base packages: base, datasets, grDevices, graphics, methods, parallel, stats, stats4, utils

Other packages: BiocGenerics 0.40.0, Biostrings 2.62.0, DECIPHER 2.22.0, GenomelnfoDb 1.30.0,
IRanges 2.28.0, RSQLite 2.2.8, S4Vectors 0.32.0, XVector 0.34.0

Loaded via a namespace (and not attached): DBI 1.1.1, GenomeInfoDbData 1.2.7,

KernSmooth 2.23-20, RCurl 1.98-1.5, Rcpp 1.0.7, bit 4.0.4, bit64 4.0.5, bitops 1.0-7, blob 1.2.2,
cachem 1.0.6, compiler 4.1.1, crayon 1.4.1, fastmap 1.1.0, memoise 2.0.0, pkgconfig 2.0.3, rlang 0.4.12,
rstudioapi 0.13, tools 4.1.1, vetrs 0.3.8, zlibbioc 1.40.0

	Introduction
	Chimera Finding Problems
	Getting Started
	Obtaining/Building A Reference Database
	Steps to Find Chimeras
	Assigning Sequences to Reference Groups
	Training the Classifier
	Creating a Query Sequence Database
	Assigning to Groups

	Finding Chimeras

	Session Information

