Package ‘transformGamPoi’

April 12,2022
Type Package
Title Variance Stabilizing Transformation for Gamma-Poisson Models
Version 1.0.0

Description Variance-stabilizing transformations help with the analysis of
heteroskedastic data (i.e., data where the variance is not constant, like count data).
This package provide two types of variance stabilizing transformations: (1) methods based on the
delta method (e.g., 'acosh’, log(x+1)"), (2) model residual based (Pearson and randomized
quantile residuals).

BugReports https://github.com/const-ae/transformGamPoi/issues

URL https://github.com/const-ae/transformGamPoi
License GPL-3
Encoding UTF-8

Imports glmGamPoi, DelayedArray, Matrix, MatrixGenerics,
SummarizedExperiment, HDF5Array, methods, utils

Suggests testthat, TENxPBMCData, scran, knitr, rmarkdown
Roxygen list(markdown = TRUE)

RoxygenNote 7.1.1

Config/testthat/edition 3

biocViews SingleCell, Normalization, Preprocessing, Regression
VignetteBuilder knitr

git_url https://git.bioconductor.org/packages/transformGamPoi
git_branch RELEASE_3_14

git_last_commit 38f5cfa

git_last_commit_date 2021-10-26

Date/Publication 2022-04-12

Author Constantin Ahlmann-Eltze [aut, cre]
(<https://orcid.org/0000-0002-3762-068X>)

Maintainer Constantin Ahlmann-Eltze <artjom31415@googlemail.com>

1

https://github.com/const-ae/transformGamPoi/issues
https://github.com/const-ae/transformGamPoi
https://orcid.org/0000-0002-3762-068X

2

acosh_transform

R topics documented:

acosh_transform L e 2
residual_transform e 4
transformGamPoi 8
Index 11

acosh_transform

Delta method-based variance stabilizing transformation

Description

Delta method-based variance stabilizing transformation

Usage

acosh_transform(

data,

overdispersion = 0.05,

size_factors
bl

on_disk

verbose

)

= TRUE,

NULL,
FALSE

shifted_log_transform(

data,

overdispersion = 0.05,

pseudo_count
size_factors

= 1/(4 * overdispersion),
= TRUE,

minimum_overdispersion = 0.001,

L

on_disk = NULL,
verbose = FALSE
)
Arguments
data any matrix-like object (e.g. matrix, dgCMatrix, DelayedArray, HDF5Matrix)
with one column per sample and row per gene. It can also be an object of type
glmGamPoi, in which case it is directly used to calculate the variance-stabilized
values.
overdispersion the simplest count model is the Poisson model. However, the Poisson model

assumes that variance = mean. For many applications this is too rigid and the
Gamma-Poisson allows a more flexible mean-variance relation (variance =
mean + mean? x overdispersion).

overdispersion can either be

acosh_transform 3

* a single boolean that indicates if an overdispersion is estimated for each

gene.

* a numeric vector of length nrow(data) fixing the overdispersion to those

values.

* the string "global” to indicate that one dispersion is fit across all genes.
Note that overdispersion =0 and overdispersion = FALSE are equivalent
and both reduce the Gamma-Poisson to the classical Poisson model. Default:
0.05 which is roughly the overdispersion observed on ostensibly homogeneous
cell lines.

size_factors inlarge scale experiments, each sample is typically of different size (for example
different sequencing depths). A size factor is an internal mechanism of GLMs
to correct for this effect.
size_factors is either a numeric vector with positive entries that has the same
lengths as columns in the data that specifies the size factors that are used. Or
it can be a string that species the method that is used to estimate the size fac-
tors (one of c("normed_sum”,"deconvolution”,”poscounts”)). Note that
"normed_sum” and "poscounts” are fairly simple methods and can lead to sub-
optimal results. For the best performance, I recommend to use size_factors
= "deconvolution” which calls scran: :calculateSumFactors(). However,
you need to separately install the scran package from Bioconductor for this
method to work. Also note that size_factors =1 and size_factors = FALSE
are equivalent. If only a single gene is given, no size factor is estimated (ie.
size_factors = 1). Default: "normed_sum".
additional parameters for glmGamPoi: : glm_gp () which is called in case overdispersion
= TRUE.

on_disk a boolean that indicates if the dataset is loaded into memory or if it is kept on
disk to reduce the memory usage. Processing in memory can be significantly
faster than on disk. Default: NULL which means that the data is only processed
in memory if data is an in-memory data structure.

verbose boolean that decides if information about the individual steps are printed. De-
fault: FALSE

pseudo_count instead of specifying the overdispersion, the shifted_log_transformis com-
monly parameterized with a pseudo-count (pseudo—count = 1/(4dxoverdispersion)).
If both the pseudo-count and overdispersion is specified, the overdispersion
is ignored. Default: 1/(4 * overdispersion)

minimum_overdispersion
the acosh_transform converges against 2 x sqrt(z) for overdispersion ==
0. However, the shifted_log_transform would just become @, thus here we
apply the minimum_overdispersion to avoid this behavior.

Value

a matrix (or a vector if the input is a vector) with the transformed values.

Functions

* acosh_transform: 1/sqrt(alpha) acosh(2 * alpha * x + 1)
* shifted_log_transform: 1/sqrt(alpha)log(4 * alpha x x + 1)

4 residual_transform

References

Ahlmann-Eltze, Constantin, and Wolfgang Huber. "Transformation and Preprocessing of Single-
Cell RNA-Seq Data." bioRxiv (2021).

Ahlmann-Eltze, Constantin, and Wolfgang Huber. "glmGamPoi: Fitting Gamma-Poisson General-
ized Linear Models on Single Cell Count Data." Bioinformatics (2020)

Dunn, Peter K., and Gordon K. Smyth. "Randomized quantile residuals." Journal of Computational
and Graphical Statistics 5.3 (1996): 236-244.

Hafemeister, Christoph, and Rahul Satija. "Normalization and variance stabilization of single-cell
RNA-seq data using regularized negative binomial regression." Genome biology 20.1 (2019): 1-15.

Hafemeister, Christoph, and Rahul Satija. "Analyzing scRNA-seq data with the sctransform and
offset models." (2020)

Lause, Jan, Philipp Berens, and Dmitry Kobak. "Analytic Pearson residuals for normalization of
single-cell RNA-seq UMI data." bioRxiv (2021).

See Also

acosh_transform, shifted_log_transform, and residual_transform

Examples

Load a single cell dataset

sce <- TENxPBMCData: : TENxPBMCData("pbmc4k")

Reduce size for this example

set.seed(1)

sce_red <- sce[sample(which(rowSums2(counts(sce)) > @), 1000),
sample(ncol(sce), 200)]

assay(sce_red, "acosh") <- acosh_transform(sce_red)
assay(sce_red, "shifted_log") <- shifted_log_transform(sce_red)

plot(rowMeans2(assay(sce_red, "acosh"”)), rowVars(assay(sce_red, "acosh")), log = "x")
points(rowMeans2(assay(sce_red, "shifted_log")), rowVars(assay(sce_red, "shifted_log")),
col = "red”)

Sqrt transformation
sqrt_dat <- acosh_transform(sce_red, overdispersion = @, size_factor = 1)
plot(2 * sqrt(assay(sce_red))[,1], sqrt_dat[,1]); abline(0@,1)

residual_transform Residual-based Variance Stabilizing Transformation

Description

Fit an intercept Gamma-Poisson model that corrects for sequencing depth and return the residuals
as variance stabilized results for further downstream application, for which no proper count-based
method exist or is performant enough (e.g., clustering, dimensionality reduction).

residual_transform

Usage
residual_transform(
data,
residual_type = c("randomized_quantile”, "pearson"”),

clipping = FALSE,
overdispersion = 0.05,

size_factors
of fset_model

= TRUE,
= TRUE,

overdispersion_shrinkage = TRUE,
ridge_penalty = 2,
on_disk = NULL,

return_fit =

FALSE,

verbose = FALSE,

Arguments

data

residual_type

clipping

overdispersion

any matrix-like object (e.g. matrix, dgCMatrix, DelayedArray, HDF5Matrix)
with one column per sample and row per gene. It can also be an object of type
glmGamPoi, in which case it is directly used to calculate the variance-stabilized
values.

a string that specifies what kind of residual is returned as variance stabilized-
value.

"randomized_quantile” The discrete nature of count distribution stops sim-
ple transformations from obtaining a truly standard normal residuals. The
trick of of quantile randomized residuals is to match the cumulative den-
sity function of the Gamma-Poisson and the Normal distribution. Due to
the discrete nature of Gamma-Poisson distribution, a count does not cor-
respond to a single quantile of the Normal distribution, but to a range of
possible value. This is resolved by randomly choosing one of the mapping
values from the Normal distribution as the residual. This ensures perfectly
normal distributed residuals, for the cost of introducing randomness. More
details are available in the documentation of statmod: :qresiduals() and
the corresponding publication by Dunn and Smyth (1996).

"pearson” The Pearson residuals are defined as res = (y—m)/sqrt(m-+m?x
theta).

The two above options are the most common choices, however you can use
any residual_type supported by glmGamPoi: : residuals.glmGamPoi (). De-
fault: "randomized_quantile”

a single boolean or numeric value specifying that all residuals are in the range
[-clipping, +clipping]. If clipping = TRUE, we use the default of clipping =
sqrt(ncol(data)) which is the default behavior for sctransform. Default:
FALSE, which means no clipping is applied.

the simplest count model is the Poisson model. However, the Poisson model
assumes that variance = mean. For many applications this is too rigid and the
Gamma-Poisson allows a more flexible mean-variance relation (variance =

6 residual_transform

mean + mean? x overdispersion).

overdispersion can either be

* a single boolean that indicates if an overdispersion is estimated for each
gene.

* a numeric vector of length nrow(data) fixing the overdispersion to those
values.

* the string "global” to indicate that one dispersion is fit across all genes.

Note that overdispersion =0 and overdispersion = FALSE are equivalent
and both reduce the Gamma-Poisson to the classical Poisson model. Default:
0.05 which is roughly the overdispersion observed on ostensibly homogeneous
cell lines.

offset_model boolean to decide if 81 in y = By + SBilog(sf), is set to 1 (i.e., treating the log
of the size factors as an offset) or is estimated per gene. From a theoretical
point, it should be fine to treat 31 as an offset, because a cell that is twice as big,
should have twice as many counts per gene (without any gene-specific effects).
However, sctransform suggested that it would be advantageous to nonetheless
estimate [y as it may counter data artifacts. On the other side, Lause et al. (2020)
demonstrated that the estimating 5y and 31 together can be difficult. If you still
want to fit sctransform’s model, you can set the ridge_penalty argument to
a non-zero value, which shrinks 3; towards 1 and resolves the degeneracy.
Default: TRUE.

overdispersion_shrinkage, size_factors
arguments that are passed to the underlying call to glmGamPoi: :glm_gp(). De-
fault for each: TRUE.

ridge_penalty another argument that is passed to glmGamPoi: :glm_gp(). It is ignored if
offset_model = TRUE. Default: 2.

on_disk a boolean that indicates if the dataset is loaded into memory or if it is kept on
disk to reduce the memory usage. Processing in memory can be significantly
faster than on disk. Default: NULL which means that the data is only processed
in memory if data is an in-memory data structure.

return_fit boolean to decide if the matrix of residuals is returned directly (return_fit
= FALSE) or if in addition the glmGamPoi-fit is returned (return_fit = TRUE) .
Default: FALSE.

verbose boolean that decides if information about the individual steps are printed. De-
fault: FALSE

additional parameters passed to glmGamPoi: :glm_gp().

Details
Internally, this method uses the glmGamPoi package. The function goes through the following steps
1. fit model using glmGamPoi: :glm_gp()

2. plug in the trended overdispersion estimates

3. call glmGamPoi: :residuals.glmGamPoi () to calculate the residuals.

residual_transform 7

Value

a matrix (or a vector if the input is a vector) with the transformed values. If return_fit = TRUE, a
list is returned with two elements: fit and Residuals.

References

Ahlmann-Eltze, Constantin, and Wolfgang Huber. "glmGamPoi: Fitting Gamma-Poisson General-
ized Linear Models on Single Cell Count Data." Bioinformatics (2020)

Dunn, Peter K., and Gordon K. Smyth. "Randomized quantile residuals." Journal of Computational
and Graphical Statistics 5.3 (1996): 236-244.

Hafemeister, Christoph, and Rahul Satija. "Normalization and variance stabilization of single-cell
RNA-seq data using regularized negative binomial regression." Genome biology 20.1 (2019): 1-15.

Hafemeister, Christoph, and Rahul Satija. "Analyzing scRNA-seq data with the sctransform and
offset models." (2020)

Lause, Jan, Philipp Berens, and Dmitry Kobak. "Analytic Pearson residuals for normalization of
single-cell RNA-seq UMI data." bioRxiv (2021).

See Also

glmGamPoi: :glm_gp(), glmGamPoi: :residuals.glmGamPoi (), sctransform: :vst(), statmod: :qresiduals()

Examples

Load a single cell dataset

sce <- TENxPBMCData: : TENxPBMCData("pbmc4k")

Reduce size for this example

set.seed(1)

sce_red <- sce[sample(which(rowSums2(counts(sce)) > @), 1000),
sample(ncol(sce), 200)]

counts(sce_red) <- as.matrix(counts(sce_red))

Residual Based Variance Stabilizing Transformation

rq <- residual_transform(sce_red, residual_type = "randomized_quantile”,
verbose = TRUE)
pearson <- residual_transform(sce_red, residual_type = "pearson"”, verbose = TRUE)

Plot first two principal components
pearson_pca <- prcomp(t(pearson), rank. = 2)
rq_pca <- prcomp(t(rq), rank. = 2)
plot(rq_pca$x, asp = 1)
points(pearson_pca$x, col = "red")

8 transformGamPoi

transformGamPoi Variance Stabilizing Transformation for Gamma Poisson Data

Description

Variance Stabilizing Transformation for Gamma Poisson Data

Usage

transformGamPoi (
data,
transformation = c("acosh”, "shifted_log"”, "randomized_quantile_residuals”,
"pearson_residuals”),
overdispersion = 0.05,
size_factors = TRUE,

L

on_disk = NULL,
verbose = FALSE
)
Arguments
data any matrix-like object (e.g. matrix, dgCMatrix, DelayedArray, HDF5Matrix)

with one column per sample and row per gene. It can also be an object of type
glmGamPoi, in which case it is directly used to calculate the variance-stabilized
values.

non n o n

transformation oneof c("acosh”,"”shifted_log”,"randomized_quantile_residuals”,"pearson_residuals").
See acosh_transform, shifted_log_transform, or residual_transformfor
more information.

overdispersion the simplest count model is the Poisson model. However, the Poisson model
assumes that variance = mean. For many applications this is too rigid and the
Gamma-Poisson allows a more flexible mean-variance relation (variance =
mean + mean? x overdispersion).
overdispersion can either be

* a single boolean that indicates if an overdispersion is estimated for each
gene.

* a numeric vector of length nrow(data) fixing the overdispersion to those
values.

* the string "global” to indicate that one dispersion is fit across all genes.

Note that overdispersion =0 and overdispersion = FALSE are equivalent
and both reduce the Gamma-Poisson to the classical Poisson model. Default:
0.05 which is roughly the overdispersion observed on ostensibly homogeneous
cell lines.

transformGamPoi 9

size_factors inlarge scale experiments, each sample is typically of different size (for example
different sequencing depths). A size factor is an internal mechanism of GLMs
to correct for this effect.
size_factors is either a numeric vector with positive entries that has the same
lengths as columns in the data that specifies the size factors that are used. Or
it can be a string that species the method that is used to estimate the size fac-
tors (one of c("normed_sum”, "deconvolution”, "poscounts”)). Note that
"normed_sum” and "poscounts” are fairly simple methods and can lead to sub-
optimal results. For the best performance, I recommend to use size_factors
= "deconvolution” which calls scran::calculateSumFactors(). However,
you need to separately install the scran package from Bioconductor for this
method to work. Also note that size_factors =1 and size_factors = FALSE
are equivalent. If only a single gene is given, no size factor is estimated (ie.
size_factors =1). Default: "normed_sum”.

additional parameters passed to acosh_transform, shifted_log_transform,
or residual_transform

on_disk a boolean that indicates if the dataset is loaded into memory or if it is kept on
disk to reduce the memory usage. Processing in memory can be significantly
faster than on disk. Default: NULL which means that the data is only processed
in memory if data is an in-memory data structure.

verbose boolean that decides if information about the individual steps are printed. De-
fault: FALSE

Value

a matrix (or a vector if the input is a vector) with the transformed values.

References

Ahlmann-Eltze, Constantin, and Wolfgang Huber. "Transformation and Preprocessing of Single-
Cell RNA-Seq Data." bioRxiv (2021).

Ahlmann-Eltze, Constantin, and Wolfgang Huber. "glmGamPoi: Fitting Gamma-Poisson General-
ized Linear Models on Single Cell Count Data." Bioinformatics (2020)

Dunn, Peter K., and Gordon K. Smyth. "Randomized quantile residuals." Journal of Computational
and Graphical Statistics 5.3 (1996): 236-244.

Hafemeister, Christoph, and Rahul Satija. "Normalization and variance stabilization of single-cell
RNA-seq data using regularized negative binomial regression." Genome biology 20.1 (2019): 1-15.

Hafemeister, Christoph, and Rahul Satija. "Analyzing scRNA-seq data with the sctransform and
offset models." (2020)

Lause, Jan, Philipp Berens, and Dmitry Kobak. "Analytic Pearson residuals for normalization of
single-cell RNA-seq UMI data." bioRxiv (2021).

See Also

acosh_transform, shifted_log_transform, and residual_transform

10 transformGamPoi

Examples

Load a single cell dataset

sce <- TENxPBMCData::TENxPBMCData("pbmc4k")

Reduce size for this example

set.seed(1)

sce_red <- sce[sample(which(rowSums2(counts(sce)) > @), 1000),
sample(ncol(sce), 200)]

assay(sce_red, "acosh”) <- transformGamPoi(sce_red, "acosh")
assay(sce_red, "shifted_log") <- transformGamPoi(sce_red, "shifted_log")

Residual Based Variance Stabilizing Transformation

rg <- transformGamPoi(sce_red, transformation = "randomized_quantile”, on_disk = FALSE,
verbose = TRUE)

pearson <- transformGamPoi(sce_red, transformation = "pearson”, on_disk = FALSE, verbose = TRUE)

plot(rowMeans2(counts(sce_red)), rowVars(assay(sce_red, "acosh")), log = "x")
points(rowMeans2(counts(sce_red)), rowVars(assay(sce_red, "shifted_log")), col = "red")
points(rowMeans2(counts(sce_red)), rowVars(rq), col = "blue")

Plot first two principal components

acosh_pca <- prcomp(t(assay(sce_red, "acosh")), rank. = 2)
rq_pca <- prcomp(t(rq), rank. = 2)
pearson_pca <- prcomp(t(pearson), rank. = 2)

plot(acosh_pca$x, asp = 1)
points(rqg_pca$x, col = "blue")
points(pearson_pca$x, col = "green")

Index

acosh_transform, 2,4, 8, 9

glmGamPoi: :glm_gp(), 6, 7
glmGamPoi: :residuals.glmGamPoi(), 5-7

residual_transform, 4, 4, 8, 9

shifted_log_transform, 4, 8, 9

shifted_log_transform
(acosh_transform), 2

statmod: :qresiduals(), 5

transformGamPoi, 8

11

	acosh_transform
	residual_transform
	transformGamPoi
	Index

