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1 Installation

Before starting, make sure you have installed the latest version of R (3.0). For

more information and download of R, please refer to http://www.r-project.

org/. For more information about how to install R packages, please refer to
http://cran.r-project.org/doc/manuals/R-admin.html#Installing-packages.
This package relies on several Bioconductor package (RBGL, graph, methods,

etc.). As an example, you can install RGBL package by typing:

> if (!requireNamespace ("BiocManager", quietly=TRUE))
+ install.packages ("BiocManager")
> BiocManager: :install ("RBGL")

Before starting this tutorial you also need to install the package CellNOptR.
You can either install CellNOptR from Bioconductor by typing:

> if (!requireNamespace("BiocManager", quietly=TRUE))
+ install.packages ("BiocManager")
> BiocManager: :install("CellNOptR")

or from a tar ball as follows:

> install.packages("path_to_CellNOptR/CellNOptR_1.0.0.tar.gz",
+ repos=NULL, type="source")

or, using the R GUI by clicking on "Packages & Data” then "Package installer”,
then choosing ”local source” from the dropdown menu, clicking "install”; choos-
ing CellNOptR_1.0.0.tar.gz and finally clicking "open”.

A series of books about R can be found on the R project website (http:
//www.r-project.org/), and many tutorials are available on the internet. If
you are a complete beginner, all you need to know is that by typing "?name-
OfFunction” you get the help page about the function that you are interested
in.

2 Introduction

The package CellNOptR integrates prior knowledge about protein signalling net-
works and perturbation data to infer functional characteristics of a signalling
network. CellNOptR is a reduced version of CellNetOptimiser http://www.
ebi.ac.uk/saezrodriguez/software.html#CellNetOptimizer). It performs
optimisation using a boolean formalism only[4]. However, it includes some data
importing and normalising capabilities (as in DataRail toolbox [3] in the Mat-
Lab pipeline (available at http://www.ebi.ac.uk/saezrodriguez/software.
html#DataRail). Moreover it is used by other packages that implement more
complex formalisms. Such packages are available on BioConductor as well:
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CNORdt, CNORode (ordinary equation-based), CNORfuzzy (constrained fuzzy
logic). More information about the methods and application of the Matlab
pipeline can be found in reference [2] and http://www.cellnopt.org.

This tutorial shows how to use CellNOptR to analyse 1 or 2 time points
data sets on a toy example (1 time point), a realistic example and another toy
example (with 2 time points). The whole analysis can also be performed in one
step using a wrapper function as described in section 6.

The first step of an analysis with CellNOptR is to load the library, and create
a directory where you can perform your analysis, then set it as your working
directory.

> library(CellNOptR)

> dir.create("CNOR_analysis")

3 Quick Start

Assuming that you have a prior knowledge network stored in SIF format and a
MIDAS file, the optimisation of your problem can be done in a couple of steps:

B oo e load the library and get a SIF and MIDAS file
library(CellNOptR)

#

# o examples are provided in CellNOptR

data("ToyModel", package="CellNOptR")
data("CNOlistToy", package="CellNOptR")
pknmodel = ToyModel

cnolist = CNOlist(CNOlistToy)

# alternatively you can read your own files:
# pknmodel = readSIF("ToyModel.sif")
# cnolist = CNOlist("ToyDataMMB.csv")

#

# preprocess the network
model = preprocessing(cnolist, pknmodel)

#

# o perform the analysis
res = gaBinaryT1(cnolist, model, verbose=FALSE)
#

# plot the results

VVVVVVVVVVVVVVVVVVVYVYV

cutAndPlot (cnolist, model, list(res$bString))

See the following sections for details.

4 Loading the data and prior knowledge network.

Let us first create a directory where to store the file that will be created:


http://www.cellnopt.org

> cpfile<-dir(system.file("ToyModel",package="CellNOptR"),full=TRUE)
> file.copy(from=cpfile, to=getwd(),overwrite=TRUE)

The example that we use is the toy model example from CellNOpt, which is
a data set and associated network that have been created in silico. This data
and network can be found in the inst/ToyModel directory of this package. The
data is read using the function read MIDAS, which as the name states expects a
MIDAS formatted CSV file (see the documentation of DataRail and [3] for more
information about that file format). Then, you will need to convert the data
into a CNOlist, which is the data structure used in CellNOptR. Please note that
this data is already normalised for boolean modelling. If it had not been the
case we would have had to normalise the data first to scale it between 0 and 1,
which can be done using the normalise CNOlist function of CellNOptR (see the
help of this function for more information about the normalisation procedure).
This normalisation procedure is the one used in [1] as implemented in DataRail.

Before version 1.3.30, you would type the following combinaison of com-
mands to create a CNOlist from a MIDAS file:

> dataToy<-readMIDAS("ToyDataMMB.csv", verbose=FALSE)
> CNOlistToy<-makeCNOlist(dataToy,subfield=FALSE, verbose=FALSE)

Alternatively, this data is provided within CellNOptR so you can also load
it as follows

> data(CNOlistToy,package="CellNOptR", verbose=FALSE)

However, since version 1.3.30, you can use the CNOlist class to load the data
in a single command line

> CNOlistToy = CNOlist("ToyDataMMB.csv")

Note for the users familiar with the previous commands (read MIDAS and
and makeCNOlist) that you can easily convert the old data structure into an
instance of CNOlist class as follows:

> data(CNOlistToy,package="CellNOptR")
> CNOlistToy = CNOlist(CNOlistToy)

A CNOlist is the central data object of this package; it contains measure-
ments of elements of a prior knowledge network under different combinations of
perturbations of other nodes in the network. A CNOlist comprises the following
attributes: signals, cues, stimuli, inhibitors and timepoints. The attributes cues
(and its derivatives stimuli and inhibitors) are boolean matrices that contain for
each condition (row) a 1 when the corresponding cue (column) is present, and
a zero otherwise.

You can have a look at your data and the CNOlist format by typing:

> CNOlistToy
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Figure 1: CNOlist data shown by plotting function (either plot or plotCNOlist)

class: CNOlist

cues: EGF TNFa Raf PI3K

inhibitors: Raf PI3K

stimuli: EGF TNFa

timepoints: 0 10

signals: Akt Hsp27 NFkB Erk p90RSK Jnk cJun
variances: Akt Hsp27 NFkB Erk p90RSK Jnk cJun

To see the values of any data contained in this instance, just use the

appropriate getter method (e.g., getCues(cnolist), getSignals(cnolist), ...

You can also visualise your data using the method plot (or a function called
plotCNOlist) which will produce a plot on your screen with a subplot for each
signal and each condition, and an image plot for each condition that contains
the information about which cues are present in each condition. This plot can
also be produced and stored in your working directory as a single PDF file using
the function plotCNOIlistPDF.

> plot(CNOlistToy)

> plotCNO1istPDF(CNO1list=CNOlistToy,filename="ToyModelGraph.pdf")

We then load the prior knowledge network (PKN), contained in a Cytoscape
SIF format file, using the function readSIF' (alternatively, this example model
can be loaded as a R data object already formatted, similarly to what is done
above for the CNOlist). Cytoscape [5] is a software for network visualisation
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and analysis. You can build a network within Cytoscape and simply save it as
the default SIF file format, which can then be imported in CellNOptR. If you
choose to do this, then you should make sure that if you have ’and’ gates in your
network they are present as dummy nodes named ’and’ followed by a number
from 1 to the number of ’and’ nodes that you have.

Alternatively, you can create your network file as a text file formatted as a
SIF file. Briefly, the expected file format is a tab delimited text file with a line
for each directed interaction and the following three elements per line: name
of source node, 1 or -1 if the source node is activating or inhibiting the target
node, name of target node. The names of the species in the model must match
some of the nodes in the model (and this is case sensitive). ’And’ hyperedges
are expected to be represented in the SIF file as dummy nodes named ’and’
followed by a number. For example if you have an interaction of the type ’a
& b=c’, your SIF file should contain the following three rows: ’a 1 andl’, ’b
1 andl’, ’andl 1 ¢’. Please be aware that when building the scaffold network
for optimisation, the software will create all possible ’and’ combinations (with
maximum 3 inputs) of edges coming into each node, so in the general case it
is not necessary to put 2 or 3 input ’and’ hyperedges in the prior knowledge
network since the software will create them if the corresponding single edges are
present.

> pknmodel<-readSIF("ToyPKNMMB.sif")
> data(ToyModel,package="CellNOptR")

Having loaded both the data set and corresponding model, we run a check
to make sure that our data and model were correctly loaded and that our data
matches our model (i.e. that species that were inhibited/stimulated /measured
in our data set are present in our model).

> checkSignals(CNOlistToy,pknmodel)

The SIF model that you have just loaded is visible on figure 2 as displayed
by plotModel (requires Rgraphviz to be installed).

> plotModel (pknmodel, CNOlistToy)
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Figure 2: Prior knowledge network (original SIF file visualised by plotModel)
for the Toy Model example.



5 Preprocessing the model

Prior to optimisation, the model has to be pre-processed in 3 steps: removal of
non-observable /non-controllable species, compression, and expansion. Each one
of these steps is described in more details below.

Since version 0.99.24, a preprocessing function is available and makes the
following 3 steps in 1 command line. However, the description of the 3 steps
remains available here below. If you do not bother about details, you can jump
directly to section 5.4.

5.1 Finding and cutting the non observable and non controllable
species

Non observable nodes are those that do not have a path to any measured species
in the PKN, whereas non controllable nodes are those that do not receive any
information from a species that is perturbed in the data. As we won’t be able
to conclude anything about these species, we will find them and remove them
from the model. Please note that in this particular case there are no nodes to
cut, but we still include these steps here because they are necessary in a general
case.

> indicesToy<-indexFinder (CNUlistToy,pknmodel ,verbose=TRUE)

[1] "The following species are measured: Akt, Hsp27, NFkB, Erk, p90RSK, Jnk, cJun"
[1] "The following species are stimulated: EGF, TNFa"
[1] "The following species are inhibited: Raf, PI3K"

> ToyNCNOindices<-findNONC (pknmodel, indicesToy, verbose=TRUE)

[1] "The following species are not observable and/or not controllable: "
> ToyNCNOcut<-cutNONC (pknmodel, ToyNCNOindices)
> indicesToyNCNOcut<-indexFinder (CNOlistToy, ToyNCNOcut)

5.2 Compressing the model

Compressing the model consists of collapsing paths in which a series of non
measured or perturbed nodes input into a measured or perturbed node. This
step is performed because such paths do not bring any additional information
compared to their compressed version, and unnecessarily complicate the model.
Typically this includes linear cascades for examples, but this excludes any node
that would be:

1. involved in complex logics (more than one input and also more than one
output)

2. involved in self loops



Compression is performed using the function compressModel.

> ToyNCNOcutComp<-compressModel (ToyNCNOcut, indicesToyNCNOcut)
> indicesToyNCNOcutComp<-indexFinder (CNOlistToy, ToyNCNOcutComp)

5.3 Expanding the gates

The last preprocessing step consists in expanding the gates present in the PKN,
i.e. creating new logic combinations of gates from the ones present in the prior
knowledge network. This is performed in 2 steps: i) any AND node present in
the PKN is split into its constituent branches, and ii) every time a nodes gets
more than one input, then all ’AND’ combinations of the inputs are produced,
although only exploring combinaisons of AND gates with a maximum of 2, 3 or
4 input nodes (for instance for a 5 inputs case, only C3, C3, or C§ combinations
are created). This step is performed because although connections between
nodes might be known or inferred from functional relationships, the particular
logic with which these interactions work or are combined to influence a target
node are generally not known.

This step, performed by the function expandGates, will create additional
fields SplitANDs and newANDs in the model that inform you about new edges
that have been crated from splitting ’AND’ hyperedges, and about new hyper-
edges that have been created from combinations of edges.

> model<-expandGates (ToyNCNOcutComp, maxInputsPerGate=3)
Note that here we set the option mazInputsPerGate to 3 whereas the default

value is 2.

5.4 Preprocessing function

In CellNOptR (from version 1.2), a function called preprocessing gathers the
previous three preprocessing steps in a single command line:

> model <- preprocessing(CNOlistToy, pknmodel, expansion=TRUE,
+ compression=TRUE, cutNONC=TRUE, verbose=FALSE)

In the previous commands, although the default behaviour of the preprocess-
ing function is to perform the expansion, compression and removing of non-
observable and non-controlable nodes, we set these options to TRUE so as to
emphasize the usage of the function.

6 Training of the model

By “optimising the model”, we mean exploring the space of possible combi-
nations of expanded gates in the PKN in order to find the combination that



reproduces most closely the data. Comparison between model and data is ob-
tained by simulating the steady state behaviour of the model under all con-
ditions present in the data, and comparing these binary values to the nor-
malised data points. The match between data and model is quantified using
an objective function with parameters sizeFac and NAFac. This function is
the sum of a term that computes the fit of the simulated data to the experi-
mental data, a term that penalises increased model size (weighted by the pa-
rameter sizeFac), and a term that penalises NAs in the output of the simula-
tion (i.e. nodes that are in a non resolved state, typically negative feedbacks;
weighted by the parameter NAFac). Typically this has the following structure:
% Z“,k(Mtyl,k —Dyik)?+ a% Zedges €edges + BN a, where n is the number of
data points, M the model output for time t, readout 1, condition k, D is the
corresponding measurement, « is the size factor, e is the number of inputs for
the egde considered (where edges are all edges present in the optimised model),
s is the number of hyperdeges in the model, 8 is the NA factor, and ny 4 is the
number of undetermined values returned by the model.

The optimisation itself is done using a genetic algorithm that tries to optimise
a string of Os and 1s denoting the presence or absence of each gate in the model,
where the fitness of each individual string is obtained based on the value of the
objective function (score). This genetic algorithm uses the following methods:
random initialisation of the population (although an initial string is given to the
algorithm in the parameter initBstring) of size set by popSize, linear ranking
based on the scores for fitness assignment (with a default selective pressure of
1.2, set by the parameter selPress), stochastic uniform sampling for selection
(with an elitism parameter that allows the best x strings to be carried on ’as is’ to
the next generation), uniform crossover probability, and a mutation probability
over the sequence set to 0.5 as default (set by pMutation). The search can
be stopped using three conditions: a maximum time in seconds (mazTime), a
maximum number of generations (mazGens), and a maximum number of stall
generations (i.e. generations where the best string is identical, stallGenMaz).

The genetic algorithm function returns a list object that collects a number of
informations such as the best string and corresponding score at each iteration,
the average fit at each generation, etc. The function also returns strings that
were obtained across the whole optimisation process and that obtained scores
that were closed to the best string, where ’close’ is defined by a relative toler-
ance on the score which is set by the parameter relTol. This is an important
piece of information because when the data cannot constrain the model tightly
then many strings are obtained with a fit that is close to the optimal one, and
interpretation of edges present in the optimal model is therefore more subtle.

We start off by computing the residual error, which is the minimum error
that is unavoidable with a boolean network and comes from the discrete nature
of such a model (please remember that although the data is normalised in this
pipeline, it is not discretised, and therefore we compare 0/1 values to continuous
values between 0 and 1). This value is important because however good is our
optimisation, the value of the goodness of fit term cannot go under this residual
erTor.
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> resECNOlistToy<-residualError (CNOlistToy)

Then, we create an initial bit string for the optimisation, which in this case is
just a string of 1s, but could be a meaningful string if you have prior expectation
about the topology of the model.

> initBstring<-rep(1,length(model$reacID))

‘We can now start the optimisation, in this case with default values for all non
essential parameters of the genetic algorithm. If you set the argument verbose
to TRUE, this function will print the following information, at each generation:
generation number, best score and best string at this generation, stall generation
number, average score of this generation and iteration time. You can also find
these informations in the object that is returned by this function, as well as the
best string the bbString field, and strings within the relative tolerance limits in
StringsTol.

> ToyTlopt<-gaBinaryT1(CNOlist=CNOlistToy, model=model,
+ initBstring=initBstring, verbose=FALSE)

We will now produce plots of our analysis. First, we plot the results of
simulating the data with our best model alongside the actual data set in a
plot similar to that obtained above with plotCNOlist, except that the simulated
data is overlaid in dashed blue lines, and the background of the plot reflects the
absolute difference between simulated and experimental data (greener=closer to
0; redder=closer to 1; white=NA, either for data or simulation). Second, we will
plot the evolution of the average score and best score during the evolution of
the population of models, as a function of generations. This is useful to detect
problems in the optimisation.

> cutAndPlot (model=model, bStrings=1ist(ToyTlopt$bString),
+ CNO1ist=CNOlistToy,plotPDF=TRUE)

$filenames
$filenames[[1]]
[1] "SimResultsT1_1.pdf"

$mse

[,11 [,2] [,3] [,4] [,5] [,6] [,7]
[1,] 0.00405 0.000 0.3698 0.02 0.0072 0.00000 0.00
[2,] 0.01620 0.045 0.0050 0.00 0.0000 0.03125 0.08
[3,] 0.00405 0.045 0.0050 0.02 0.0072 0.03125 0.08
[4,] 0.00405 0.000 0.3698 0.00 0.0000 0.00000 0.00
[5,] 0.01620 0.045 0.0050 0.00 0.0000 0.03125 0.08
[6,] 0.00405 0.045 0.0050 0.00 0.0000 0.03125 0.08
[7,1 0.00000 0.000 0.0000 0.02 0.0072 0.00000 0.00



[8,] 0.00000 0.045 0.0050
[9,1 0.00000 0.045 0.0050

$simResults
$simResults[[1]]
$simResults[[1]]$t0

[1,]
[2,]
(3,1
4,]
(5,1
(6,1
7,1
(8,1]
[9,]

$simResults[[1]]$t1

(1,]
2,]
(3,1
4,1]
(5,]
(6,1
7,1
(8,1
(9,1

> plotFit(optRes=ToyTlopt)
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Figure 3: Results of the cutAndPlot function on the Toy Model example.
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Setting the plotPDF argument to "TRUE” means that a PDF figure will be
produced (advised, this will then be linked to your report). To produce a PDF
of the evolution of fit as well (advised), type:

> cutAndPlot (

+ model=model,

+ bStrings=1ist(ToyTlopt$bString),
+ CNOlist=CNOlistToy,

+ plotPDF=TRUE)

> pdf ("evolFitToyT1.pdf")

> plotFit(optRes=ToyTlopt)

> dev.off ()

Note that for now, you can not set the output filename. It is going to
be named SimResultsT1_1.pdf (if several plots are generated, you get SimRe-
sultsT1_2.pdf and so on). In the future, users should be able to provide the
name. You can still call cutAndPlot without the PDF option and use the R pdf
function like in the example above when calling plotFit function.

7 Plotting the optimised model

Once you have optimised the processed model the bitstring found correspond
to the best model and you may want to look at the result:

> plotModel (model, CNOlistToy, bString=ToyTlopt$bString)

You may also want to look at the correspondence on the original model. To
do so, you will need to mapback your best model on top of the PKN. This is
done in two steps:

> bs = mapBack(model, pknmodel, ToyTlopt$bString)
> plotModel (pknmodel, CNOlistToy, bs, compressed=model$speciesCompressed)

8 Writing your results

The next function, writeScaffold, allows you to write in a Cytoscape SIF file the
scaffold network that was used for optimisation as well as two corresponding
edge attribute files: one that tells you when the edge was called present in the
optimised networks (ie 0O=absent, 1=present), and one that tells you the weight
of each edge as the fraction of models within the relative tolerance distance of
the best model’s score that actually included the edge. The function also writes
the scaffold to a graphviz (http://www.graphviz.org/Credits.php) dot file,
where the presence/absence is represented by the color of the edge (grey if
absent, blue if present) and the weight is represented by the penwidth of the
edges.
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Figure 4: Processed model (left) and original PKN (right). The edges are on
(black or red) or off (grey or pink) according to the best set of parameters found
during the optimisation (the best bit string). To obtain the right hand side
model, the mapBack function has been used.

We then also write the prior knowledge network, using the function write Net-
work, which again produces a SIF file and corresponding attributes, and a
dot file. The SIF file has a corresponding edge attribute file that contains
the present/absent information mapped back to the PKN, and the node at-
tribute file contains information about the status of the node (compressed, non-
observable/non-controllable, signal, inhibited, stimulated). The dot file encodes
the edge information as above and the node information in the color of the node:
signals are in blue, inhibited nodes are in red, stimulated nodes are in green,
and compressed/cut nodes are in white with dashed contour. Examples of such
files can be found on figures 5 and 6.

You can then write a report that contains relevant information about your

EGF TNFa

N /
Akt Mek
Elrk ]
P9ORSK Hsp27 cdun NFkB

Figure 5: Scaffold network generated by the function writeScaffold for the Toy
Model example.
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Figure 6: PKN generated by the function writeNetwork for the Toy Model
example.

analysis and links to the various plots that you created. This will be in the
form of an html file called CelNOptReport.html, which will be stored along
with all of your plots in a directory that you create and name (the name of
that folder is a parameter in the function writeReport). Please not that the
function writeReport will create the folder and move all of the files given by the
list namesFiles into this directory. The files given by the arguments dataPlot,
evolFitT1, optimResT1 will then be hyperlinked to your html report.

> writeScaffold(
+ modelComprExpanded=model,

+ optimResT1=ToyTlopt,

+ optimResT2=NA,

+ modelOriginal=pknmodel,

+ CNO1ist=CNOlistToy)

> writeNetwork(

+ modelOriginal=pknmodel,

+ modelComprExpanded=model,

+ optimResT1=ToyT1lopt,

+ optimResT2=NA,

+ CNO1ist=CNOlistToy)

> namesFilesToy<-1ist(

+ dataPlot="ToyModelGraph.pdf",
+ evolFitT1="evolFitToyT1.pdf",
+ evolFitT2=NA,

+ simResultsT1="SimResultsT1_1.pdf",
+ simResultsT2=NA,

+ scaffold="Scaffold.sif",

+ scaffoldDot="Scaffold.dot",

+ tscaffold="TimesScaffold.EA",

16



9

wscaffold="weightsScaffold.EA",

PKNdot="PKN.dot",
wPKN="TimesPKN.EA",
nPKN="nodesPKN.NA")

modelOriginal=pknmodel,

optimResT1=ToyT1lopt,

CNO1ist=CNOlistToy,

directory="testToy",

namesFiles=namesFilesToy,

namesData=1ist (CNOlist="Toy",model="ToyModel"))

+
+ PKN="PKN.sif",
+

+

+

> writeReport (

+

+ modelOpt=model,
+

+ optimResT2=NA,
+

+

+

+

The one step version

If you do not want to bother with all of these steps, there is a function that
allows you to do the whole analysis in one step. In order to do this, you must
first load the model and data, as above (assuming that you have already loaded
the library and have copied the relevant files in your working directory).

> dataToy<-readMIDAS ("ToyDataMMB.csv")

[1]
[1]
[1]
[1]
[1]

"Your data
"Your data
"Your data
"Please be
"Your data

set comprises 18 conditions (i.e. combinations of time point and treatment)'
set comprises measurements on 7 different species"

set comprises 4 stimuli/inhibitors and 1 cell line(s) ( mock )"

aware that CNO only handles measurements on one cell line at this time."
file contained 'NaN'. We have assumed that these were missing values and repl

> CNOlistToy<-makeCNOlist (dataToy,subfield=FALSE)

[1] "Please be aware that if you only have some conditions at time zero (e.g.only inhibitor/

> pknmodel<-readSIF ("ToyPKNMMB.sif")

Then you have two possibilities, either you keep all optimisation parameters

to their default values and just type

>
+
+
+
+
+

res <- CNORwrap(

paramsList=NA,

name="Toy",

namesData=1ist (CNOlist="ToyData",model="ToyModel"),
data=CNOlistToy,

model=pknmodel)
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or you want to have some control over the parameters of the optimisation, in
which case you create a parameters list with fields Data (the CNOlist contain-
ing your data), model (your model object), sizeFac (default to 1le-04), NAFac
(default to 1), popSize (default to 50), pMutation (default to 0.5), mazTime (de-
fault to 60), mazGens (default to 500), stallGenMax (default to 100), selPress
(default to 1.2), elitism (default to 5), relTol (default to 0.1), verbose (default
to FALSE ). You can then call the wrapper function with this set of parameters.

> pList<-defaultParameters(CNOlistToy, pknmodel)

> #pList$data = CNOlistToy

> #pList$model = ToyModel

> res <- CNORwrap(

+ paramsList=pList,

+ name="Toy1Step",

+ namesData=1ist (CNOlist="ToyData",model="ToyModel"))

[1] "The following species are measured: Akt, Hsp27, NFkB, Erk, p90RSK, Jnk, cJun"
[1] "The following species are stimulated: EGF, TNFa"

[1] "The following species are inhibited: Raf, PI3K"

[1] "The following species are not observable and/or not controllable: "

Both of these versions will generate the graphs produced above on your
graphics window, and as PDF’s that will be hyperlinked to your html report,
and you will be able to find all of these hyperlinked with your html report, all
in a directory called by the Name parameter, in your working directory.

10 A real example

This package also contains a slightly larger and more realistic data set, which
is a part of the network analysed in [4] and comprises 40 species and 58 inter-
actions in the PKN. This network was also used for the signaling challenge in
DREAM 4 (see http://www.the-dream-project.org/). The associated data
was collected in hepatocellular carcinoma cell line HepG2 (see [1]). The same
analysis as above can be performed on this data set. In order to load this data,
you need to copy the files in the "DREAMModel” directory to you working di-
rectory (see below) then use read MIDAS, readSIF and makeCNOlist, or load
the pre-formatted model and CNOlist objects, as above.

> #Option 1: copy the SIF and MIDAS files (followed by readMIDAS, makeCNOlist and readSIF)
> cpfile<-dir(system.file("DREAMModel",package="CellNOptR") ,full=TRUE)
> file.copy(from=cpfile,to=getwd () ,overwrite=TRUE)

logical(0)

> #0Option 2: load the CNOlist and model objects
> data(CNO1istDREAM, package="CellNOptR")
> data(DreamModel, package="CellNOptR")
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Having loaded both data and model, you can now visualise your data us-
ing plotCNOlist and plotCNOlistPDF. You can now start the preprocessing of
the model, i.e. find the non-observable/non-controllable species, compress the
model, and expand the gates (preprocessing).

Having obtained a pre-processed model, we run the training function (gaBi-
naryT1). Finally, we plot the results of our training (cutAndPlot, see figure 7) as
well as the information about the evolution of fit during optimisation (plotFit).

> model = preprocessing (CNO1istDREAM, DreamModel, verbose=FALSE)

> res = gaBinaryT1(CNOlistDREAM, model, verbose=FALSE, maxTime=10)

> cutAndPlot (CNO1istDREAM, model, bStrings=list(res$bString), plotPDF=TRUE,
+ plotParams=1list (maxrow=25, margin=0.1, width=20, height=20))

>

>

Our analysis is then complete and we can write our results (scaffold net-
work (writeScaffold), prior knowledge network (writeNetwork) and html report
(writeReport)). An example of the html report generated for this analysis is
shown on figure 8. The scaffold network produced by writeScaffold is shown on
figure 9 .
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Figure 7: Plot of simulated and experimental data for the DREAM data and
model presented above.
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General information:

« data: Dream

« time point(s): 1

« Residual error: t1: 1.87508076 (scaled: 0.0114)
« previous knowledge network: DreamModel

« PKN: 40 species and 58 interactions

« Scaffold and 17

(Optimisation t1:

« generations: 157 (best model obtained atter 35)
« best string: 20 interactions, objective function = 0.0636980652121212
« number of strings within the tolerance limits: 2507

Scaffold network:

« cytoscape sif format: DreamNCNOcutCompExpScatfold.sif

« graphviz dot format: ModeIModel ComprExpandedScaffold.dot

« edge attribute files: NOcutC i EA and DreamNCNOcutCompExpTimesScatfold. EA

« edge attributes ively reflect the weight of the edge calculated as the frequency of the edge in the best solutions in the last generation of optimisation(s), and the time stamp on each edge
(i.e. absentipresent at ti/present at t2)

Previous knowledge network:

« cytoscape sif format: DreamModelPKN sif

« graphviz dot format: DreamModelPKN.dot

« edge attribute file: DreamModelTimesPKN.EA

« node attribute file: DreamModelnodesPKN.NA

« the edge attribute is a time stamp on each edge of the scaffold network (.e. absentipresent at t1/present at t2) mapped back to the original network
« the node attribute reflects the information about which nodes are si ibited/sti bservabi

Figure 8: Report generated by CellNOptR for the DREAM data set and model
training process.

erk12

Figure 9: Scaffold network for the DREAM model, as produced by writeScaffold.
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11 A toy example with two time points

In this section we will demonstrate the use of CellNOptR used when the data
comprises two time points where we assume that different mechanisms of regu-
lation are at play, which act on separate time scales. The data set that we use
is the toy model example from CellNOpt, adapted for an optimisation based
on two time points (i.e. all signals are kept at the same value as t1 except for
cJun and Jnk which go down to zero). The model that we will load is the toy-
model from CellNOpt where we added a negative feedback between cJun and
Jnk (lcJun=Jnk). We are going to try and capture this feedback, assuming that
this is a slow mechanism that shuts the cJun - Jnk branch down at the second,
slower time scale.

In this case the data comprises two time points that we assume are pseudo
steady states corresponding to different time scales. The optimisation will there-
fore be performed in 2 steps, one that finds the reactions present at time 1, and
one that finds the reactions that were not present at time 1 and might have
entered into play at time 2, explaining the evolution of the signals from time 1
to time 2. First, we load the data and model, and perform the optimisation just
as we did for the Toy model above.

> data(CNOlistToy2,package="CellNOptR")
> data(ToyModel2,package="CellNOptR")

> pknmodel = ToyModel2

> cnolist = CNOlist(CNOlistToy2)

> plot(cnolist)
plotCNOlistPDF (cnolist,filename="ToyModelGraphT2.pdf")

v

pdf
2

> model = preprocessing(cnolist, pknmodel, verbose=FALSE)
> Tlopt <- gaBinaryT1(cnolist, model, stallGenMax=10, maxTime=60, verbose=FALSE)

> cutAndPlot (model=model, bStrings=1ist(Tlopt$bString),
+ CNOlist=cnolist, plotPDF=TRUE)

$filenames
$filenames[[1]]
[1] "SimResultsT1_1.pdf"

$mse
[,11 [,2] [,3]1 [,4] [,5]1 [,6] [,7]
[1,1 0.00405 0.000 0.3698 0.02 0.0072 0.000 0.0000000
[2,] 0.01620 0.045 0.0050 0.00 0.0000 0.125 0.0261793
[3,] 0.00405 0.045 0.0050 0.02 0.0072 0.125 0.0261793
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[4,1 0.00405 0.000 0.3698 0.00 0.0000 0.000 0.0000000
,] 0.01620 0.045 0.0050 0.00 0.0000 0.125 0.0261793
,] 0.00405 0.045 0.0050 0.00 0.0000 0.125 0.0261793
[7,] 0.00000 0.000 0.0000 0.02 0.0072 0.000 0.0000000
,] 0.00000 0.045 0.0050 0.00 0.0000 0.125 0.0261793
[9,1 0.00000 0.045 0.0050 0.02 0.0072 0.125 0.0261793
$simResults
$simResults[[1]]
$simResults[[1]1]1$t0

(,11 [,21 [,31 [,41 [,51 [,6] [,7]

[1,] 0 0 0 0 0 0 0
[2,1] 0 0 0 0 0 0 0
[3,] 0 0 0 0 0 0 0
(4,] 0 0 0 0 0 0 0
[5,] 0 0 0 0 0 0 0
(6,1 0 0 0 0 0 0 0
[7,] 0 0 0 0 0 0 0
(s,] 0 0 0 0 0 0 0
[9,] 0 0 0 0 0 0 0
$simResults[[1]]$t1

(,11 [,2] [,3] [,4] [,5] [,6] [,7]

[1,] 1 0 0 1 1 0 0
[2,] 1 1 1 0 0 1 1
[3,] 1 1 1 1 1 1 1
(4,1 1 0 0 0 0 0 0
[5,] 1 1 1 0 0 1 1
(6,1 1 1 1 0 0 1 1
(7,1 0 0 0 1 1 0 0
[8,] 0 1 1 0 0 1 1
[9,] 0 1 1 1 1 1 1

> pdf ("evolFitToy2T1.pdf")
> plotFit (optRes=T1lopt)
> dev.off ()

pdf
2

> plotFit(optRes=Tlopt)
We can now optimise the second time point.

> T2opt<-gaBinaryTN(cnolist, model, bStrings=1ist(Tlopt$bString),
+ stallGenMax=10, maxTime=60, verbose=FALSE)

Finally, we produce all the plots and write the report.
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bStrings=1ist(Tlopt$bString, T2opt$bString),

0

O O O O OO oo

]

[,4]
.02666667
.00000000
.02666667
.00000000
.00000000
.00000000
.02666667
.00000000
.02666667

0

O O O O O O O o
O O O O OO O oo

(.6l [,7]

> cutAndPlot (
+ model=model,
+
+ CNOlist=cnolist,
+
$mse
[,11 [,2] [,3]
[1,] 0.0054 0.00 0.493066667
[2,] 0.0216 0.06 0.006666667
[3,] 0.0054 0.06 0.006666667
[4,] 0.0054 0.00 0.493066667
[6,] 0.0216 0.06 0.006666667
[6,] 0.0054 0.06 0.006666667
[7,] 0.0000 0.00 0.000000000
[8,] 0.0000 0.06 0.006666667
[9,] 0.0000 0.06 0.006666667
$filenames
list()
$simResults
$simResults[[1]]
[,11 [,2]1 [,3] [,41 [,5] [,6] [,7]
[1,] 0 0 0 0
[2,] 0 0 0 0
[3,] 0 0 0 0
[4,] 0 0 0 0
[5,] 0 0 0 0
[6,] 0 0 0 0
[7,] 0 0 0 0
[8,] 0 0 0 0
[9,1] 0 0 0 0
$simResults[[2]]
[,11 [,2]1 [,3] [,4] [,5
[1,] 1 0 0 1
[2,] 1 1 1 0
[3,] 1 1 1 1
[4,] 1 0 0 0
[5,] 1 1 1 0
[6,] 1 1 1 0
7,1 0 0 0 1
[8,] 0 1 1 0
[9,] 0 1 1 1

P O P, OO0 OK

PP, ORFR,rRF,OFL, PO
R P, ORFRP,r P ORFRRFLO
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[,5]

.0096
.0000
.0096
.0000
.0000
.0000
.0096
.0000
.0096

O OO O OO OoOOoOOo

[,6]

.00000000
.08333333
.08333333
.00000000
.08333333
.08333333
.00000000
.08333333
.08333333

plotPDF=TRUE, plotParams=1list(cex=0.8, cmap_scale=0.5,

O O O O OO O oo

margin=0.2))

[,7]

.00000000
.01745286
.01745286
.00000000
.01745286
.01745286
.00000000
.01745286
.01745286
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Figure 10: Output of the cutAndPlot function on the 2-time data set.

$simResults[[3]]
[,11 [,2]1 [,3] [,4] L[,5] L[,6] L[,7]

[1,] 1 0 0 1 1 0 0
[2,] 1 1 1 0 0 0 0
[3,] 1 1 1 1 1 0 0
(4,1 1 0 0 0 0 0 0
[5,] 1 1 1 0 0 0 0
(6,1 1 1 1 0 0 0 0
(7,1 0 0 0 1 1 0 0
[8,] 0 1 1 0 0 0 0
[9,] 0 1 1 1 1 0 0
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12 A toy example with the ILP implementation

Besides Genetic Algorithm, another approach for training the PKN to data is
by using an Integer Linear Programming (ILP) optimization technique. This
optimization problem has been implemented based on the formulation from [6].

In this section we will demonstrate the use of CellNOptR with the ILP imple-
mentation with the example provided in the CellNOptR package. For running
this feature, users will have to first obtain an /BM-CPLEX license (see https:
//www.ibm.com/de-de/products/ilog-cplex-optimization-studio). Onve
the CPLEX solver is downloaded and installed, then for running CNO-ILP users
will have to specify a valid path (eplexzPath) pointing to the CPLEX executable
file.

# Joad the library and get a SIF and MIDAS file
library(CellNOptR)
library(stringr)

#——————— examples are provided in CellNOptR
data("ToyModel", package="CellNOptR")

data("CNOlistToy", package="CellNOptR")

pknmodel = ToyModel

cnolist = CNOlist(CNOlistToy)

# - alternatively you can read your own files:
# pknmodel = readSIF("ToyModel.sif")
# cnolist = CNOlist("ToyDataMMB.csv")

#

# - preprocess the network

model = preprocessing(cnolist, pknmodel)

#

# perform the analysis

cplexPath = "path/to/cplex"

resILP = ilpBinaryTl1 (cnolist = cnolist, model = model,
numSolutions = 3, relGap = 0.05,

cplexPath = cplexPath) # asking to retrieve 3
# equivalent solutions with
# tolerance gap relGap=0.05

# o plot the results (optimized models + fits)

cutAndPlot (CNOlist = cnolist, model = model, bStrings = list(resILP$bitstringILP[[1]]))
plotModel (model, cnolist, bString=resILP$bitstringILP[[1]])

cutAndPlot (CNOlist = cnolist, model = model, bStrings = list(resILP$bitstringILP[[2]]))
plotModel (model, cnolist, bString=resILP$bitstringILP[[2]])

cutAndPlot (CNOlist = cnolist, model = model, bStrings = list(resILP$bitstringILP[[3]]))
plotModel (model, cnolist, bString=resILP$bitstringILP[[3]])

VVVVVVVVVYV++VVVVVVVVVVVVVVVVVVYVYV

Figures 11, 12, 13 show the 3 optimal solutions retrieved by the ILP analysis.
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Figure 11: Results of the ilpBinaryT! function on the Toy Model example -
solution 1
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Figure 12: Results of the ilpBinaryT! function on the Toy Model example -
solution 2

As indicated in Figure 14, the three solutions fit the data with the same
quality and the main difference is in the size of network solutions. This example
shows how ILP can be used to retrieve alternative sparser solutions which have
the same quality of fit and to indicate the most robust interactions or the ones
which are consistently present across the solutions.

Through the gap parameters (relGap) users can control the quality of solu-
tions to retrieve compared to the optimal ones. As a rule of thumb the looser
the gap parameters the higher the number of solutions which can be retrieved.

13 k-fold Crossvalidation

Cross-validation has been implemented in order to assess the predictive per-
formance of our models and inspect how well these models can predict data
outside of its training set. Three re-sampling strategies have been implemented:
resampling of 1)data-ponts, 2)experimental conditions and 3)observable nodes.
Because of the multiple and possibly extensive analysis, the cross-validation
functionality allow for a parallelization of the procedure.

Below we show an example about how we can use the cross-validation func-
tionality by applying different re-sampling strategies in a parallel and serial
computing environments.

> # - load the library and get a SIF and MIDAS file
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Figure 13: Results of the ilpBinaryT1 function on the Toy Model example -
solution 3
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Figure 14: Alternative solutions have the same fit to data. Plots obtained
throught the cutAndPlot function
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library(CellNOptR)

# examples are provided in CellNOptR
data (PKN_ToyPB, package="CellNOptR")
data(CNOlist_ToyPB, package="CellNOptR")

# oo e preprocess the network
model = preprocessing(data = cnodata,model = pknmodel,compression = T,expansion = T)
plotModel (model, cnodata)

#

#—m original CNOlist contains many timepoints, we use only a subset
plot(cnodata)

selectedTime = c(0,10)

cnodata_prep = cutCNOlist(cnodata ,model = model,

cutTimeIndices = which(!cnodata@timepoints jinj, selectedTime))

plot(cnodata_prep)

—————————————————————— perform the analysis
opt = gaBinaryT1(CNOlist = cnodata_prep,model = model)

# 10-fold cross-validation procedure using T1 data
library(doParallel)

doParallel: :registerDoParallel (cores=3)

system. time ({R1=crossvalidateBoolean(CNOlist = cnodata_prep, model = model,
type="datapoint", nfolds=10, parallel = TRUE)})
system.time ({R2=crossvalidateBoolean(CNOlist = cnodata_prep, model=model,
type="experiment", nfolds=10, parallel = TRUE)})
system.time ({R3=crossvalidateBoolean(CNOlist = cnodata_prep, model=model,
type="observable", nfolds=10, parallel = TRUE)})
system. time ({R4=crossvalidateBoolean(CNOlist = cnodata_prep, model=model,
type="datapoint", nfolds=10, parallel = FALSE)})
system.time ({R5=crossvalidateBoolean(CNOlist = cnodata_prep, model=model,
type="experiment", nfolds=10, parallel = FALSE)})
system.time ({R6=crossvalidateBoolean(CNOlist = cnodata_prep, model=model,
type="observable", nfolds=10, parallel = FALSE)})

+VvV+V+V+V+YV+HVVVVVVVVV+VVVVVVVVVYVYVYVYVY
*

14 What else

More tutorials can be found in www.cellnopt.org and http://www.cellnopt.
org/ in particulat on http://www.cellnopt.org/doc/cnodocs/.
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