Package ‘netDx’

April 12,2022
Title Network-based patient classifier
Version 1.6.0

Description netDx is a general-purpose algorithm to build a patient classifier from heterogenous pa-
tient data. The method converts data into patient similarity networks at the level of features. Fea-
ture selection identifies features of predictive value to each class. Methods are provided for ver-
satile predictor design and performance evaluation using standard measures. netDx na-
tively groups molecular data into pathway-level features and connects with Cytoscape for net-
work visualization of pathway themes. For method details see: Pai et al. (2019). netDx: inter-
pretable patient classification using integrated patient similarity networks. Molecular Sys-
tems Biology. 15, e8497

Depends R (>= 3.6)

Suggests curatedTCGAData, rmarkdown, testthat, knitr, BiocStyle, RCy3,
clusterExperiment, netSmooth, scater

Imports ROCR,pracma,ggplot2,glmnet,igraph,reshape2,
parallel,stats,utils,MultiAssayExperiment,graphics,grDevices,
methods,BiocFileCache,GenomicRanges,
bigmemory,doParallel,foreach,
combinat,rappdirs,GenomelnfoDb,S4 Vectors,
IRanges,RColorBrewer,Rtsne,httr,plotrix

VignetteBuilder knitr
Encoding UTF-8

License MIT + file LICENSE
LazyData false

URL http://netdx.org

biocViews Classification, Biomedicallnformatics, Network,
SystemsBiology

RoxygenNote 7.1.2

git_url https://git.bioconductor.org/packages/netDx
git_branch RELEASE_3_14

git_last_commit 85f6f3b

git_last_commit_date 2021-10-26


http://netdx.org

2 R topics documented:

Date/Publication 2022-04-12

Author Shraddha Pai [aut, cre] (<https://orcid.org/0000-0002-1048-581X>),
Philipp Weber [aut],
Ahmad Shah [aut],
Luca Giudice [aut],
Shirley Hui [aut],
Anne Nghr [ctb],
Indy Ng [ctb],
Ruth Isserlin [aut],
Hussam Kaka [aut],
Gary Bader [aut]

Maintainer Shraddha Pai <shraddha.pai@utoronto.ca>

R topics documented:

getcache . . . L L e e 4
allowedSims . . . . . . . .. e 5
avgNormDiff . . . . . . .o 5
buildPredictor . . . . . . . . .. 6
buildPredictor_sparseGenetic . . . . . . . . . ... o 9
callFeatSel . . . . . . . . . . . e 12
callOverallSelectedFeatures . . . . . . . . . . . . .. . . .. .. .. 13
checkMakeNetFuncSims . . . . . . . . . . . . . . . 14
checkSimValid . . . . . . . . . . . ... 15
cleanPathwayName . . . . . . . . . . . . .. e 15
cnv_GR . . 16
cnv_netPass . . . . . L. L e e e e e e e 17
CNV_NELSCOTES . . o v v o o o e e e e e e e e e e e e e e e e 17
cnv_patientNetCount . . . . . . . . .. L e 17
Cnv_pheno . . . . . . . L e e e e 18
cnv_TTstatus . . . . . . . . e e 18
compareShortestPath . . . . . . . . ... 18
compileFeatures . . . . . . . . ... 19
compileFeatureScores . . . . . . . ... L e 21
confmat . . . . . ... e e e e 22
confusionMatriX . . . . . . . . ... e e e e 22
convertProfileToNetworks . . . . . . . . . . . . . . . .. ... 23
convertToMAE . . . . . . . . e 24
countIntType . . . . . . . . L e 25
countIntType_batch . . . . . . . . . . . . L 26
countPatientsInNet . . . . . . . . . . . ... e e 27
createNetFuncFromSimList . . . . . . . . . . . . . . .. ... .. ... 28
createPSN_MultiData . . . . . . . . . . ... 29
datalList2List . . . . . . . . e e e e e e e 31
enrichLabelNets . . . . . . . . . . . . . . . e 32
featScores . . . . . . . e e e e 34

fetchPathwayDefinitions . . . . . . . . . . . ... ... 34


https://orcid.org/0000-0002-1048-581X

R topics documented: 3

GEMES . v o e e e e e e e e e e e e e e e e e e e e 35
getCorrType . . . . . . L e e 35
getEMaplnput . . . . . . .. e 36
getEMaplnput_many . . . . . ... L e 37
GetENT . . . L e e 38
getFeatureScores . . . . . . . ... 39
getFileSep . . . . . . . e 40
getGMjar_path . . . . . . . . e e 41
getNetCOonSensUS . . . . . . . .ttt e e e e e 41
getOR . . . e 42
getPatientPredictions . . . . . . ... 43
getPatientRankings . . . . . . . . ... 44
getPerformance . . . . . . ... 45
getPSN . L e 45
getRegionOL . . . . . . . . L e 47
getResults . . . . . .. 48
getSimilarity . . . . ... 49
makelnputForEnrichmentMap . . . . . . .. ... ... L o o 49
makePSN_NamedMatrix . . . . . . . . .. ... ... 50
makePSN_RangeSets . . . . . . . . .. 52
makeQUETIeS . . . . . . . . . e e e e e e e e 54
makeSymmetric . . . . . ..o L. e e e e e 54
mapNamedRangesToSets . . . . . . . . .. ... ... L 55
matrix_getl] . . ... 56
MB.pheno . . . . . . . e e e 56
modelres . . . . . L. e 57
movelnteractionNets . . . . . . ... L. 57
normDiff . ..o 58
NPhENO . . . . . . . o e e e e 58
pathwayList . . . . . . . ... 59
pathway_GR . . . . . . o 59
perfCalc . . . . . . e e 60
Pheno . . . . L 60
pheno_full . . . . . . .. 61
plotEmap . . . . . . 61
plotntegratedPatientNetwork . . . . . . . . . ... .. L L 63
plotPerf . . . . L 65
plotPerf_multi . . . . . . ... 66
predict . . . .o e e e 67
predictPatientLabels . . . . . .. ... 68
predRes . . . . . . 69
pruneNet . . . . . . e e e e e e e e e e e 70
PruneNets . . . . . . L e e e e e e e 70
pruneNet_pctX . . . ... e e e 71
psn__builtln . . . . ..o 72
PSN_COIT . o v v vt it e e e e e e e e e e e e e e e e e e 72
PSD__CUSIOM . . . . . b vttt e e e e e e e e e e e 73

randAlphanumString . . . . . ... oL 73



4 .get_cache
readPathways . . . . . . . . .. e 74
replacePattern . . . . . . . ... L L 75
RR _featureTally . . . . . . . . . . . . 76
runFeatureSelection . . . . . . . . . L e 77
runQUETY . . . . . . e 79
setupFeatureDB . . . . . . . .. 80
silh. . o e 81
sim.eucscale . . . . ... L. 81
sim.pearscale . . . . . . ... e e e e e e e e 82
simpleCap . . . . . ... 83
smoothMutations_LabelProp . . . . . . . . . ... ... 83
Sparsify2 . . . L L e e e e e 85
sparsify3 . . . oL e 86
splitTestTrain . . . . . . . . . o o e 87
splitTestTrain_resampling . . . . . . . . . . ... ... e 88
subsampleValidationData . . . . . . . . . ... 89
thresholdSmoothedMutations . . . . . . . . . .. . ... L 89
toymodel . . . ... e 91
tSNEPlotter . . . . . . . . e 91
updateNets . . . . .. e e e e e e e e 92
writeNetsSIF . . . . . . . o o 93
writeQueryBatchFile . . . . . . . . ... L 94
writeQueryFile . . . . . . . L 95
writeWeightedNets . . . . . . . . . .. e 96
KDL o o o e e e e e e e e e e e e e e 97

Index 98

.get_cache wrapper function for getting BiocFileCache associated with netDx
package

Description

wrapper function for getting BiocFileCache associated with netDx package

Usage

.get_cache()

Value

BiocFileCache object associated with netDx



allowedSims

allowedSims built-in similarity functions

Description

built-in similarity functions

Usage

allowedSims()

avgNormDiff takes average of normdiff of each row in x

Description

takes average of normdiff of each row in x

Usage

avgNormDiff (x)

Arguments

X (numeric) matrix of values, one column per patient (e.g. ages)

Value

symmetric matrix of size ncol(dat) (number of patients) containing pairwise patient similarities

Examples

data(xpr)
sim <- avgNormDiff(xpr[,seq_len(2)]1)



6 buildPredictor

buildPredictor Run nested cross-validation on data

Description

Run nested cross-validation on data

Usage

buildPredictor(
datalist,
grouplList,
outDir = tempdir(),
makeNetFunc = NULL,
sims = NULL,
featScoreMax = 10L,
trainProp = 0.8,
numSplits = 1oL,
numCores,
JavaMemory = 4L,
featSelCutoff = 9L,
keepAllData = FALSE,
startAt = 1L,
preFilter = FALSE,
impute = FALSE,
preFilterGroups = NULL,
imputeGroups = NULL,
logging = "default”,
debugMode = FALSE

Arguments

datalList (MultiAssayExperiment) sample metadata. Clinical data is in colData() and
other input datatypes are in assays() slot. names(groupList) should match names(assays(dataList)).
The only exception is clinical data. If a groupList entry is called "clinical”, the
algorithm will search for corresponding variable names in colData(dataList) (i.e.
columns of sample metadata table).

grouplList (list of lists) keys are datatypes, and values are lists indicating how units for those
datatypes are to be grouped. Keys must match names(assays(datalList)). The
only exception is for clinical values. Variables for "clinical" will be extracted
from columns of the sample metadata table (i.e. from colData(dataList)). e.g.
groupList[["rna"]] could be a list of pathway definitions. So keys(groupList[["rna"]])
would have pathway names, generating one PSN per pathways, and values(groupList[["rna"]])
would be genes that would be grouped for the corresponding pathwayList.

outDir (char) directory where results will be stored. If this directory exists, its contents
will be overwritten. Must be absolute path



buildPredictor

makeNetFunc

sims

featScoreMax
trainProp
numSplits
numCores
JavaMemory
featSelCutoff
keepAllData

startAt
preFilter

impute

preFilterGroups

imputeGroups

logging

debugMode

Details

(function) user-defined function for creating the set of input PSN provided to
netDx. See createPSN_MultiData()::customFunc.

(list) rules to create similarity networks from input data. Keys are names of data
layers and should be identical to names(groupList). Values is either a character
for built-in similarity functions; call allowedSims() to see full list; or a custom
function.

(integer) number of CV folds in inner loop

(numeric 0 to 1) Percent samples to use for training

(integer) number of train/blind test splits (i.e. iterations of outer loop)
(integer) number of CPU cores for parallel processing

(integer) memory in (Gb) used for each fold of CV

(integer) cutoff for inner-fold CV to call feature-selected in a given split

(logical) if TRUE keeps all intermediate files, even those not needed for assess-
ing the predictor. Use very cautiously as for some designs, each split can result
in using 1Gb of data.

(integer) which of the splits to start at (e.g. if the job aborted part-way through)

(logical) if TRUE uses lasso to prefilter datalist within cross-validation loop.
Only variables that pass lasso get included. The current option is not recom-
mended for pathway-level features as most genes will be eliminated by lasso.
Future variations may allow other prefiltering options that are more lenient.

(logical) if TRUE applies imputation by median within CV

(char) vector with subset of names(dataList) to which prefiltering needs to be
limited. Allows users to indicate which data layers should be prefiltered us-
ing regression and which are to be omitted from this process. Prefiltering uses
regression, which omits records with missing values. Structured missingness
can result in empty dataframes if missing values are removed from these, which
in turn can crash the predictor. To impute missing data, see the "impute’ and
“imputeGroups’ parameters.

(char) If impute set to TRUE, indicate which groups you want imputed.

(char) level of detail with which messages are printed. Options are: 1) none:
turn off all messages; 2) all: greatest level of detail (recommended for advanced
users, or for debugging); 3) default: print key details (useful setting for most
users)

(logical) when TRUE runs jobs in serial instead of parallel and prints verbose
messages. Also prints system Java calls and prints all standard out and error
output associated with these calls.

wrapper function to run netDx with nested cross-validation, with an inner loop of X-fold cross-
validation and an outer loop of different random splits of data into train and blind test. The user
needs to supply a custom function to create PSN, see createPSN_MultiData(). This wrapper pro-
vides flexibility for designs with one or several heterogeneous data types, and one or more ways of



8 buildPredictor

defining patient similarity. For example, designs it handles includes 1) Single datatype, single simi-
larity metric: Expression data -> pathways 2) Single datatype, multiple metrics: Expression data ->
pathways (Pearson corr) and single gene networks (normalized difference) 3) Multiple datatypes,
multiple metrics: Expression -> Pathways; Clinical -> single or grouped nets

Value

symmetric matrix of size ncol(dat) (number of patients) containing pairwise patient similarities

(list) "inputNets": data.frame of all input network names. Columns are "NetType" (group) and "Net-
Name" (network name). "Split<i>" is the data for train/test spliti (i.e. one per train/test split). Each
"SplitX" entry contains in turn a list of results for that split. Key-value pairs are: 1) predictions: real
and predicted labels for test patients 2) accuracy: percent accuracy of predictions 3) featureScores:
list of length g, where g is number of patient classes. scores for all features following feature se-
lection, for corresponding class. 4) featureSelected: list of length g (num patient classes). List of
selected features for corresponding patient class, for that train/test split. Side effect of generating
predictor-related data in <outDir>.

Examples

library(curatedTCGAData)
library(MultiAssayExperiment)
curatedTCGAData(diseaseCode="BRCA", assays="+*",dry.run=TRUE,version="1.1.38")

# fetch mrna, mutation data
brca <- curatedTCGAData("BRCA",c("mRNAArray"),FALSE,version="1.1.38")

# get subtype info

pID <- colData(brca)$patientID

pam50 <- colData(brca)$PAM50.mRNA

staget <- colData(brca)$pathology_T_stage

st2 <- rep(NA,length(staget))

st2[which(staget %in% c("t1","t1a","t1b","t1c"))] <- 1
st2[which(staget %in% c("t2","t2a","t2b"))] <- 2
st2[which(staget %in% c("t3","t3a"))] <- 3
st2[which(staget %in% c("t4","t4b","t4d"))] <- 4
pam5@[which(!pam50 %in% "Luminal A")] <- "notLumA"”
pam5@[which(pam50@ %in% "Luminal A")J] <- "LumA"
colData(brca)$ID <- pID

colData(brca)$STAGE <- st2

colData(brca)$STATUS <- pam5@

# keep only tumour samples
idx <- union(which(pam5@ == "Normal-like"), which(is.na(st2)))
cat(sprintf("excluding %i samples\n”, length(idx)))

tokeep <- setdiff(pID, pID[idx])
brca <- brca[, tokeep, ]

pathList <- readPathways(fetchPathwayDefinitions(month=10,year=2020))
brca <- brcal,,1] # keep only clinical and mRNA data



buildPredictor_sparseGenetic

# remove duplicate arrays

smp <- sampleMap(brca)

samps <- smp[which(smp$assay=="BRCA_mRNAArray-20160128"), 1]
notdup <- samps[which(!duplicated(samps$primary)),”colname”]
brcal[1]] <- brcal[11]1[,notdup]

groupList <- list()
groupList[["BRCA_mRNAArray-20160128"1] <- pathList[seq_len(3)]
groupList[["clinical”]] <- list(
age="patient.age_at_initial_pathologic_diagnosis”,
stage="STAGE")
makeNets <- function(datalList, groupList, netDir,...) {
netList <- c()
# make RNA nets: group by pathway
if (!is.null(groupList[["BRCA_mRNAArray-20160128"11)) {
netList <- makePSN_NamedMatrix(dataList[["BRCA_mRNAArray-20160128"1],
rownames (dataList[["BRCA_mRNAArray-20160128"11),
groupList[["BRCA_mRNAArray-20160128"11,
netDir,verbose=FALSE,
writeProfiles=TRUE,...)
netList <- unlist(netlList)
cat(sprintf("Made %i RNA pathway nets\n”, length(netList)))
}

# make clinical nets,one net for each variable

netList2 <- c()

if (!'is.null(groupList[["clinical”]1])) {

netList2 <- makePSN_NamedMatrix(datalList$clinical,
rownames(datalList$clinical),
groupList[["clinical”]],netDir,
simMetric="custom”,customFunc=normDiff, # custom function
writeProfiles=FALSE,
sparsify=TRUE, verbose=TRUE, ...)

3

netList2 <- unlist(netList2)

cat(sprintf("Made %i clinical nets\n”, length(netList2)))

netList <- c(netList,netlList2)

cat(sprintf("Total of %i nets\n"”, length(netList)))

return(netlList)

# takes 10 minutes to run

#out <- buildPredictor(datalList=brca,groupList=grouplList,

#  makeNetFunc=makeNets, #i## custom network creation function

#  outDir=paste(tempdir(),"pred_output”,sep=getFileSep()), ## absolute path
#  numCores=16L,featScoreMax=2L, featSelCutoff=1L,numSplits=2L)

buildPredictor_sparseGenetic
Performs feature selection using multiple resamplings of the data




10

Description

buildPredictor_sparseGenetic

Performs feature selection using multiple resamplings of the data

Usage

buildPredictor_

phenoDF,
cnv_GR,
predClass,

group_GRList,

sparseGenetic(

outDir = tempdir(),
numSplits = 3L,

featScoreMax
filter_WtSum
enrichLabels

= 10L,
100L,
TRUE,

enrichPthresh = 0.07,
numPermsEnrich = 2500L,

minEnr = -1,

numCores = 1L,

FS_numCores

Arguments

phenoDF

cnv_GR

predClass

group_GRList

outDir

numSplits
featScoreMax
filter_WtSum

enrichLabels

enrichPthresh

numPermsEnrich

minEnr

NULL,

(data.frame) sample metadat. patient ID,STATUS

(GRanges) genetic events. Must contain "ID" column mapping the event to a
patient. ID must correspond to the ID column in phenoDF

(char) patient class to predict

(list) List of GRangesList indicating grouping rules for CN'Vs. For example, in a
pathway-based design, each key value would be a pathway name, and the value
would be a RangesList containing coordinates of the member genes

(char) path to dir where results should be stored. Results for resampling i
are under <outDir>/part<i>, while predictor evaluation results are directly in
outDir.

(integer) number of data resamplings to use
(integer) max score for features in feature selection

(numeric between 5-100) Limit to top-ranked networks such that cumulative
weight is less than this parameter. e.g. If filter_ WtSum=20, first order networks
by decreasing weight; then keep those whose cumulative weight <= 20.

(logical) if TRUE, applies label enrichment to train networks

(numeric between 0 and 1) networks with label enrichment p-value below this
threshold pass enrichment

(integer) number of permutations for label enrichment

(integer -1 to 1) minEnr param in enrichLabelsNets()



buildPredictor_sparseGenetic 11

numCores (integer) num cores for parallel processing

FS_numCores (integer) num cores for running GM. If NULL, is set to max(l,numCores-1).
Set to a lower value if the default setting gives out-of-memory error. This may
happen if networks are denser than expected

params for runFeatureSelection()

Details

This function is used for feature selection of patient networks, using multiple resamplings of input
data. It is intended for use in the scenario where patient networks are sparse and binary. This
function should be called after defining all patient networks. It performs the following steps: For
i = 1..numSplits randomly split patients into training and test (optional) filter training networks to
exclude random-like networks compile features into database for cross-validation score networks
out of 10 end using test samples from all resamplings, measure predictor performance.

In short, this function performs all steps involved in building and evaluating the predictor.

Value

(list) Predictor results 1) phenoDF (data.frame): subset of phenoDF provided as input, but limited
to patients that have at least one event in the universe of possibilities e.g. if using pathway-level fea-
tures, then this table excludes patients with zero CNVs in pathways 2) netmat (data.frame): Count
of genetic events by patients (rows) in pathways (columns). Used as input to the feature selection
algorithm 3) pathwayScores (list): pathway scores for each of the data splits. Each value in the list is
a data.frame containing pathway names and scores. 4) enrichedNets (list): This entry is only found
if enrichLabels is set to TRUE. It contains the vector of features that passed label enrichment in each
split of the data. 5 - 9) Output of RR_featureTally: 5) cumulativeFeatScores: pathway name, cu-
mulative score over N-way data resampling. 6) performance_denAllNets: positive,negative calls at
each cutoff: network score cutoff (score); num networks at cutoff (numPathways) ; total +, ground
truth (pred_tot); + calls (pred_ol); + calls as pct of total (pred_pct); total -, ground truth (other_tot)
; - calls (other_ol) ; - calls as pct of total (other_pct) ; ratio of pred_pct and other_pct (rr) ; min.
pred_pct in all resamplings (pred_pct_min) ; max pred_pct in all resamplings (pred_pct_max) ; min
other_pct in all resamplings (other_pct_min); max other_pct in all resamplings (other_pct_max) 7)
performance_denEnrichedNets: positive, negative calls at each cutoff label enrichment option: for-
mat same as performance_denAllNets. However, the denominator here is limited to patients present
in networks that pass label enrichment 8) resamplingPerformance: breakdown of performance for
each of the resamplings, at each of the cutoffs. This is a list of length 2, one for allNets and one
for enrichedNets. The value is a matrix with (resamp * 7) columns and S rows, one row per score.
The columns contain the following information per resampling: 1) pred_total: total num patients of
predClass 2) pred_OL: num of pred_total with a CNV in the selected net 3) pred_OL_pct: 2) di-
vided by 1) (percent) 4) other_total: total num patients of other class(non-predClass) 5) other_OL.:
num of other_total with CNV in selected net 6) other_OL_pct: 5) divided by 4) (percent) 7) relEnr:
6) divided by 3).

Examples

suppressMessages(require(GenomicRanges))
suppressMessages(require(BiocFileCache))

# read CNV data



12 callFeatSel

phenoFile <- system.file("extdata"”,"AGP1_CNV.txt", package="netDx")
pheno  <- read.delim(phenoFile,sep="\t",header=TRUE,as.is=TRUE)
colnames(pheno)[1] <- "ID"

pheno <- pheno[ !duplicated(pheno$ID), ]

# create GRanges with patient CNVs
cnv_GR <- GRanges(pheno$seqgnames, IRanges(pheno$start, pheno$end),
ID=pheno$ID, LOCUS_NAMES=pheno$Gene_symbols)

# get gene coordinates

geneURL <- paste("http://download.baderlab.org/netDx/",

"supporting_data/refGene.hgl18.bed",sep="")

cache <- rappdirs::user_cache_dir(appname = "netDx")

bfc <- BiocFileCache: :BiocFileCache(cache,ask=FALSE)

geneFile <- bfcrpath(bfc,geneURL)

genes <- read.delim(geneFile,sep="\t", header=FALSE,as.is=TRUE)

genes <- genes[which(genes[,4]1!=""),]

gene_GR <- GRanges(genes[,1],IRanges(genes[,2],genes[,3]),
name=genes[,4])

# create GRangesList of pathways

pathFile <- fetchPathwayDefinitions("February"”,2021,verbose=TRUE)
pathwayList <- readPathways(pathFile)

path_GRList <- mapNamedRangesToSets(gene_GR,pathwaylList)

#### uncomment to run - takes 5 min
#out <- buildPredictor_sparseGenetic(pheno, cnv_GR, "case”,

# path_GRList,outDir,

# numSplits=3L, featScoreMax=3L,

# enrichLabels=TRUE, numPermsEnrich=20L,
# numCores=1L)

#summary (out)

#head(out$cumulativeFeatScores)

callFeatSel Return feature selected nets based on given criteria

Description

Return feature selected nets based on given criteria

Usage

callFeatSel(netScores, fsCutoff, fsPctPass)

Arguments

netScores (matrix) matrix of net scores

fsCutoff (integer) net must score at least this much in a split to "pass’ the threshold



callOverallSelectedFeatures 13

fsPctPass (numeric 0 to 1) net must pass at least this percent of splits to be considered
feature-selected

Details

given the output of genNetScores.R and criteria for defining feature-selected (FS) nets, returns
subset of nets that pass criteria. Net must score <fsCutoff> for at least <fsPctPass> considered
feature-selected.

Value

(char) names of nets that pass feature-selection

Examples

data(featScores)
passed <- lapply(featScores, function(x) {
callFeatSel(x,10,0.7) # score 10/10 in >=70% of trials

1)
print(passed)

callOverallSelectedFeatures
Wrapper to call selected features

Description

Wrapper to call selected features

Usage

callOverallSelectedFeatures(
featScores,
featureSelCutoff,
featureSelPct,
cleanNames = TRUE

Arguments

featScores (list of lists): matrix of feature scores across all splits, separated by patient label.
First level: patient labels. Second level: matrix of scores for corresponding
label.

featureSelCutoff
(integer) cutoff score for feature selection. A feature must have minimum of this
score for specified fraction of splits (see featureSelPct) to pass.



14 checkMakeNetFuncSims

featureSelPct (numeric between 0 and 1) cutoff percent for feature selection. A feature must
have minimum score of featureSelCutoff for featureSelPct of train/test splits to
pass.

cleanNames (logical) remove internal suffixes for human readability

Details

Calls features that are consistently high-scoring for predicting each class. The context for this is
as follows: The original model runs feature selection over multiple splits of data into train/test
samples, and each such split generates scores for all features. This function identifies features with
scores that exceed a threshold for a fraction of train/test splits; the threshold and fraction are both
user-specified. This function is called by the wrapper getResults(), which returns both the matrix of
feature scores across splits and list of features that pass the user-specified cutoffs.

Value

(list) Feature scores for all splits, plus those passing selection for overall predictor featScores: (ma-
trix) feature scores for each split selectedFeatures: (list) features passing selection for each class;
one key per class

Examples

pathways <- paste("PATHWAY_",1:100,sep="")
highrisk <- list()
lowrisk <- list()
for (k in 1:10) {
highrisk[[k]] <- data.frame(PATHWAY_NAME=pathways,
SCORE=floor (runif(length(pathways),min=0,max=10)),
stringsAsFactors=FALSE);
lowrisk[[k]] <- data.frame(PATHWAY_NAME=pathways,
SCORE=floor (runif(length(pathways),min=0,max=10)),
stringsAsFactors=FALSE);
3
names(highrisk) <- sprintf(”"Split%i”,1:length(highrisk))
names(lowrisk) <- sprintf("Split%i"”,1:length(lowrisk))
callOverallSelectedFeatures(list(highrisk=highrisk,lowrisk=lowrisk), 5,0.5)

checkMakeNetFuncSims  internal test function to check validity of makeNetFunc and sims

Description

internal test function to check validity of makeNetFunc and sims

Usage

checkMakeNetFuncSims(makeNetFunc, sims, grouplList)



checkSimValid 15

Arguments
makeNetFunc (function) makeNetFunc from buildPredictor()
sims (list) sims from buildPredictor()
groupList (list) groupList from buildPredictor()s

Details

User must provide either makeNetFunc or sims. This function confirms this.

Value

(list) cleaned values for makeNetFunc and Sims

checkSimvalid checks if provided similarity functions are valid. Returns error if not

Description

checks if provided similarity functions are valid. Returns error if not

Usage
checkSimValid(sims)
Arguments
sims (list) keys are layer names, values are functions or characters (names of built-in
similarity functions)
Value

TRUE if all pass check. Else throws error.

cleanPathwayName Clean pathway name so it can be a filename.

Description

Clean pathway name so it can be a filename.

Usage

cleanPathwayName (curP)



16 cnv_GR
Arguments

curP (char) pathway name

Value

(char) Cleaned pathway name

Examples

cleanPathwayName (' 7-(3-AMINO-3-CARBOXYPROPYL)-WYOSINE BIOSYNTHESIS%HUMANC')

cnv_GR CNV locations for breast cancer (subset)

Description

Subset of CNV locations for TCGA breast tumour. Each range is associated with a patient (ID)

Usage

data(cnv_GR)

Source

The Cancer Genome Atlas. (2012). Nature 490:61-70.

References

The Cancer Genome Atlas. (2012). Nature 490:61-70.

Examples

data(cnv_GR)
head(cnv_GR)



cnv_netPass

17

cnv_netPass Vector of pathways that pass class enrichment

Description

Vector of pathways that pass class enrichment

Usage

data(cnv_netPass)

Examples

data(cnv_netPass)
head(cnv_netPass)

cnv_netScores List of pathway-level feature selection scores

Description

List of pathway-level feature selection scores

Usage

data(cnv_netScores)

Examples

data(cnv_netScores)
summary (cnv_netScores)
head(cnv_netScores[[1]1])

cnv_patientNetCount Binary matrix of patient occurrence in networks

Description

Binary matrix of patient occurrence in networks

Usage

data(cnv_patientNetCount)

Examples

data(cnv_patientNetCount)
head(cnv_patientNetCount)



18 compareShortestPath

cnv_pheno data.frame of patient labels and status for CNV example

Description

data.frame of patient labels and status for CNV example

Usage

data(cnv_pheno)

Examples

data(cnv_pheno)
head(cnv_pheno)

cnv_TTstatus list of train/test statuses for CNV example

Description

list of train/test statuses for CNV example

Usage

data(cnv_TTstatus)

Examples

data(cnv_TTstatus)
head(cnv_TTstatus)

compareShortestPath compare intra-cluster shortest distance to overall shortest distance of
the network

Description

compare intra-cluster shortest distance to overall shortest distance of the network

Usage

compareShortestPath(net, pheno, plotDist = FALSE, verbose = TRUE)



compileFeatures 19

Arguments
net (data.frame) network on which to compute shortest path. SOURCE, TARGET,
WEIGHTS. Column names are ignored but expects a header row. Distances will
be computed based on the third column
pheno (data.frame) Node information. ID (node name) and GROUP (cluster name)
plotDist (logical) if TRUE, creates a violin plot showing the shortest path distributions
for each group.
verbose (logical) print messages
Details

Uses Dijkstra’s algorithm for weighted edges. Pairwise nodes with infinite distances are excluded
before computing average shortest path for a network. This function requires the igraph package to
be installed.

Value

(list) Two lists, ’avg’ and ’all’. keys are cluster names. values for ’avg’ are mean shortest path ; for
“all’, are all pairwise shortest paths for subnetworks that contain only the edges where source and
target both belong to the corresponding cluster. In addition, there is an "overall’ entry for the mean
shortest distance for the entire network.

Examples

data(silh);
colnames(silh$net)[3] <- 'weight'
compareShortestPath(silh$net, silh$groups)

compileFeatures Create GeneMANIA database

Description

Create GeneMANIA database

Usage

compileFeatures(
netDir,
outDir = tempdir(),
simMetric = "pearson”,
netSfx = "txt$",
verbose = TRUE,
numCores = 1L,
P2N_threshType
P2N_maxMissing

Ilo,f:f_‘u ,
100,



20

compileFeatures

JavaMemory = 4L,
altBaseDir = NULL,

debugMode =

Arguments

netDir

outDir

simMetric
netSfx
verbose
numCores

P2N_threshType

P2N_maxMissing
JavaMemory
altBaseDir

debugMode

Details

FALSE,

(char) path to dir with input networks/profiles. All networks in this directory
will be added to the GM database. Note: This needs to be an absolute path, not
relative.

(char) path to dir in which GeneMANIA database is created. The database will
be under outDir/dataset.

(char) similarity measure to use in converting profiles to interaction networks.
(char) pattern for finding network files in netDir.

(logical) print messages

(integer) num cores for parallel processing

(char) Most users shouldn’t have to change this. ProfileToNetworkDriver’s thresh-
old option. One of ’offlauto’. unit testing

(integer 5-100)
(integer) Memory for GeneMANIA (in Gb)
(char) Only use this if you’re developing netDx. Used in unit tests

(logical) when TRUE runs jobs in serial instead of parallel and prints verbose
messages. Also prints system Java calls and prints all standard out and error
output associated with these calls.

params for writeQueryBatchFile()

Creates a generic_db for use with GeneMania QueryRunner. The database is in tab-delimited
format, and indexes are built using Apache lucene. NOTE: This pipeline expects input in the
form of interaction networks and not profiles. Profile tables have patient-by-datapoint format (e.g.
patient-by-genotype) Interaction networks have pairwise similarity measures: <PatientA> <Pa-
tientB><similarity> Documentation: https://github.com/GeneMANIA/pipeline/wiki/GenericDb

Value

(list). *dbDir’: path to GeneMANIA database 'netDir’: path to directory with interaction networks.
If profiles are provided, this points to the INTERACTIONS/ subdirectory within the text-based
GeneMANIA generic database If the DB creation process results in an erorr, these values return

NA



compileFeatureScores 21

Examples

data(xpr,pheno)
pathwayList <- list(pathA=rownames(xpr)[1:10],
pathB=rownames(xpr)[21:501])

dataList <- list(rna=xpr) #only one layer type
groupList <- list(rna=pathwaylList) # group genes by pathways

makeNets <- function(datalList, groupList, netDir,...) {
netList <- makePSN_NamedMatrix(dataList[['rna'l],
rownames (dataList[['rna']]),
groupList[['rna']l],netDir,verbose=FALSE,
writeProfiles=TRUE,...)
unlist(netList)
3
tmpDir <- tempdir(); netDir <- paste(tmpDir,"nets"”,
sep=getFileSep())
if (file.exists(netDir)) unlink(netDir,recursive=TRUE)
dir.create(netDir,recursive=TRUE)

pheno_id <- setupFeatureDB(pheno,netDir)
netList <- createPSN_MultiData(datalList=datalist, groupList=grouplList,
pheno=pheno_id,netDir=netDir,makeNetFunc=makeNets, verbose=TRUE)

outDir <- paste(tmpDir, 'dbdir', sep=getFileSep());
dir.create(outDir)
dbDir <- compileFeatures(netDir,outDir)

compileFeatureScores  Tally the score of networks through cross-validation

Description

Tally the score of networks through cross-validation

Usage

compileFeatureScores(fList, filter_WtSum = 100, verbose = FALSE)

Arguments

fList (char) Vector of paths to GeneMANIA NRANK files

filter_WtSum (numeric between 5-100) Limit to top-ranked networks such that cumulative
weight is less than this parameter. e.g. If filter_ WtSum=20, first order networks
by decreasing weight; then keep those whose cumulative weight <= 20.

verbose (logical) print messages



22 confusionMatrix

Value

(data.frame) Feature name and score; includes features that occur at least once in fList.

Examples

netDir <- system.file("extdata”,"GM_NRANK" K package="netDx")
netFiles <- sprintf('%s/%s', netDir,dir(netDir,pattern="NRANKS$'))
pTally <- compileFeatureScores(netFiles,verbose=TRUE)
print(head(pTally))

confmat Confusion matrix example

Description
Sample table of True/False Positives and Negatives for various feature selection cutoffs tp: true
positive rate, fp: false positive rate, tn: true negative rate, fn: false negative rate

Usage

data(confmat)

Examples

data(confmat)
head(confmat)

confusionMatrix Make confusion matrix

Description

Make confusion matrix

Usage

confusionMatrix(model)

Arguments

model (list) output of buildPredictor()

Details

Creates a confusion matrix, a square matrix which indicates the fraction of times patients in a class
are correctly classified, versus misclassified as each of the other classes. Here, the confusion matrix
is computed once per train-test split and the average is displayed. For this reason, the fractions may
not cleanly add up to 100



convertProfileToNetworks 23

Value

(list) confusion matrix for all train/test splits and final averaged matrix Side effect of plotting the
averaged matrix.

Examples

data(toymodel)
confusionMatrix(toymodel)

convertProfileToNetworks
Convert profiles to interaction networks before integration

Description

Convert profiles to interaction networks before integration

Usage

convertProfileToNetworks(
netDir,
outDir = tempdir(),
simMetric = "pearson”,
numCores = 1L,
JavaMemory = 4L,
GM_jar = NULL,
P2N_threshType = "off",
P2N_maxMissing = 100,
netSfx = "txt$",
debugMode = FALSE

)
Arguments
netDir (char) directory with .profile files
outDir (char) path to directory where interaction networks are to be printed
simMetric (char) similarity measure to use in converting profiles to interaction networks.
numCores (integer) number of cores for parallel processing
JavaMemory (integer) Memory for GeneMANIA (in Gb)
GM_jar (char) path to GeneMANIA jar file

P2N_threshType (char) Most users shouldn’t have to change this. ProfileToNetworkDriver’s thresh-
old option. One of ’offlauto’. unit testing

P2N_maxMissing (integer 5-100)
netSfx (char) pattern for finding network files in netDir.

debugMode (logical) if TRUE runs profile generation in serial rather than parallel, allowing
debugging



24 convertToMAE

Details

In preparation for network integration. When using GeneMANIA’s built-in functionality to create
PSN using ProfileToNetworkDriver, this step needs to run to process profiles to networks. These
are currently used for Pearson correlation-based networks and those using mutual information.

Value

No value. Side effect of creating interaction networks in outDir.

convertToMAE Wrapper that converts an input list into a MultiAssayExperiment ob-
ject

Description

Wrapper that converts an input list into a MultiAssayExperiment object

Usage

convertToMAE(datalList)

Arguments
datalList (list) input key-value pairs (keys: data types, values: data in the form of matri-
ces/dataframes); must have a key-value pair that corresponds to patient IDs/metadata
labelled pheno.
Details

This function takes in a list of key-value pairs (keys: data types, values: matrices/dataframes) and
calls the necessary functions from the MultiAssayExperiment package to incorporate the values
from the input list into a MultiAssayExperiment object, transforming the values according to the
keys. If duplicate sample names are found in the assay data, only the first instance is kept.

Value

MAE (MultiAssayExperiment) data from input list incorporated into a MultiAssayExperiment ob-
ject, compatible with further analysis using the netDx algorithm.

Examples

data(xpr, pheno)

# Generate random proteomic data

prot <- matrix(rnorm(100%20), ncol=20)
colnames(prot) <- sample(pheno$ID, 20)
rownames(prot) <- sprintf("protein%i”,1:100)



countIntType 25

myList <- list(rna = xpr, proteomic = prot, pheno = pheno)

MAE <- convertToMAE(myList)

countIntType Counts the number of (+,+) and (+,-) interactions in a single network

Description

Counts the number of (+,+) and (+,-) interactions in a single network

Usage

countIntType(inFile, plusID, minusID)

Arguments
inFile (char) path to interaction networks
plusID (char) vector of + nodes
minusID (char) vector of - nodes

Value

(numeric of length 2) Number of (+,+) interactions, and non-(+,+) interactions (i.e. (+,-) and (-,-)
interactions)

Examples

d <- tempdir()

# write PSN

ml <- matrix(c("P1","P1","P2","P2","P3","P4",1,1,1),byrow=FALSE,ncol=3)
write.table(ml,file=paste(d, "netl.txt",sep=getFileSep()),

sep="\t",

col.names=FALSE, row.names=FALSE, quote=FALSE)

countIntType(paste(d, "netl.txt",sep=getFileSep()),c("P1","P2","P3"),
c("P4","P5"Y)



26 countIntType_batch

countIntType_batch Counts number of (+,+) and (+,-) interactions in a set of networks

Description

Counts number of (+,+) and (+,-) interactions in a set of networks

Usage
countIntType_batch(
inFiles,
plusID,
minusID,
tmpDir = tempdir(),
enrType = "binary",
numCores = 1L
)
Arguments
inFiles (char) path to interaction networks to process
plusID (char) IDs of + nodes
minusID (char) IDs of - nodes
tmpDir (char) path to dir where temporary files can be stored
enrType (char) see getEnr.R
numCores (integer) number of cores for parallel processing
Value

(matrix) two columns, one row per network If enrType="binary"”, number of (+,+) and other
interactions Otherwise if enrType="corr" mean edge weight of (+,+) edges and of other edges

Examples

d <- tempdir()

# write PSN

ml <- matrix(c("P1","P1","P2","P2","P3","P4" 1,1,1),byrow=FALSE,f ncol=3)
write.table(ml,file=paste(d, "netl.txt", sep=getFileSep()),sep="\t",
col.names=FALSE, row.names=FALSE, quote=FALSE)

m2 <- matrix(c("P3","P4",1),nrow=1)

write.table(m2,file=paste(d, "net2.txt",sep=getFileSep()),sep="\t",
col.names=FALSE, row.names=FALSE, quote=FALSE)

countIntType_batch(paste(d,c("netl.txt"”,"net2.txt"),sep=getFileSep()),
C(HP1 n s IIPZH R IIP3H) ,C("P4" s IIPSII))



countPatientsInNet 27

countPatientsInNet Count number of patients in a network

Description

Count number of patients in a network

Usage

countPatientsInNet(netDir, flList, ids)

Arguments
netDir (char) dir with network set
fList (char) filenames of interaction networks to count in
ids (char) patient IDs to look for

Details

This functionality is needed to count patient overlap when input data is in a form that results in
highly missing data, rather than when the same measures are available for almost all patients. An
example application is when patient networks are based on unique genomic events in each patients
(e.g. CNVs or indels), rather than ’full-matrix’ data (e.g. questionnaires or gene expression ma-
trices). The former scenario requires an update in the list of eligible networks each time some
type of patient subsetting is applied (e.g. label enrichment, or train/test split). A matrix with pa-
tient/network membership serves as a lookup table to prune networks as feature selection proceeds

Value

(matrix) Size P by N, where P is num patients and N is number of networks networks; a[i,j] =1 if
patient i in network j, else O

Examples

d <- tempdir()

pids <- paste("P",1:5,sep="")

ml <- matrix(c("P1","P1","P2","P2","P3","P4",1,1,1),
byrow=FALSE, ncol=3)

write.table(ml,

file=paste(d, "netl1.txt",sep=getFileSep()),sep="\t",
col.names=FALSE, row.names=FALSE, quote=FALSE)

m2 <- matrix(c("P3","P4",1),nrow=1)

write.table(m2,

file=paste(d, "net2.txt",sep=getFileSep()),sep="\t",
col.names=FALSE, row.names=FALSE, quote=FALSE)

x <- countPatientsInNet(d,c("netl.txt"”,"net2.txt"), pids)



28 createNetFuncFromSimList

createNetFuncFromSimList
Create PSN from provided similarities

Description

Create PSN from provided similarities

Usage

createNetFuncFromSimList(
datalist,
grouplList,
netDir,
sims,
verbose = TRUE,

)
Arguments
datalist (list) patient data, output of datalist2List()
grouplList (list) measure groupings. Keys match assays(dataList) and are usually different
data sources. Values for each are a list of networks with user-provided group-
ings. See groupList in buildPredictor() for details.
netDir (char) path to directory where networks are to be created
sims (list) keys must be identical to those of groupList. Values are either of type
character, used for built-in similarity functions, or are functions, when a custom
function is provided.
verbose (logical) print messages
values to be passed to PSN creation functions such as makePSN_NamedMatrix().
Details

Called by CreatePSN_MultiData(), this is the function that converts user-provided simlarity metrics
to internal netDx function calls to generate nets.



createPSN_MultiData 29

createPSN_MultiData Wrapper to create custom input features (patient similarity networks)

Description

Wrapper to create custom input features (patient similarity networks)

Usage

createPSN_MultiData(
datalist,
grouplList,
pheno,
netDir = tempdir(),
filterSet = NULL,
verbose = TRUE,
makeNetFunc = NULL,

sims = NULL,
)
Arguments

datalList (list) key is datatype (e.g. clinical, rna, etc.,), value is table or RangedData) Note
that unit names should be rownames of the data structure. e.g If datalList$rna
contains genes, rownames(datalist) = gene names

grouplList (list) key is datatype; value is a list of unit groupings for that datatype. e.g. If
rna data will be grouped by pathways, then groupList$rna would have pathway
names as keys, and member genes as units. Each entry will be converted into a
PSN.

pheno (data.frame) mapping of user-provided patient identifiers (ID) with internally-
generated identifiers.

netDir (char) path to directory where networks will be stored

filterSet (char) vector of networks to include

verbose (logical) print messages

makeNetFunc (function) custom user-function to create PSN. Must take dataList,groupList,netDir
as parameters. Must check if a given groupList is empty (no networks to create)
before the makePSN call for it. This is to avoid trying to make nets for datatypes
that did not pass feature selection

sims (list) Similarity metric settings for patient data. Keys must be identical to those

of groupList. Values are either of type character, used for built-in similarity
functions, or are functions, when a custom function is provided.

other parameters to makePSN_NamedMatrix() or makePSN_RangedSets()



30 createPSN_MultiData

Value

(char) vector of network names. Side effect of creating the nets

Examples

library(curatedTCGAData)
library(MultiAssayExperiment)
curatedTCGAData(diseaseCode='BRCA', assays='x',dry.run=TRUE,version="1.1.38")

# fetch mrna, mutation data
brca <- curatedTCGAData('BRCA',c('mRNAArray'),FALSE,version="1.1.38")

# get subtype info

pID <- colData(brca)$patientID

pam50 <- colData(brca)$PAM50.mRNA

staget <- colData(brca)$pathology_T_stage

st2 <- rep(NA,length(staget))

st2[which(staget %in% c('t1','t1a','tib"','t1c'))] <- 1
st2[which(staget %in% c('t2','t2a','t2b'))] <- 2
st2[which(staget %in% c('t3','t3a'))] <- 3
st2[which(staget %in% c('t4','t4b','t4d"'))] <- 4
pam5@[which(!pam50 %in% 'Luminal A')] <- 'notLumA'
pam50@[which(pam50 %in% 'Luminal A')] <- 'LumA'
colData(brca)$ID <- pID

colData(brca)$STAGE <- st2

colData(brca)$STATUS <- pam50

# keep only tumour samples
idx <- union(which(pam50 == 'Normal-like'), which(is.na(st2)))
cat(sprintf('excluding %i samples\n', length(idx)))

tokeep <- setdiff(pID, pID[idx])
brca <- brca[, tokeep, ]

pathList <- readPathways(fetchPathwayDefinitions("October”,2020))
brca <- brcal,,1] # keep only clinical and mRNA data

# remove duplicate arrays

smp <- sampleMap(brca)

samps <- smp[which(smp$assay=="'BRCA_mRNAArray-20160128'),]
notdup <- samps[which(!duplicated(samps$primary)), 'colname’]
brcal[1]] <- brcal[1]1]1[,notdup]

groupList <- list()
groupList[['BRCA_mRNAArray-20160128']] <- pathList[seq_len(3)]
makeNets <- function(datalList, groupList, netDir,...) {
netList <- c()
# make RNA nets: group by pathway
if (!is.null(groupList[['BRCA_mRNAArray-20160128'1]1)) {
netList <- makePSN_NamedMatrix(dataList[['BRCA_mRNAArray-20160128']],



dataList2List 31

rownames (dataList[['BRCA_mRNAArray-20160128'1]),
groupList[['BRCA_mRNAArray-20160128'1],
netDir,verbose=FALSE,
writeProfiles=TRUE,...)
netList <- unlist(netList)
cat(sprintf('Made %i RNA pathway nets\n', length(netList)))
}

cat(sprintf('Total of %i nets\n', length(netList)))
return(netList)

}

exprs <- experiments(brca)

datList2 <- list()

for (k in seqg_len(length(exprs))) {

tmp <- exprs[[k]]

df <- sampleMap(brca)[which(sampleMap(brca)$assay==names(exprs)[kl),]
colnames(tmp) <- df$primary[match(df$colname,colnames(tmp))]
tmp <- as.matrix(assays(tmp)[[1]]) # convert to matrix
datList2[[names(exprs)[k]]I<- tmp

3

pheno <- colData(brca)[,c('ID', 'STATUS')]

netDir <- tempdir()

pheno_id <- setupFeatureDB(colData(brca),netDir)
createPSN_MultiData(datalList=datList2,groupList=grouplList,
pheno=pheno_id,
netDir=netDir,makeNetFunc=makeNets,numCores=1)

datalList2List Convert MultiAssayExperiment object to list and data.frame

Description

Convert MultiAssayExperiment object to list and data.frame

Usage

datalList2List(dat, grouplList)

Arguments
dat (MultiAssayExperiment) Patient data and metadata
grouplList (list) variable groupings used for feature construction. See groupList arg in
buildPredictor().
Details

Used by internal routines in netDx



32 enrichLabelNets

Value

(list) Keys are: 1) assays: list of matrices, each corresponding to data from a particular layer 2)
pheno: (data.frame) sample metadata

Examples

data(xpr,pheno)

require(MultiAssayExperiment)

objlist <- list("RNA"=SummarizedExperiment(xpr))
mae <- MultiAssayExperiment(objlist,pheno)
groupList <- list(RNA=rownames(xpr))

dl <- datalList2List(mae,grouplList)

summary (dl)

enrichLabelNets Score networks based on their edge bias towards (+,+) interactions

Description

Score networks based on their edge bias towards (+,+) interactions

Usage
enrichLabelNets(
netDir,
pheno_DF,
outDir,
numReps = 50L,
minEnr = -1,
outPref = "enrichLabelNets",
verbose = TRUE,
setSeed = 42L,
enrType = "binary",
numCores = 1L,
predClass,
tmpDir = tempdir(),
netGrep = "_cont.txt$",

getShufResults = FALSE,

)

Arguments
netDir (char) path to dir containing all networks
pheno_DF (data.frame) for details see getEnr()

outDir (char) path to dir where output/log files are written



enrichLabelNets

numReps

minEnr

outPref
verbose

setSeed

enrType
numCores
predClass
tmpDir

netGrep
getShufResults

Details

33

(integer) Max num reps for shuffling class status. Adaptive permutation is used
so in practice, few networks would be evaluated to this extent

(numeric from -1 to 1) Only include networks with ENR value greater than this
threshold.

(char) prefix for log file (not counting the dir name)
(logical) print messages

(integer) if not NULL, integer is set as seed to ensure reproducibility in random
number generation

(char) see getEnr()

(integer) num cores for parallel ENR computation of all networks
(char) see getEnr ()

(char) path to dir where temporary work can be stored

(char) pattern to grep for network files in netDir

(logical) if TRUE, returns the ENR for each permutation, for all networks.
Warning: this is likely to be huge. Use this flag for debugging purposes only.

parameters for countIntType_batch().

Determines which networks are statistically enriched for interactions between the class of interest.
The resulting ENR score and corresponding p-value serve as a filter to exclude random-like inter-
action networks before using feature selection. This filter is known to be important when patient
networks are sparse and binary; e.g. networks based on shared overlap of CNV locations. If the
filter is not applied, GeneMANIA WILL promote networks with slight bias towards (+,+) edges ,
even if these are small and random-like.

The measure of (+,+)-enrichment is defined as: ENR(network N) = ((num (+,+) edges) - (num other
edges))/(num edges). A p-value for per-network ENR is obtained non-parametrically by measuring
a null distribution for ENR following multiple permutations of case-control labels.

Value

(data.frame) networks stats from clique-filtering, one record per network

Examples
data(npheno)
netDir <- system.file("extdata”,"example_nets”, package="netDx")
x <- enrichLabelNets(netDir,npheno,”.",predClass="case", netGrep="txt$",
numReps=5)

print(x)



34 fetchPathwayDefinitions

featScores Demo feature-level scores from running feature selection on two-class
problem

Description

List with one entry per patient label ("SURVIVEYES" and "SURVIVENO"). Each entry con-
tains scores obtained through feature-selection acros 100 train/test splits. Scores range from O to
10. Scores in data.frame format, with rows corresponding to features and columns to a particular
train/test split.

Usage

data(featScores)

Examples

data(featScores)
head(featScores)

fetchPathwayDefinitions
fetch pathway definitions from downloads.baderlab.org

Description

fetch pathway definitions from downloads.baderlab.org

Usage
fetchPathwayDefinitions(month = NULL, year = NULL, day = 1, verbose = FALSE)

Arguments
month (numeric or char) month of pathway definition file. Can be numeric or text (e.g.
"January","April"). If NULL, fails.
year (numeric) year of pathway definition file. Must be in yyyy format (e.g. 2020).
If NULL, fails.
day (integer)
verbose (logical) print messages
Details

Fetches genesets compiled from multiple curated pathway databases. Downloaded from: https://download.baderlab.org/EM_
The file contains pathways from HumanCyc, NetPath, Reactome, NCI Curated Pathways and mSigDB.

For details see Merico D, Isserlin R, Stueker O, Emili A and GD Bader. (2010). PLoS One.

5(11):e13984.



genes 35

Value

(char) Path to local cached copy of GMT file or initial download is required

Examples

fetchPathwayDefinitions("October”,2021)
fetchPathwayDefinitions("”October”,2021)
fetchPathwayDefinitions(month=10,year=2021)

genes Table of gene definitions (small subsample of human genes)

Description
data.frame object with columns of (gene) RefSeq ID (name), chromosome (chrom), strand, tran-
scription start site (txStart), transcription end site (txEnd), and gene symbol (name2)

Usage

data(genes)

Examples

data(genes)
head(genes)

getCorrType Counts the relative correlation of (+,+) and (+,-)(-,-) interactions

Description

Counts the relative correlation of (+,+) and (+,-)(-,-) interactions

Usage
getCorrType(inFile, plusID, minusID)

Arguments
inFile (character): path to interaction networks
plusID (character) vector of + nodes
minusID (character) vector of - nodes

Value

(numeric) mean edge weight for (+,+) and other edges



36 getEMaplInput

getEMapInput write enrichment map for consensus nets

Description

write enrichment map for consensus nets

Usage

getEMapInput(
featScores,
namedSets,
netInfo,
pctPass = 0.7,
minScore = 1,
maxScore = 10,

trimFromName = c(".profile”, "_cont"),
verbose = FALSE
)
Arguments
featScores (data.frame) network scores across rounds of cross validation. Rows are net-
works and columns are network name followed by scores for cross-validation
rounds. Output of getFeatureScores()
namedSets (list) list of nets and units (e.g.e pathway names and genes). Should only contain
units profiled in this dataset
netInfo (data.frame) Table of network name (netName) and type (netType). Type is used

to assign shapes to nodes: clinical clinical rna GUANOSINE_NUCLEOTIDES__I_DE_NOVO__I__BIO
rna RETINOL_BIOSYNTHESIS

pctPass (numeric between 0 and 1) fraction of splits for which the highest score for the
network is required, for that to be the network’s maxScore

minScore (integer) features with score below this cutoff are excluded from downstream
analyses
maxScore (integer) maximum possible score in one round of cross- validation. e.g. for

10-fold cross-validation, maxScore=10.
trimFromName (char) strings to trim from name with sub()

verbose (logical) print messages

Value

(list) Length two. 1) nodeAttrs: data.frame of node attributes 2) featureSets: key-value pairs of
selected feature sets (e.g. if pathway features are used, keys are pathway names, and values are
member genes).



getEMaplnput_many 37

Examples

non

inDir <- system.file("extdata"”, "example_output”, package="netDx")
outDir <- paste(tempdir(), 'plots',sep='/")

if (!file.exists(outDir)) dir.create(outDir)

featScores <- getFeatureScores(inDir,predClasses=c('LumA’, 'notLumA"'))
gp <- names(featScores)[1]

pathwayList <- readPathways(fetchPathwayDefinitions("October”,2020))
pathwayList <- pathwaylList[seq_len(5)]

netInfoFile <- system.file("extdata”,"example_output/inputNets.txt", package="netDx")
netInfo <- read.delim(netInfoFile,sep="'\t',h=FALSE,as.is=TRUE)
emap_input <- getEMapInput(featScores[[gpl],pathwayList,netInfo)
summary (emap_input)

getEMapInput_many Wrapper to generate multiple EnrichmentMaps (perhaps one per
class)

Description

Wrapper to generate multiple EnrichmentMaps (perhaps one per class)

Usage

getEMapInput_many(featScores, namedSets_valid, netTypes, outDir, ...)
Arguments

featScores (list) keys are classes, and values are data.frames of network scores across cross-

validation (output of getFeatScores()).

namedSets_valid
(list) Grouped unit variables limited to the units contained in the dataset. e.g.
keys are pathways and values are the genes measured in this dataset. e.g.:
$*“MISSPLICED_GSK3BETA_MUTANTS_STABILIZE_BETA-CATENIN- [1]
"PPP2RSE’ "PPP2CB’ *APC’ *AXIN1’ 'PPP2R1B’ "PPP2R1A’ *CSNK1A1’
[8] 'PPP2R5D’ "PPP2R5C’ "PPP2R5B’ "PPP2R5A’ "PPP2CA’ *GSK3B’

netTypes (data.frame) *inputNets.txt’ file generated by NetDx. Dataframe has two columns,
network type and network name. L.E: clinical clinical rna GUANOSINE_NUCLEOTIDES__1_DE_NOWV(

rna RETINOL_BIOSYNTHESIS
outDir (char) path to output directory
parameters for getEMaplInput()

Value

(list) of length g, where g is the number of groups in featScores. Values are lists, corresponding to
the output of getEmaplInput.R



38 getEnr

Examples

data(featScores)

pathwayList <- readPathways(fetchPathwayDefinitions("October"”,2020))
pathwayList <- pathwaylList[seq_len(5)]
netInfoFile <- system.file("extdata”,"example_output/inputNets.txt",6 package="netDx")
netTypes <- read.delim(netInfoFile,sep="\t',h=FALSE,as.is=TRUE)
outDir <- paste(tempdir(), 'plots',sep='/")
if (!file.exists(outDir)) dir.create(outDir)
EMap_input <- getEMapInput_many(featScores,pathwaylList,
netTypes,outDir=outDir)

getEnr Get ENR for all networks in a specified directory

Description

Get ENR for all networks in a specified directory

Usage

getEnr(
netDir,
pheno_DF,
predClass,
netGrep = "_cont.txt$",
enrType = "binary”,

)
Arguments

netDir (char) directory containing interaction networks

pheno_DF (data.frame) table with patient ID and status. Must contain columns for Patient
ID (named "ID") and class (named "STATUS"). Status should be a char; value
of predictor class should be specified in predClass param; all other values are
considered non-predictor class Rows with duplicate IDs will be excluded.

predClass (char) value for patients in predictor class

netGrep (char) pattern for grep-ing network text files, used in dir(pattern=..) argument

enrType (char) how enrichment should be computed. Options are: 1) binary: Skew of

number of (+,+) interactions relative to other interactions. Used when all edges
in network are set to 1 (e.g. shared CNV overlap) 2) corr: 0.5%((mean weight of
(+,+) edges)-(mean weight of other edges))

arguments for countIntType_batch



getFeatureScores 39

Details

For each network, compute the number of (+,+) and other (+,-),(-,+),(-,-) interactions. From this
compute network ENR. The measure of (+,+)-enrichment is defined as: ENR(network N) = ((num
(+,+) edges) - (num other edges))/(num edges). A network with only (+,+) interactions has an
ENR=1 ; a network with no (+,+) interactions has an ENR=-1; a network with a balance of the two
has ENR=0.

Value

(list): 1) plusID (char) vector of + nodes 2) minusID (char) vector of - nodes 3) orig_rat (nu-
meric) ENR for data networks 4) fList (char) set of networks processed 5) orig (data.frame) output
of countIntType_batch for input networks

Examples

d <- tempdir()

options(stringsAsFactors=FALSE)

pids <- paste("P",seqg_len(5),sep="")

pheno <- data.frame(ID=pids,STATUS=c(rep("”case”,3),rep("control”,2)))

# write PSN

ml <- matrix(c("P1","P1","P2","P2","P3","P4",1,1,1),byrow=FALSE,ncol=3)
write.table(ml,file=paste(d, "netl.nettxt"”,sep=getFileSep()),sep="\t",
col.names=FALSE, row.names=FALSE, quote=FALSE)

m2 <- matrix(c("P3","P4",1),nrow=1)

write.table(m2,file=paste(d, "net2.nettxt"”,sep=getFileSep()),sep="\t",
col.names=FALSE, row.names=FALSE, quote=FALSE)

# compute enrichment
x <- countPatientsInNet(d,dir(d,pattern=c("netl.nettxt”,"net2.nettxt")), pids)
getEnr(d, pheno, "case”, "nettxt$")

getFeatureScores Compile network scores into a matrix

Description

Compile network scores into a matrix

Usage

getFeatureScores(inDir, predClasses, getFullCons = TRUE)

Arguments

inDir (char/list) directory containing directories with all split info or list of all CV
score files. if inDir is a single directory then the expected format for CV score
files is <inDir>/rngX/predClassX/GM_results/predClassX_pathway_CV_score.txt’



40 getFileSep

if inDir is a list, it should have one key per class. The value should be the corre-
sponding set of filenames for pathway_CV_score.txt

predClasses (char) possible STATUS for patients

getFullCons (logical) if TRUE, does not remove rows with NA. Recommended only when the
number of input features is extensively pruned by first-pass feature selection.
Details
Given network scores over a set of train/test splits, compiles these into a matrix for downstream
analysis. See the section on ’Output Files’
Value

(list) one key per patient class. Value is matrix of network scores across all train/test splits. Each
score is the output of the inner fold of CV.

Examples

inDir <- system.file("extdata"”,"example_output"”,package="netDx")
netScores <- getFeatureScores(inDir, predClasses = c('LumA', 'notLumA'))

getFileSep platform-specific file separator

Description

Returns OS-specific file separator

Usage

getFileSep()

Value

(char) "\" if Windows, else "/"

Examples

getFileSep()



getGMjar_path 41

getGMjar_path download and update GeneMANIA jar file

Description

download and update GeneMANIA jar file

Usage

getGMjar_path(verbose = FALSE)

Arguments

verbose (logical) print messages

Value

(char) Path to local cached copy of GeneMANIA jar file.. or initial download is required

Examples

getGMjar_path()

getNetConsensus compile net score across a set of predictor results

Description

compile net score across a set of predictor results

Usage

getNetConsensus(scorelist)

Arguments
scorelist (list) key is dataset name, value is a data.frame containing PATHWAY_NAME
and SCORE. This is the output of compileFeatureScores()
Details

used to compare how individual nets score for different predictor configurations

Value

(data.frame) Rownames are union of all nets in the input list. Columns show net scores for each key
of the input list. Where a net is not found in a given list, it is assigned the value of NA



42 getOR

Examples

pathways <- paste(”"PATHWAY_",1:100,sep="")

highrisk <- list()

for (k in 1:10) {

highrisk[[k]] <- data.frame(PATHWAY_NAME=pathways,
SCORE=runif(length(pathways),min=0,max=10),
stringsAsFactors=FALSE);

3

names(highrisk) <- sprintf(”Split%i”,1:length(highrisk))
x <- getNetConsensus(highrisk)

getOR Get relative proportion of patient classes that contribute to a set of
networks

Description

Get relative proportion of patient classes that contribute to a set of networks

Usage

getOR(pNetworks, pheno_DF, predClass, netFile, verbose = TRUE)

Arguments
pNetworks (matrix) rows are patients, columns are network file filenames. a[i,j] = 1 if
patient i has a structural variant in network j; else a[i,j] =0
pheno_DF (data.frame) Column "ID" has unique patient identifiers; column "STATUS" has
patient class
predClass (char) Class for which predictor is being built
netFile (char) vector of networks of interest (e.g. those passing feature selection)
verbose (logical) print messages
Details

Feature selected networks should have the property of being enriched in the class of interest; e.g.
be enriched in ’case’ relative to *control’. When given a list of networks N, this method computes
the number and proportion of patients that overlap N. A high relative fraction of the predicted class
indicates successful feature selection. To create a ROC or precision-recall curve, several calls can
be made to this function, one per cutoff.

Value

List. 1) stats: statistics on group overlap with , This is a 2xK matrix, where rows are classes
(predClass,other), and columns are: total samples, samples overlapping nets, 2) relEnr: relative
enrichment of predClass over other



getPatientPredictions 43

Examples

d <- tempdir()

options(stringsAsFactors=FALSE)

pids <- paste("P",seq_len(5),sep="")

pheno <- data.frame(ID=pids,STATUS=c(rep("”case”,3),rep("control”,2)))

# write PSN

ml <- matrix(c("P1","P1","P2","P2","P3","P4",1,1,1),byrow=FALSE,ncol=3)
write.table(ml,file=paste(d, "netl1.txt",sep=getFileSep()),sep="\t",
col.names=FALSE, row.names=FALSE, quote=FALSE)

m2 <- matrix(c("P3","P4",1),nrow=1)

write.table(m2,file=paste(d, "net2.txt",sep=getFileSep()),sep="\t",
col.names=FALSE, row.names=FALSE, quote=FALSE)

# compute enrichment
x <- countPatientsInNet(d,dir(d,pattern=c("netl.txt"”,"net2.txt")), pids)
getOR(x, pheno, "case”,colnames(x)) # should give large RelEnr

getPatientPredictions Calculates patient-level classification accuracy across train/test splits

Description

Calculates patient-level classification accuracy across train/test splits

Usage

getPatientPredictions(predFiles, pheno, plotAccuracy = FALSE)

Arguments

predFiles (char) vector of paths to all test predictions (e.g. 100 files for a 100 train/test split
design). Alternately, the user can also provide a single directory name, and allow
the script to retrieve prediction files. Format is ‘rootDir/rngX/predictionResults.txt’

pheno (data.frame) ID=patient ID, STATUS=ground truth (known class label). This
table is required to get the master list of all patients, as not every patient is
classified in every split.

plotAccuracy (logical) if TRUE, shows fraction of times patient is misclassified, using a dot
plot

Details

Takes all the predictions across the different train/test splits, and for each patient, generates a score
indicating how many times they were classified by netDx as belonging to each of the classes. The
result is that we get a measure of individual classification accuracy across the different train/test
splits.



44 getPatientRankings

Value

(list) of length 2. 1) (data.frame) rows are patients, (length(predFiles)+2) columns. Columns
seq_len(length(predFiles)): Predicted labels for a given split (NA if patient was training sample for
the split). Column (length(predFiles)+1): split, value is NA. Columns are : ID, REAL_STATUS,
predStatusl,... predStatusN. Side effect of plotting a dot plot of and the value is ’

Examples

non

inDir <- system.file("extdata”,

data(pheno)

all_rngs <- list.dirs(inDir, recursive = FALSE)

all_pred_files <- unlist(lapply(all_rngs, function(x) {
paste(x, 'predictionResults.txt',

sep = getFileSep())}))
pred_mat <- getPatientPredictions(all_pred_files, pheno)

example_output”,package="netDx")

getPatientRankings Process GM PRANK files to get the ROC curve for the query

Description

Process GM PRANK files to get the ROC curve for the query

Usage

getPatientRankings(pFile, pheno_DF, predClass, plotIt = FALSE, verbose = FALSE)

Arguments
pFile (char) path to PRANK file
pheno_DF (data.frame) patient IDs ("’ID’) and label(’STATUS’)
predClass (character) class label for which predictor is built
plotIt (logical) if TRUE plots ROC curve
verbose (logical) print messages

Value

(list) 1) predLbl: GeneMANIA scores (predicted labels). Higher score for higher ranked patient.
2) realLbl: binary value indicating if patient label matches predictor label (real labels) 3) fullmat:
pheno_DF merged with similarity scores (’similarityScore’) and real label (’isPredClass’) 4) roc:
output of ROCRs performance(,’tpr’, fpr’) - ROC curve 5) auc: output of ROCRs auc() 6) precall:
output of ROCRs performance(, *prec’,’rec’) 7) f: output of ROCRs performance(,’f”) If < 2 patients
in PRANK file, roc,auc, precall, f are all returned as NA.



getPerformance 45

Examples

data(pheno)

prankFile <- system.file("extdata"”,
paste("GM_PRANK","CV_1.query-results.report.txt.PRANK", sep=getFileSep()),
package="netDx")

x <- getPatientRankings(prankFile, pheno, 'LumA')

getPerformance performance metrics for model

Description

performance metrics for model

Usage

getPerformance(res, predClasses)

Arguments
res (data.frame) result from predicting labels on held-out test set. output of predict()
function. columns include ID, STATUS (ground truth) and PRED_CLASS (pre-
dicted label)
predClasses (character) patient labels used by classifier
Value

(list) 1) rocCurve: ROCR performance object for ROC curve 2) prCurve: ROCR performance object
for PR curve 3) auroc: Area under ROC curve 4) aupr: Area under PR curve 5) accuracy: Accuracy

getPSN get the integrated patient similarity network made of selected features

Description

get the integrated patient similarity network made of selected features



46 getPSN

Usage

getPSN(
dat,
grouplList,
makeNetFunc = NULL,
sims = NULL,
selectedFeatures,
plotCytoscape = FALSE,
aggFun = "MEAN",
prune_pctX = 0.3,
prune_useTop = TRUE,
numCores = 1L,
calcShortestPath = FALSE

)
Arguments

dat (MultiAssayExperiment) input data

grouplList (list) feature groups, identical to groupList provided for buildPredictor()

makeNetFunc (function) Function used to create patient similarity networks. Identical to mak-
eNets provided to buildPredictor()

sims (list) rules for creating PSN. Preferred over makeNetFunc. See buildPredictor()
for details.

selectedFeatures

(list) selected features for each class (key of list). This object is returned as part
of a call to getResults(), after running buildPredictor().

plotCytoscape (logical) If TRUE, plots network in Cytoscape. Requires Cytoscape software to
be installed and running on the computer when the function call is being made.

aggFun (char) function to aggregate edges from different PSN (e.g. mean)

prune_pctX (numeric between 0 and 1) fraction of most/least edges to keep when pruning
the integrated PSN for visualization. Must be used in conjunction with use-
Top=TRUE/FALSE e.g. Setting pctX=0.2 and useTop=TRUE will keep 20%
top edges

prune_useTop (logical) when pruning integrated PSN for visualization, determines whether to
keep strongest edges (useTop=TRUE) or weakest edges (useTop=FALSE)

numCores (integer) number of cores for parallel processing

calcShortestPath
(logical) if TRUE, computes weighted shortest path Unless you plan to analyse

these separately from looking at the shortest path violin plots or integrated PSN
in Cytoscape, probably good to set to FALSE.

Details

An integrated patient similarity network can be built using combined top features for each patient
class. Such a network is created by taking the union of selected features for all patient labels, and
aggregating pairwise edges for all of them using a user-specified function (aggFun). The network



getRegionOL 47

is then pruned prior to visualization, using a user-specified fraction of strongest edges (prune_pctX,
prune_useTop). In addition, the user may quantify the distance between patients of the same class,
relative to those of other classes, using Dijkstra distance (calcShortestPath flag).

Value

(list) information about the integrated network similarity network 2) patientDistNetwork_pruned
(matrix) the network plotted in Cytoscape. Also note that this is a dissimilarity network, so that
more similar nodes have smaller edge weights 3) colLegend (data.frame): legend for the patient
network plotted in Cytoscape. Columns are node labels (STATUS) and colours (colour) 6) outDir
(char) value of outDir parameter

getRegionOL Returns overlapping named ranges for input ranges

Description

Returns overlapping named ranges for input ranges

Usage
getRegionOL(gr, rnglList)

Arguments
gr (GRanges) query ranges
rngList (list) keys are names, and values are GRanges, each range of which has a name
(in 'name’ column). Note: It is faster to provide a list of length 1 ; if the list is
long, combining into a single GRanges object could prove slow.
Details

Given a set of query GRanges, and a subject list-of-GRanges, updates the query with a column
’LOCUS_NAMES’ containing the names of ranges overlapped by the query. One application is to
map structural variants, such as CNVs, to genes in pathways of interest. In this scenario gr would
contain the patient CNVs, and rnglList would be a list of GenomicRanges objects, one per cellular
pathway.

Value
(GRanges) query ranges with the added column "'LOCUS_NAMES’. Where a range overlaps with
multiple loci, the names are reported as a comma-separated vector

Examples

data(cnv_GR, pathway_GR)
x <- getRegionOL(cnv_GR,pathway_GR)



48 getResults

getResults Compiles performance and selected features for a trained model.

Description

Compiles performance and selected features for a trained model.

Usage

getResults(res, status, featureSelCutoff = 1L, featureSelPct = 0)

Arguments
res (list) output of buildPredictor() function
status (character) unique patient labels used by the classifier, found in colData()$STATUS
featureSelCutoff

(integer) cutoff score for feature selection. A feature must have minimum of this
score for specified fraction of splits (see featureSelPct) to pass.

featureSelPct (numeric between 0 and 1) cutoff percent for feature selection. A feature must
have minimum score of featureSelCutoff for featureSelPct of train/test splits to
pass.

Details

This function is run after training a model using buildPredictor(). It takes patient input data, model
output, and returns performance and selected features.

Value

list of results. - selectedFeatures (list of character vectors): list, one per class - performance (list of
mixed datatypes) including mean accuracy (meanAccuracy), split-level accuracy (splitAccuracy),
split-level AUROC (auroc), split-level AUPR (splitAUR) Side effect of plotting ROC curve if binary
classifier

Examples

data(toymodel) # load example results from binary breast classification
patlabels <- names(toymodel$Spliti$featureSelected)
getResults(toymodel,patlabels,2,0.5)



getSimilarity 49

getSimilarity Measures of patient similarity

Description

Measures of patient similarity

Usage
getSimilarity(x, type = "pearson”, customFunc, ...)
Arguments
X (matrix) matrix for which pairwise patient similarity is to be computed. Expects
one column per patient, and one measurement per row.
type (character) name of similarity measure. Currently supports Pearson correlation
(’pearson’) or a custom measure (’custom’)
customFunc (function) custom similarity function. Only used when type='custom'. The
function takes x as first argument and can take additional argument. It should
return a symmetric matrix of pairwise patient similarities.
parameter for customFunc
Value

symmetric matrix of size N, where N is number of samples

Examples

data(xpr)

x <- getSimilarity(xpr) # similarity by Pearson corr

mySim <- function(x) cor(x,method='kendall")

x <- getSimilarity(xpr,customFunc=mySim) # custom similarity

makeInputForEnrichmentMap
Wrapper to create input files for Enrichment Map

Description

Wrapper to create input files for Enrichment Map



50 makePSN_NamedMatrix

Usage

makeInputForEnrichmentMap(
model,
results,
pathwaylist,
EMapMinScore = 0L,
EMapMaxScore = 1L,
EMapPctPass = 0.5,

outDir
)
Arguments
model (list) Output of training model, generated by running buildPredictor()
results (list) Model results. output of getResults()
pathwaylList (list) output of readPathwayFile() used to make pathway-level feat ures for pre-

dictor
EMapMinScore  (integer) minimum score for Enrichment Map

EMapMaxScore (integer) maximum score for Enrichment Map

EMapPctPass (numeric between 0 and 1) percent of splits for which feature must have score
in range [EMapMinScore,EMapMaxScore] to be included for EnrichmentMap
visualization

outDir (char) directory where files should be written

Details

An Enrichment Map is a network-based visualization of top-scoring pathway features and themes.
It is generated in Cytoscape. This script generates the input files needed for Cytoscape to create an
Enrichment Map visualization.

Value

(list) 1) GMTHfiles (char): GMT files used to create EnrichmentMap in Cytoscape. 2) NodeStyles
(char): .txt files used to assign node attributes in Cytoscape. Importantly, attributes include node
fill, which indicates the highest consistent score for a given feature.

makePSN_NamedMatrix Create patient networks from full matrix of named measurements

Description

Create patient networks from full matrix of named measurements



makePSN NamedMatrix

51

Usage
makePSN_NamedMatrix(
xpr,
nm,
namedSets,
outDir = tempdir(),
simMetric = "pearson”,
verbose = TRUE,
numCores = 1L,
writeProfiles = TRUE,
sparsify = FALSE,
useSparsify2 = FALSE,
cutoff = 0.3,
sparsify_edgeMax = Inf,
sparsify_maxInt = 50,
minMembers = 1L,
runSerially = FALSE,
)
Arguments
Xpr (matrix) rows are measurements, columns are samples. Columns must be named
(patient ID)
nm (character) names for measurements corresponding to row order of xpr. Must
match the names in the named sets specified in nameSets
namedSets (list) sets of names to be grouped together. keys are set names, and networks
will be named as these. values are character vectors corresponding to groups of
names (matching those in nm) that are input to network generation
outDir (char) path to directory where networks are written. If missing, is set to tem-
pdir()
simMetric (char) measure of similarity. See getSimilarity() for details. If writeProfiles
is set to TRUE, must be one of pearson (Pearson correlation) or MI (correlation
by mutual information).
verbose (logical) print detailed messages
numCores (integer) number of cores for parallel network generation
writeProfiles (logical) use GeneMANIA’s ProfileToNetworkDriver to create interaction net-
works. If TRUE, this function writes subsets of the original data corresponding
to networks to file (profiles). If FALSE, uses getSimilarity() and writes interac-
tion networks.
sparsify (logical). If TRUE, sparsifies patient similarity network. See useSparsify2, spar-
sify_edgeMax and sparsify_maxInt
useSparsify?2 (logical). Cleaner sparsification routine. If FALSE, uses new matrix-based spar-
sify3
cutoff (numeric) patients with similarity smaller than this value are not included in the

corresponding interaction network



52

makePSN_RangeSets

sparsify_edgeMax
(numeric) Max number of edges to include in the final network

sparsify_maxInt
(numeric) Max num edges per node in sparsified network.

minMembers (integer) min number of measures in a network for the network to be included.
Useful when similarity measures require a minimum number of measures to be
meaningful (e.g. minimum of 6 for Pearson correlation)

runSerially (logical) set to TRUE to create nets serially, rather than in parallel

passed to getSimilarity()

Details

Creates patient similarity networks when full matrices of data are provided (e.g. gene expres-
sion, questionnaire results). To generate networks from sparse data such as CNVs or indels, use
makePSN_RangeSets instead. The rows of the data matrix (xpr) must be named (nm); one network
is create for each named set (namedSets). There are two options for the way in which networks are
created, depending on the value of writeProfiles. 1. writeProfiles=TRUE: GeneMANIA is used
to generate interaction networks and sparsify networks. This only works if the desired measure of
similarity is network-level Pearson correlation; an example is networks at the level of pathways. In
this case, the user does not explicitly specify a similarity measure and simMetric is ignored. 2.
writeProfiles=FALSE: GeneMANIA is not used to generate interaction networks. Rather, netDx
uses simMetric to create interaction networks. Networks can be sparsified by excluding weak
connections (cutoff).

Value

(char) Basename of files to which networks are written. Side effect of writing interaction networks
in outDir

Examples

data(xpr,pheno,pathwaylList);

# you may get a warning message that the output directory already
# exists; ignore it

out <- makePSN_NamedMatrix(xpr,rownames(xpr),pathwaylList,
".',writeProfiles=TRUE)

makePSN_RangeSets Create patient similarity interaction networks based on range sets

Description

Create patient similarity interaction networks based on range sets



makePSN_RangeSets

Usage

53

makePSN_RangeSets(

gr,
rangeSet,
netDir =

numCores

Arguments

gr
rangeSet

netDir

simMetric

quorum

verbose

numCores

Details

tempdir(),

simMetric = "coincide”,
quorum = 2L,
verbose = TRUE,

1L

(GRanges) patient ranges. Metadata should contain: ID: (char) unique patient
ID LOCUS_NAME: (comma-separated char) named ranges overlapped

(list) list of GRanges, one entry per range set. Key is the name of the range set,
and value is a GRanges object with corresponding ranges

(char) path to directory where networks should be written

(char) Similarity metric. Currently only ’coincide’ is supported; two patients
share an edge if they overlap elements in the the same gene set. E.g. Two
patients with CNVs that overlap different genes of the same pathway would
be related, but patients overlapping genes that don’t share a pathway (or, more
accurately, a named-set grouping) would not be related. The edge weight is
therefore binary.

(integer) minimum number of patients in a network for the network to be con-
structed

(logical) print detailed messages

(integer) num cores for parallel processing

Creates patient similarity networks when data consist of genomic events associated with patients.
Examples include CNV or indel data for patients. To generate networks from full matrices such gene
expression data, use makePSN_NamedMatrix instead. Genomic ranges corresponding to events in
patients (gr) should be named. One network is created per named range set (rangeSet). Each
set reflects a group of related loci ; for example, genomic ranges associated with genes in the same
cellular pathway. Currently, the only similarity measure supported is binary; two patients are related
in a network N if they both overlap elements of set N.

Value

Vector of network filenames

Examples

data(pathway_GR,cnv_GR)
### # example commented out to avoid build errors because of parallel



54 makeSymmetric

### # execution. Uncomment to run.
### netList <- makePSN_RangeSets(cnv_GR,pathway_GR,"'.")

makeQueries Randomly select patients for queries for feature selection

Description

Randomly select patients for queries for feature selection

Usage

makeQueries(incPat, featScoreMax = 10L, verbose = TRUE)

Arguments

incPat (char) vector of patient IDs to be included in query

featScoreMax (integer) Number of times to run query, usually equal to the max score for fea-
tures in the design (e.g. if featScoreMax=10, then this value is 10).

verbose (logical) print messages

Value

(list) of length featScoreMax, containing names of patients in query file for each fold

Examples

data(pheno)
x <- makeQueries(pheno$ID)

makeSymmetric Convert a network in source-target-weight format to symmetric matrix

Description

Convert a network in source-target-weight format to symmetric matrix

Usage

makeSymmetric(x, verbose = FALSE)

Arguments
X (data.frame) three columns, with source node, target node, and edge weight. En-
tries must include universe of nodes; those with missing edges must be included
as having edge weight NA

verbose (logical) print messages



mapNamedRangesToSets 55

Details

A common format for network representation is to use a three column table listing source node,
target node, and weight. This is the format netDx uses for network integration and visualization
in Cytoscape. However, some functionality requires a square symmetric adjacency matrix. This
function takes as input the three-column format and converts to the adjacency matrix. NOTE:
Symmetric attribute is assumed, and the function automatically sets a[i,j] = a[j,i]. Diagonal is
assumed to have value of 1.0. Finally missing edges will be assigned NA values.

Value

(matrix) symmetric adjacency matrix

Examples

src <- c("A”,"B"); tgt <- c("C","C")
cur <- data.frame(source=src,target=tgt,weight=c(0.3,0.8))
makeSymmetric(cur)

mapNamedRangesToSets  Map named ranges to corresponding set of named ranges

Description

Map named ranges to corresponding set of named ranges

Usage

mapNamedRangesToSets(gr, rangelList, verbose = FALSE)

Arguments
gr (GRanges) named ranged to be grouped
rangelList (list) sets of range names
verbose (logical) print detailed messages
Details

Example application is when we have named ranges each corresponding to genes or regulatory
elements, and we wish to group these ranges based on metabolic pathway.

Value

RangelList. keys are names of rangelList, values are GRanges



56 MB.pheno

Examples

data(genes,pathwaylList);
gene_GR<-GenomicRanges: : GRanges(genes$chrom,
IRanges: :IRanges(genes$txStart, genes$txEnd),
name=genes$name?2)
path_GRList <- mapNamedRangesToSets(gene_GR,pathwaylList)

matrix_getIJ Converts matrix index (1 to m*n) to row (m) and column (n) number

Description

Converts matrix index (1 to m*n) to row (m) and column (n) number

Usage

matrix_getIJ(dimMat, idx)

Arguments
dimMat (integer vector of length 2) output of dim() for matrix in question
idx (integer vector of length n) matrix indices

Value

(matrix) n-by-2, first column has row indices ; second column has col indices

MB.pheno Sample metadata table for medulloblastoma dataset.

Description

data.frame with patient ID and tumour subtype (STATUS)

Usage
data(MB.pheno)

Source

Northcott et al. (2011). J Clin Oncol. 29 (11):1408.

References

Northcott et al. (2011). J Clin Oncol. 29 (11):1408.



modelres 57

Examples

data(MB.pheno)
head(MB.pheno)

modelres Sample output of getResults()

Description

Output of getResults() generated by running toymodel. toymodel is itself the output of buildPredic-
tor() run on a simple dataset for binary breast tumour classification using two genomic data sources.
BRCA data were downloaded using curatedTCGAData for mRNA and miRNA expression. build-
Predictor()] was run by scoring features out of 2, with selected features passing 1 out of 2. Tumours
were labelled either "Luminal. A" or "other". See details of getResults() for output format.

Usage

data(modelres)

Examples

data(modelres)
head(modelres)

moveInteractionNets moves interaction networks when compiling database for sparse ge-
netic workflow

Description

moves interaction networks when compiling database for sparse genetic workflow

Usage
movelnteractionNets(netDir, outDir, pheno, fileSfx = "_cont.txt")
Arguments
netDir (char) source directory
outDir (char) target directory
pheno (data.frame) contains patient ID and STATUS
fileSfx (char) suffix to strip from network file names before registering in metadata
tables
Value

No value. Side effect of moving interaction nets to target directory and creating network-related
metadata files used to compile feature database



58 npheno

normDiff Similarity metric of normalized difference

Description

Similarity metric of normalized difference

Usage

normDiff(x)

Arguments

X (numeric) vector of values, one per patient (e.g. ages)

Details

Similarity metric used when data for a network consists of exactly 1 continuous variable (e.g. a
network based only on ’age’). When number of variables is 2-5, use avgNormDiff() which takes
the average of normalized difference for individual variables

Value

symmetric matrix of size ncol(dat) (number of patients) containing pairwise patient similarities

Examples

sim <= normDiff(rnorm(10))

npheno Toy sample metadata table

Description

data.frame with patient ID ("ID") and label ("STATUS"). 100 "cases" and 100 "controls"

Usage

data(npheno)

Examples

data(npheno)
head (npheno)



pathwayList 59

pathwaylList Sample list of pathways

Description

List where keys are pathway names and values are character vectors comprising of member genes
for corresponding pathways

Usage

data(pathwayList)

Examples

data(pathwaylList)
head(pathwaylList)

pathway_GR List of genomic ranges mapped to pathways

Description

List object. Keys are pathway names, values are GRanges objects with coordinates of corresponding
genes. Small subset of pathways sufficient for package examples.

Usage

data(pathway_GR)

Examples

data(pathway_GR)
head(pathway_GR)



60 pheno

perfCalc Computes variety of predictor evaluation measures based on the con-
fusion matrix

Description

Computes variety of predictor evaluation measures based on the confusion matrix

Usage
perfCalc(dat)
Arguments
dat (data.frame): 5 columns: score, tp, fp, tn, fn. One row per cutoff score for
feature selection
Value

(list) stats (data.frame): score, f1, ppv, precision and recall. One row per cutoff for feature selection
auc (numeric between 0 and 1): AUC of overall ROC curve prauc (numeric between 0 and 1): AUC
of overall precision-recall curve

Examples

data(confmat)
x <- perfCalc(confmat)

pheno Sample metadata table

Description
data.frame with patient ID (ID), sample type (Type), tumour subtype (STATUS). From TCGA 2012
breast cancer paper (see reference).

Usage
data(pheno)

Source

The Cancer Genome Atlas. (2012). Nature 490:61-70.

References

The Cancer Genome Atlas. (2012). Nature 490:61-70.



pheno_tull 61

Examples
data(pheno)
head(pheno)
pheno_full Subsample of TCGA breast cancer data used for netDx function exam-
ples
Description

Patient ID and tumour status in "pheno", subsample of gene expression in "xpr" and CNV data in
"cnv_GR"

Usage

data(pheno_full)

Source

The Cancer Genome Atlas. (2012). Nature 490:61-70.

References

The Cancer Genome Atlas. (2012). Nature 490:61-70.

Examples

data(pheno_full)
head(pheno_full)

plotEmap Create EnrichmentMap in Cytoscape to visualize predictive pathways

Description

Create a network where nodes are predictive pathways passing certain cutoff and edges indicate
similarity in gene-sets. Pathways are then clustered to identify themes of predictive pathways.
Generates one such network for each patient label.



62 plotEmap
Usage
plotEmap(
gmtFile,
nodeAttrFile,
netName = "generic”,
scoreCol = "maxScore”,
minScore = 1,
maxScore = 10,
nodeFillStops = c(7, 9),
colorScheme = "cont_heatmap”,
imageFormat = "png”,
verbose = FALSE,

createStyle = TRUE,
groupClusters = FALSE,
hideNodeLabels = FALSE

Arguments

gmtFile

nodeAttrFile

netName

scoreCol
minScore
maxScore

nodeFillStops

colorScheme

imageFormat
verbose

createStyle

groupClusters

hideNodelLabels

(character) file path to GMT file (generated by getEMapInput()). NOTE: This
needs to be the absolute path name

(list) file path to nodeAttr.txt file (generated by getEMaplInput())

(character) name for network in Cytoscape. Using the patient class name is a
good idea. (e.g. SURVIVE_YES and SURVIVE_NO).

(character) column of nodeAttrFile with the node score
(integer) minimum score of node to show
(integer) maximum score of node to show

(integer) vector of length 2. Contains score values that indicate "good signal"
and "best signal". Nodes with values above "good signal" are coloured orange,
and those with "best signal" are coloured red.

(character) colour scheme for nodes. ’cont_heatmap’ sets a discrete map ranging
from yellow to red for increasing scores. 'netDx_ms’ is the colour scheme used
in the netDx methods paper. This map is (<=6: white; 7-9: orange; 10: red)

(character) one of PNG, PDF, SVG, or JPEG
(logical) print messages

(logical) if generating more than one EMap, set to TRUE for first one and to
FALSE for subsequent. Due to limitation in current version of RCy3

(logical) if TRUE, redraws network with thematic clusters lined up in rows.
This setting is useful if setting this flag to FALSE results in a cluttered network.
However, applying this layout will organize nodes in each cluster into circles,
which loses the ¢ topology.

(logical) if TRUE hides the node label in the EnrichmentMap. Cluster labels
remain visible.



plotIntegratedPatientNetwork 63

Value

No value. Side effect of plotting the EnrichmentMap in an open session of Cytoscape.

Examples

#trefer to getEMapInput_many.R for working getEMapInput_many() example

data(featScores)

pathwayList <- readPathways(fetchPathwayDefinitions(”October”,2020))

pathwayList <- pathwaylList[seq_len(5)]

netInfoFile <- system.file("extdata”,

paste("example_output”,"inputNets.txt", sep=getFileSep()),

package="netDx")

netTypes <- read.delim(netInfoFile,sep="\t',header=FALSE,as.is=TRUE)

outDir <- paste(tempdir(), 'plots’',sep=getFileSep())

if (!file.exists(outDir)) dir.create(outDir)

EMap_input <- getEMapInput_many(featScores,pathwaylList,
netTypes,outDir=outDir)

outDir <- paste(getwd(), 'plots',sep=getFileSep())

if (!file.exists(outDir)) dir.create(outDir)

gmtFile <- EMap_input[[1]][1]

nodeAttrFile <- EMap_input[[1]][2]

# not run because requires Cytoscape to be installed and open
# plotEmap(gmtFile = gmtFile, nodeAttrFile = nodeAttrFile,
#\t\tnetName="HighRisk")

plotIntegratedPatientNetwork
Visualize integrated patient similarity network based on selected fea-
tures

Description

Visualize integrated patient similarity network based on selected features

Usage
plotIntegratedPatientNetwork(
datalist,
grouplList,
makeNetFunc = NULL,
sims = NULL,
setName = "predictor”,

prune_pctX = 0.05,
prune_useTop = TRUE,
aggFun = "MAX",
calcShortestPath = FALSE,
showStats = FALSE,



64

plotIntegratedPatientNetwork

outDir = tempdir(),

numCores =
nodeSize =

1L,
5oL,

edgeTransparency = 40L,
nodeTransparency = 155L,
plotCytoscape = FALSE,
verbose = FALSE

Arguments

datalList
grouplList

makeNetFunc
sims
setName

prune_pctX

prune_useTop

(MultiAssayExperiment) patient data & labels used as input

(list) features to use to create integrated patient network. Identical in structure to
groupList in buildPredictor() method. This is a list of lists, where the outer list
corresponds to assay (e.g. mRNA, clinical) and inner list to features to generate
from that datatype.

(function) function to create features
(list) rules for creating PSN. Preferred over makeNetFunc
(char) name to assign the network in Cytoscape

(numeric between 0 and 1) fraction of most/least edges to keep when pruning
the integrated PSN for visualization. Must be used in conjunction with use-
Top=TRUE/FALSE e.g. Setting pctX=0.2 and useTop=TRUE will keep 20%
top edges

(logical) when pruning integrated PSN for visualization, determines whether to
keep strongest edges (useTop=TRUE) or weakest edges (useTop=FALSE)

aggFun (char) function to aggregate edges from different PSN

calcShortestPath
(logical) if TRUE, computes weighted shortest path Unless you plan to analyse
these separately from looking at the shortest path violin plots or integrated PSN
in Cytoscape, probably good to set to FALSE.

showStats (logical) if FALSE, suppresses shortest path-related stats, such as one-sided
WMW test for testing shorter intra-class distances

outDir (char) path to directory for intermediate files. Useful for debugging.

numCores (integer) number of cores for parallel processing

nodeSize (integer) size of nodes in Cytoscape

edgeTransparency
(integer) Edge transparency. Value between 0 and 255, with higher numbers
leading to more opacity.

nodeTransparency
(integer) Node transparency. Value between 0 and 255, with higher numbers
leading to more opacity.

plotCytoscape (logical) If TRUE, plots network in Cytoscape. Requires Cytoscape software to
be installed and running on the computer when the function call is being made.

verbose (logical) print detailed messages



plotPerf 65

Details

Generates a Cytoscape network where nodes are patients and edges are weighted by aggregate
pairwise patient similarity. Integrated PSN plotting is intended to run after feature selection, which
identifies the subset of input networks predictive for each class of interest. The method of generating
the network is as follows: All networks feature-selected in either patient ategory are concatenated;
where a network is feature-selected in both categories, it is included once. The similarity between
two patients in the integrated network is the mean of corresponding pairwise similarities. Dissim-
ilarity is defined as 1-similarity, and Dijkstra distances are computed on this resulting network.
For visualization, only edges representing the top fraction of distances (strongest edge weights) are
included.

Value

(list) information about the integrated network similarity network 2) patientDistNetwork_pruned
(matrix) the network plotted in Cytoscape. Also note that this is a dissimilarity network, so that
more similar nodes have smaller edge weights 3) colLegend (data.frame): legend for the patient
network plotted in Cytoscape. Columns are node labels (STATUS) and colours (colour) 6) outDir
(char) value of outDir parameter

plotPerf Plots various measures of predictor performance for binary classifiers

Description

Plots various measures of predictor performance for binary classifiers

Usage

plotPerf(resList = NULL, inFiles, predClasses, plotSEM = FALSE)

Arguments
resList (list) list of prediction results. If provided, the method will ignore inDir
inFiles (char) path to predictionResults.txt files. A vector, each with absolute paths to
predictionResults.txt
predClasses (char) vector of class names.
plotSEM (logical) metric for error bars. If set to TRUE, plots SEM; else plots SD.
Details

Plots individual and average ROC/PR curves. mean+/-SEM performance for a predictor run using
nested cross-validation or a similar repeated design. predictionResults.txt contains a (data.frame)



66 plotPerf_multi

Value

(list) each key corresponds to an input file in inDir. Value is a list with: 1) stats: ’stats’ component of
perfCalc 2) rocCurve: ROCR performance object for ROC curve 3) prCurve: ROCR performance
object for PR curve 4) auroc: Area under ROC curve 5) aupr: Area under PR curve 6) accuracy:
Accuracy

Side effect of plotting in a 2x2 format: 1) mean+/-SEM or (mean+/-SD) AUROC 2) mean+/-SEM
or (mean+/-SD) AUPR 3) ROC curve for all runs plus average 4) PR curve for all runs plus average

Examples

non

inDir <- system.file("extdata"”,"example_output”, package='netDx")

inFiles <- paste(rep(inDir,3), sprintf(”"rng%i”,seq_len(3)),"predictionResults.txt"”,
sep=getFileSep())

resList <- list()

for (k in seq_len(length(inFiles))) {

resList[[k]] <- read.delim(inFiles[k],sep="\t", header=TRUE,as.is=TRUE)

3
plotPerf(resList, predClasses = c('LumA', 'notLumA'))

plotPerf_multi Plots a set of ROC/PR curves with average.

Description

Plots a set of ROC/PR curves with average.

Usage

plotPerf_multi(
inList,
plotTitle = "performance”,
plotType = "ROC",
xlab = "TPR",
ylab = "FPR",
meanCol = "darkblue”,

xlim = c(0o, 1),
ylim = c(0, 1)

)
Arguments
inList (list or ROCR::performance object) ROCR::performance objects, one per itera-
tion
plotTitle (numeric) plot title
plotType (char) one of ROC | PR | custom. Affects x/y labels

xlab (char) x-axis label



predict 67

ylab (char) y-axis label

meanCol (char) colour for mean trendline

x1lim (numeric) min/max extent for x-axis

ylim (numeric) min/max extent for y-axis
Details

Plots average curves with individual curves imposed.

Value

No value. Side effect of plotting ROC and PR curves

Examples

non

inDir <- system.file("extdata"”,"example_output”, package="netDx")
all_rng <- list.files(path = inDir, pattern = 'rng.')
fList <- paste(inDir,all_rng, 'predictionResults.txt', sep=getFileSep())
rocList <- list()
for (k in seqg_len(length(fList))) {
dat <- read.delim(fList[1],sep="\t', header=TRUE,as.is=TRUE)
predClasses <- c('LumA', 'notLumA')
pred_coll <- sprintf('%s_SCORE',predClasses[1])
pred_col2 <- sprintf('%s_SCORE',predClasses[2])
idx1 <- which(colnames(dat) == pred_col1l)
idx2 <- which(colnames(dat) == pred_col2)
pred <- ROCR::prediction(dat[,idx1]-dat[,idx2],
dat$STATUS==predClasses[1])
rocList[[k]] <- ROCR::performance(pred, 'tpr', 'fpr')
}
plotPerf_multi(rocList, 'ROC')

predict predict patient labels

Description

Once a model is trained, this function is used to classify new patients using selected features

Usage

predict(
trainMAE,
testMAE,
grouplList,
selectedFeatures,
makeNetFunc = NULL,
sims = NULL,



68 predictPatientLabels

outDir,

verbose = FALSE,
numCores = 1L,
JavaMemory = 4L,
debugMode = FALSE

)
Arguments

trainMAE (MultiAssayExperiment) patient data for training samples. Same as provided to
buildPredictor()

testMAE (MultiAssayExperiment) new patient dataset for testing model. Assays must be
the same as for trainMAE.

grouplList (list) list of features used to train the model. Keys are data types, and values
are lists for groupings within those datatypes. e.g. keys could include ’clini-
cal’,’rna’, methylation’, and values within ’rna’ could include pathway names
“cell cycle’, "DNA repair’, etc., selectedFeatures will be used to subset

selectedFeatures
(list) selected features to be used in the predictive model. keys are patient la-
bels (e.g. "responder/nonresponder"), and values are feature names identified
by running buildPredictor(). Feature names must correspond to names of grou-
pList, from which they will be subset.

makeNetFunc (function) function to create PSN features from patient data. See makeNetFunc
in buildPredictor() for details

sims (list) rules for creating PSN. Preferred over makeNetFunc.

outDir (char) directory for results

verbose (logical) print messages

numCores (integer) number of CPU cores for parallel processing

JavaMemory (integer) memory in (Gb) used for each fold of CV

debugMode (logical) Set to TRUE for detailed messages. Used for debugging.

Value

(data.frame) predicted patient similarities and labels columns are: 1) ID, 2) STATUS (ground truth),
3) <label>_SCORE: similarity score for the corresponding label, 4) PRED_CLASS: predicted class

predictPatientLabels assign patient class when ranked by multiple GM predictors

Description

assign patient class when ranked by multiple GM predictors



predRes 69

Usage

predictPatientlLabels(resSet, verbose = TRUE)

Arguments
resSet (list) output of getPatientRankings, each key for a different predictor. names(resSet)
contain predictor label
verbose (logical) print detailed messages
Value

data.frame: ID, similarityScore, PRED_CLASS

Examples

data(predRes); predClass <- predictPatientLabels(predRes)

predRes Example output of getPatientRankings, used to call labels for test pa-
tients.

Description

List of lists. First level is a list of size 4, with one key entry for each tumour type in example
medulloblastoma dataset (WNT,SHH,Group3,Group4). Each list in the second level is of length 8,
with structure corresponding to the output of getPatientRankings().

Usage

data(predRes)

Examples

data(predRes)
summary (predRes)
summary (predRes[[1]1])



70 pruneNets

pruneNet Prune network by retaining strongest edges

Description

Prune network by retaining strongest edges

Usage

pruneNet(net, vertices, pctX = 0.1, useTop = TRUE)

Arguments

net (data.frame) Network to prune. Columns are: source,target,weight

vertices (char) node names. Should match those in net[,1:2]

pctX (numeric O to 1) Fraction of top/bottom edges to retain

useTop (logical) if TRUE prunes to top pctX edges; else prunes to bottom pctX edges
Value

(data.frame) pruned network. Three columns: AliasA, AliasB, and weight

pruneNets Prune interaction networks to keep only the networks and patients re-
quested

Description

Prune interaction networks to keep only the networks and patients requested

Usage

pruneNets(
oldDir,
newDir = tempdir(),
filterNets = "*",
filterIDs = "x",
netSfx = "_cont.txt$",
verbose = TRUE



pruneNet_pctX 71

Arguments
oldDir (char) path to directory with original networks
newDir (char) path to output directory for pruned networks
filterNets (char) vector of networks to include. These should match filenames in netDir.
Value of ’*’ results in pruning all networks
filterIDs (char) patients to include in pruned networks. These should match nodes in the
input interaction networks
netSfx (char) suffix for network file names. Only used if filterNets="x".
verbose (logical) print messages
Details

This function is crucial for patient data that is highly sparse; examples include patient CNVs indels,
as opposed to full matrix measures (gene expression, questionnaire data). Each step where the
pool of patients is subset - e.g. limiting feature selection only to patients in training set - changes
the set of networks that are eligible. Some networks may only contain test patients, while others
may contain a single edge between a training and a test patient. Upon subsetting, such networks
are no longer eligible for downstream use, such as feature selection. This function rewrites those
subnetworks of the original networks that consist of eligible patients.

Value

(no value). Side effect of writing pruned network files to newDir

Examples

data(npheno)

netDir <- system.file("extdata”,"example_nets”,6 package='netDx"')

pruneNets(netDir, tempdir(),filterIDs=npheno[seq_len(10),1],
netSfx="txt$"')

pruneNet_pctX Prune network by retaining strongest edges

Description

Prune network by retaining strongest edges

Usage

pruneNet_pctX(net, vertices, pctX = 0.1, useTop = TRUE)



72 psn__corr

Arguments

net (data.frame) Network to prune. Columns are: source,target,weight

vertices (char) node names. Should match those in net[,1:2]

pctX (numeric O to 1) Fraction of top/bottom edges to retain

useTop (logical) if TRUE prunes to top pctX edges; else prunes to bottom pctX edges
Value

(data.frame) pruned network. Three columns: AliasA, AliasB, and weight

psn__builtIn make PSN for built-in similarity functions

Description

make PSN for built-in similarity functions

Usage
psn__builtIn(settings, verbose, ...)
Arguments
settings (list) from makeNetFunc
verbose (logical) print messages
parameters for makePSN_NamedMatrix()
Value

(char) names of networks created. Side effect of network creation.

psn__corr wrapper for PSNs using Pearson correlation

Description

wrapper for PSNs using Pearson correlation

Usage

psn__corr(settings, verbose, ...)



psn__custom 73

Arguments
settings (list) from makeNetFunc
verbose (logical) print messages
parameters for makePSN_NamedMatrix()
Value

(char) names of networks created. Side effect of network creation.

psn__custom make PSN for custom similarity functions

Description

make PSN for custom similarity functions

Usage

psn__custom(settings, fn, verbose, ...)
Arguments

settings (list) from makeNetFunc

fn (function) custom similarity function

verbose (logical) print messages

parameters for makePSN_NamedMatrix()

Value

(char) names of networks created. Side effect of network creation.

randAlphanumString Generate random alphanumerical string of length 10

Description

Generate random alphanumerical string of length 10

Usage

randAlphanumString(numStrings = 1L)

Arguments

numStrings (integer) number of strings to generate



74

Details

readPathways

Used to create multiple temporary directories during an R session

Value

vector of length n, each with 10-char alphanumerical strings

Examples

randAlphanumString()

readPathways

Parse GMT file and return pathways as list

Description

Parse GMT file and return pathways as list

Usage

readPathways(

fname,
MIN_SIZE
MAX_SIZE =

1oL,
200L,

EXCLUDE_KEGG = TRUE,

IDasName =

FALSE,

verbose = TRUE,
getOrigNames = FALSE

Arguments

fname

MIN_SIZE

MAX_SIZE

EXCLUDE_KEGG

IDasName

verbose

getOrigNames

(char) path to pathway file in gmt format pathway score to include pathway in
the filter list

(integer) min num genes allowed in a pathway. Pathways with fewer number of
genes are excluded from the output list

(integer) max num genes allowed in a pathway. Pathways with gene counts
greater than this are excluded from the output list

(boolean) If TRUE exclude KEGG pathways. Our experience has been that
some KEGG gene sets are to broad to be physiologically relevant

(boolean) Value for key in output list. If TRUE, uses db name and ID as name
(e.g. KEGG:hsa04940) If FALSE, pathway name.

(logical) print detailed messages

(logical) when TRUE also returns a mapping of the cleaned pathway names to
the original names



replacePattern 75

Details

The GMT file format currently supported should match the ones found at http://downloads.baderlab.org.
The original GMT file format is: <set name><set description><member 1><member 2>...<member
N>, one row per set, with values tab-delimited. The version at baderlab.org has additional unique
formatting of the <set name> column as follows: <pathway_full_name> This function requires the
specific formatting of the first column to assign the key name of the output list (see useIDasName
argument).

Value

Depends on value of getOrigNames. If FALSE (Default), list with pathway name as key, vector
of genes as value. If TRUE, returns list of length two, (1) geneSets: pathway-gene mappings as
default, (2) pNames: data.frame with original and cleaned names.

Examples

pathFile <- fetchPathwayDefinitions("October”,2020)
pathwaylList <- readPathways(pathFile)

replacePattern Replace pattern in all files in dir

Description

find/replace pattern in all files of specified file type in specified directory. Needed to modify num-
ber format when intefacing with GeneMANIA, on French locale machines. Without this step,
CacheBuilder throws error with commas.

Usage

replacePattern(pattern = ",", target = ".", path = getwd(), fileType = "txt$")
Arguments

pattern (char) pattern to find

target (char) pattern to replace

path (char) dir to replace pattern in

fileType (char) pattern for files to replace pattern in
Value

No value. Files have patterns replaced in place.



76

RR_featureTally

RR_featureTally

Computes positive and negative calls upon changing stringency of fea-
ture selected networks (binary networks only)

Description

Computes positive and negative calls upon changing stringency of feature selected networks (binary

networks only)

Usage
RR_featureTally(
netmat,
phenoDF,
TT_STATUS,
predClass,
pScore,
outDir = tempdir(),
enrichLabels = TRUE,
enrichedNets,
maxScore = 30L,
verbose = FALSE
)
Arguments
netmat (matrix) output of countPatientsInNet. Should contain all patients in dataset that
overlap 1+ network
phenoDF (data.frame) patient ID and STATUS
TT_STATUS (list) output of splitTestTrain_partition; should be same as used for cross valida-
tion
predClass (char) class to be predicted
pScore (list of data.frames) contains 10-fold CV score, one entry for each resampling of
the data. The data.frame has two columns: 1) pathway name, 2) pathway score
outDir (char) path to dir where results should be written
enrichlLabels (logical) was network label enrichment used?
enrichedNets  (list of chars) networks passing network label enrichment
maxScore (integer) max achievable score for pathways corresponding to N-way resampling
verbose (logical) print messages



runFeatureSelection 77

Details

This function computes predictor performance in the context of binary networks, where + and -
calls are based on membership (or lack thereof) in feature selected networks. An example would
be networks based on CNV occurrence in cellular pathways; in this use case, a + is based on
patient membership in feature-selected networks. This function takes the output data from a feature
selection exercise and computes the number and fraction of positive and negative calls at each level
of feature selection stringency. The output of this function can then be used to compute performance
measures such as the ROC or precision-recall curve.

Value

(list) 1) cumulativeFeatScores: pathway name, cumulative score over N-way data resampling. 2)
performance_denAllNets: positive,negative calls at each cutoff: network score cutoff (score); num
networks at cutoff (numPathways) ; total +, ground truth (pred_tot); + calls (pred_ol); + calls as
pct of total (pred_pct); total -, ground truth (other_tot) ; - calls (other_ol) ; - calls as pct of total
(other_pct) ; ratio of pred_pct and other_pct (rr) ; min. pred_pct in all resamplings (pred_pct_min) ;
max pred_pct in all resamplings (pred_pct_max) ; min other_pct in all resamplings (other_pct_min);
max other_pct in all resamplings (other_pct_max) 3) performance_denEnrichedNets: positive, neg-
ative calls at each cutoff label enrichment option: format same as performance_denAllNets. How-
ever, the denominator here is limited to patients present in networks that pass label enrichment 4)
resamplingPerformance: breakdown of performance for each of the resamplings, at each of the cut-
offs. This is a list of length 2, one for allNets and one for enrichedNets. The value is a matrix with
(resamp * 7) columns and S rows, one row per score. The columns contain the following informa-
tion per resampling: 1) pred_total: total num patients of predClass 2) pred_OL: num of pred_total
with a CNV in the selected net 3) pred_OL_pct: 2) divided by 1) (percent) 4) other_total: total num
patients of other class(non-predClass) 5) other_OL: num of other_total with CNV in selected net 6)
other_OL_pct: 5) divided by 4) (percent) 7) relEnr: 6) divided by 3).

Examples

data(cnv_patientNetCount) # patient presence/absence in nets
data(cnv_pheno) # patient ID, label

data(cnv_netScores) # network scores for resampling
data(cnv_TTstatus) # train/test status

data(cnv_netPass) # nets passing label enrichment

d <- tempdir()

out <- RR_featureTally(cnv_patientNetCount,
cnv_pheno,cnv_TTstatus, "case”,cnv_netScores,
outDir=d,enrichLabels=TRUE, enrichedNets=cnv_netPass,
maxScore=30L)

print(summary(out))

runFeatureSelection Run GeneMANIA cross-validation with a provided subset of networks




78

Description

runFeatureSelection

Run GeneMANIA cross-validation with a provided subset of networks

Usage
runFeatureSelection(
trainID_pred,
outDir,
dbPath,
numTrainSamps = NULL,
incNets = "all”,
orgName = "predictor”,
fileSfx = "CvV",
verbose = FALSE,
numCores = 2L,
JavaMemory = 6L,
verbose_runQuery = FALSE,
debugMode = FALSE,
)
Arguments

trainID_pred

outDir
dbPath

numTrainSamps

incNets

orgName

fileSfx
verbose
numCores

JavaMemory

(char) vector with universe of predictor class patients (ie all that can possibly be
included in the query file

(char) directory to store query file and GM results
(char) path to GeneMANIA generic database with training population

(integer) number of training samples in total leave blank to use 5 training sam-
ples in order to save memory

(char) vector of networks to include in this analysis (features/pathway names).
Useful for subset-based feature selection

(char) organism name for GeneMANIA generic database. The default value will
likely never need to be changed.

(char) file suffix
(logical) print messages
(logical) num parallel threads for cross-validation

(integer) memory for GeneMANIA run, in Gb.

verbose_runQuery

debugMode

(logical) print messages for runQuery()

(logical) when TRUE runs jobs in serial instead of parallel and prints verbose
messages. Also prints system Java calls and prints all standard out and error
output associated with these calls.

args for makeQueries()



runQuery 79

Details

Creates query files, runs GM for 10-fold cross validation.

Value

No value. Side effect of generating feature scores.

Examples

data(MB.pheno)

dbPath <- system.file("extdata"”,"dbPath”,package="netDx")
runFeatureSelection(MB.pheno$ID[which(MB.pheno$STATUS%in% 'WNT')],
tempdir(),dbPath,103L)

runQuery Run a query

Description

Run a query

Usage

runQuery (
dbPath,
queryFiles,
resDir,
verbose = TRUE,
JavaMemory = 6L,
numCores = 1L,
debugMode = FALSE

)
Arguments
dbPath (char) path to directory with GeneMANIA generic database
queryFiles (list(char)) paths to query files
resDir (char) path to output directory
verbose (logical) print messages
JavaMemory (integer) Memory for GeneMANIA (in Gb) - a total of numCores*GMmemory
will be used and distributed for all GM threads
numCores (integer) number of CPU cores for parallel processing
debugMode (logical) when TRUE runs jobs in serial instead of parallel and prints verbose

messages. Also prints system Java calls.



80 setupFeatureDB

Value

(char) path to GeneMANIA query result files with patient similarity rankings (*PRANK) and fea-
ture weights (*NRANK) of results file

Examples

dbPath <- system.file("extdata"”,"dbPath"”,package="netDx")
queryFile <- system.file("extdata"”,"GM_query.txt",package="netDx")
runQuery(dbPath, queryFile,tempdir())

setupFeatureDB setup database of features for feature selection

Description

Creates all the input files for the collection of features used in feature selection.

Usage
setupFeatureDB(pheno, prepDir = tempdir())

Arguments
pheno (data.frame) patient metadata. Must contain ID column
prepDir (char) directory in which to setup database

Value

(data.frame) internal numerical id for patients INTERNAL_ID) and user-provided ID (ID)

Examples

data(xpr,pheno)
pathwayList <- list(pathA=rownames(xpr)[1:10],pathB=rownames(xpr)[21:50])

datalList <- list(rna=xpr) #only one layer type
groupList <- list(rna=pathwaylList) # group genes by pathways

makeNets <- function(datalList, groupList, netDir,...) {
netList <- makePSN_NamedMatrix(dataList[['rna'l],
rownames(dataList[['rna']]),
groupList[['rna']],netDir,verbose=FALSE,
writeProfiles=TRUE,...)
unlist(netList)
3
tmpDir <- tempdir(); netDir <- paste(tmpDir,"nets"”,sep=getFileSep())
dir.create(netDir,recursive=TRUE)

pheno_id <- setupFeatureDB(pheno,netDir)



silh 81

silh Toy network.

Description

List with two entries. net: Network specification. "X" and "Y" are source and target columns
respectively. "DIST" specifies weights. groups: Node labsls. A data.frame with columns "ID" and
"GROUP"

Usage
data(silh)

Examples

data(silh)
summary (silh)
silh$net
silh$groups

sim.eucscale Similarity method. Euclidean distance followed by exponential scaling

Description

Computes Euclidean distance between patients. A scaled exponential similarity kernel is used to
determine edge weight. The exponential scaling considers the K nearest neighbours, so that simi-
larities between non-neighbours is set to zero. Alpha is a hyperparameterthat determines decay rate
of the exponential. For details, see Wang et al. (2014). Nature Methods 11:333.

Usage

sim.eucscale(dat, K = 20, alpha = 0.5)

Arguments
dat (data.frame) Patient data; rows are measures, columns are patients.
K (integer) Number of nearest neighbours to consider (K of KNN)
alpha (numeric) Scaling factor for exponential similarity kernel. Recommended range
between 0.3 and 0.8.
Value

symmetric matrix of size ncol(dat) (number of patients) containing pairwise patient similarities



82 sim.pearscale

Examples

data(xpr)
sim <- sim.eucscale(xpr)

sim.pearscale various similarity functions Similarity function: Pearson correlation
followed by exponential scaling

Description

Computes Pearson correlation between patients. A scaled exponential similarity kernel is used
to determine edge weight. The exponential scaling considers the K nearest neighbours, so that
similarities between non-neighbours is set to zero. Alpha is a hyperparameter that determines decay
rate of the exponential. For details see Wang et al. (2014). Nature Methods 11:333.

Usage

sim.pearscale(dat, K = 20, alpha = 0.5)

Arguments
dat (data.frame) Patient data; rows are measures, columns are patients.
K (integer) Number of nearest neighbours to consider (K of KNN)
alpha (numeric) Scaling factor for exponential similarity kernel. Recommended range
between 0.3 and 0.8.
Value

symmetric matrix of size ncol(dat) (number of patients) containing pairwise patient similarities

Examples

data(xpr)
sim <- sim.pearscale(xpr)



simpleCap 83

simpleCap simple capitalization

Description

simple capitalization

Usage

simpleCap(x)

Arguments

X (char) name

Details

used to format feature names so they are not in all-caps

Value

(char) Changes case so start of each word is in upper-case, and the rest is in lowercase

Examples

simpleCap('this IS a TEST sEnTenCe')

smoothMutations_LabelProp
This function applies the random walk with restart propagation algo-
rithm to a matrix of patients profiles

Description

This function applies the random walk with restart propagation algorithm to a matrix of patients
profiles

Usage

smoothMutations_LabelProp(mat, net, numCores = 1L)



84 smoothMutations_LabelProp

Arguments
mat (data.frame) Sparse matrix of binarized patient profiles, with rownames being
unique patients and columns, unique genes. Entry [i,j] is set to 1 if patient j has
a mutation in gene i.
net (data.frame) Interaction network provided as an adjacency matrix (i.e. symmet-
ric)
numCores (integer) Number of cores for parallel processing
Details

A network is an undirected graph G defined by a set of nodes corresponding to genes, and edges
connecting nodes with an experimental evidence of interaction. A priori nodes are genes for which
an information is known. A novel node is a candidate for being associated to the nodes above
based on their information. A node prediction task leads to detect novel nodes and propagation
techniques are largely applied for the purpose. Network-based propagation algorithms for node
prediction transfer the information from a priori nodes to any other node in a network. Each node
gets an imputation value which assesses how much information got. The prediction is based on
the guilty-by-association principle. A node with a high imputation value has a high probability to
be associated to a priori nodes. E.g. in a house where room A has one heater, if room B is the
second hottest room it means that B is close to A and that there is a high probability that they share
a door or wall. These algorithms exploit the global topology of the network. However, when they
are applied to detect if unknown nodes are functionally associated to known ones, they may suffer
of a drawback depending by the context. In biology, two functionally related fragments interact
physically (direct interaction) or interact indirectly thanks to one or very few mediators. Therefore,
exploring too far similarities between nodes can introduce noise in the prediction. We apply a
random walk with restart propagation algorithm which resolution is set to 0.2 for giving high values
only to the close neighbours of the a priori nodes.

Value

(data.frame) Continuous matrix of patient profiles in which each gene has the final propagation
score

Examples

suppressWarnings(suppressMessages(require(MultiAssayExperiment)))
require(doParallel)

# load mutation and phenotype data

genoFile <- system.file("extdata"”,"TGCT_mutSmooth_geno.txt",package="netDx")
geno <- read.delim(genoFile,sep="\t",6header=TRUE,as.is=TRUE)

phenoFile <- system.file("extdata”, "TGCT_mutSmooth_pheno.txt",
package="netDx")

pheno <- read.delim(phenoFile,sep="\t",6header=TRUE,as.is=TRUE)

rownames (pheno) <- pheno$ID

# load interaction nets to smooth over
require(BiocFileCache)
netFileURL <- paste("https://download.baderlab.org/netDx/",



sparsify2

"supporting_data/CancerNets.txt",sep="")

cache <- rappdirs::user_cache_dir(appname = "netDx")

bfc <- BiocFileCache: :BiocFileCache(cache,ask=FALSE)

netFile <- bfcrpath(bfc,netFileURL)

cancerNets <- read.delim(netFile,sep="\t",header=TRUE,as.is=TRUE)
# smooth mutations

prop_net <- smoothMutations_LabelProp(geno,cancerNets,numCores=1L)

85

sparsify?2

cleaner sparsification routine

Description

cleaner sparsification routine

outFile = paste(tempdir(), "tmp.txt"”, sep = getFileSep()),

Usage
sparsify2(
W,
cutoff = 0.3,
maxInt = 50,

EDGE_MAX = 1000,
includeAllNodes = TRUE,
verbose = TRUE

Arguments

W
outFile
cutoff
maxInt

EDGE_MAX
includeAllNodes

verbose

Details

(matrix) similarity matrix

(char) path to file to write sparsified network

(numeric) edges with weight smaller than this are set to NA
(numeric) max num edges per node.

(numeric) max num edges in network

(logical) if TRUE, ensures at least one edge is present for each patient. This
feature is required when sparsification excludes test patients that are required
to be classified. If the sparsification rules exclude all edges for a patient and
this flag is set, then the strongest edge for each missing patient is added to the
net. Note that this condition results in the total number of edges potentially

exceeding EDGE_MAX
(logical) print detailed messages, useful for debugging

Sparsifies similarity matrix to keep strongest edges. Sets diagonal and edges < cutoff to NA. Keeps
strongest maxInt edges per node. Ties are ignored. Keeps a max of EDGE_MAX edges in the

network.



86 sparsify3

Value

writes SIF content to text file (nodel,node2,edge weight)

Examples

data(xpr);
sparsify2(cor(xpr))

sparsify3 cleaner sparsification routine - faster, matrix-based version

Description

cleaner sparsification routine - faster, matrix-based version

Usage
sparsify3(
W7
outFile = sprintf("%s/tmp.txt", tempdir()),
cutoff = 0.3,
maxInt = 50,

EDGE_MAX = Inf,
includeAllNodes = TRUE,
verbose = TRUE

)
Arguments
W (matrix) similarity matrix
outFile (char) path to file to write sparsified network
cutoff (numeric) edges with weight smaller than this are set to NA
maxInt (numeric) max num edges per node.
EDGE_MAX (numeric) max num edges in network
includeAllNodes

(logical) if TRUE, ensures at least one edge is present for each patient. This
feature is required when sparsification excludes test patients that are required
to be classified. If the sparsification rules exclude all edges for a patient and
this flag is set, then the strongest edge for each missing patient is added to the
net. Note that this condition results in the total number of edges potentially
exceeding EDGE_MAX

verbose (logical) print detailed messages, useful for debugging



splitTestTrain 87

Details

Sparsifies similarity matrix to keep strongest edges. Sets diagonal and edges < cutoff to NA. Keeps
strongest maxInt edges per node. Ties are ignored. Keeps a max of EDGE_MAX edges in the
network.

Value

writes SIF content to text file (nodel,node2,edge weight)

Examples

m <- matrix(runif(500%500),nrow=500)
y <- sparsify2(m)
m <- matrix(runif(500%500),nrow=500)
y <- sparsify2(m)

splitTestTrain Split samples into train/test

Description

Split samples into train/test

Usage
splitTestTrain(pheno_DF, pctT = 0.7, verbose = FALSE)

Arguments
pheno_DF (data.frame) patient information Must contain the following columns: 1. ID:
(char) patient IDs 2. STATUS: (char) patient classes. Values not equal to
predClass will be considered as ’other’ Expects rows with unique IDs
pctT (numeric between 0 and 1) Fraction of patients to randomly assign to the training
set. The remainder will be used for blind test set
verbose (logical) print messages
Value

(char) vector of length nrow(pheno_DF), with values of "TRAIN’ or "TEST’. The order corresponds
to pheno_DF; a patient labelled "TRAIN’ has been assigned to the training set, and one labelled
"TEST’ as been assigned to the test set.

Examples

data(pheno)
x <- splitTestTrain(pheno)



88 splitTestTrain_resampling

splitTestTrain_resampling
Assign train/test labels over several resamplings of the data.

Description

Assign train/test labels over several resamplings of the data.

Usage

splitTestTrain_resampling(pheno_DF, nFold = 3L, predClass, verbose = FALSE)

Arguments
pheno_DF (data.frame) table with patient ID and status. Must contain columns for Patient
ID (named ’'ID’) and class (named *STATUS’). Status should be a char; value of
predictor class should be specified in predClass param; all other values are con-
sidered non-predictor class Expects rows with unique IDs Rows with duplicate
IDs will be excluded.
nFold (integer) number of resamplings. Each sample will be a test sample exactly
once.
predClass (char) name of predictor class
verbose (logical) print messages
Details

This function is useful when feature selection needs to occur over multiple resamplings of the data,
as a strategy to reduce overfitting. Each sample serves as a test for exactly one resampilng, and as a
training sample for the others. The method is provided with the positive label and splits the samples
so that an even number of positive and negative classes are represented in all the resamplings (i.e.
it avoids the situation where one resampling has too many positives and another has too few).

Value

(list) of length nFold, each with char vector of length nrow(pheno_DF). Values of "TRAIN’ or
"TEST’

Examples

data(pheno)
x <- splitTestTrain_resampling(pheno,predClass="LumA")



subsample ValidationData 89

subsampleValidationData
Subsample a hold-out set from a larger patient dataset

Description

Subsample a hold-out set from a larger patient dataset

Usage

subsampleValidationData(dataMAE, pctValidation = @.2, verbose = TRUE)

Arguments

dataMAE (MultiAssayExperiment) patient data to be subsampled. Must have columns ID
(patient ID) and STATUS

pctValidation (numeric) Fraction of dataset to include in the validation set. Value from 0.05 to
0.95.

verbose (logical)

Details

Creates a partition of data to be used for model validation after initial model building. In netDx,
buildPredictor() is used for model training, and selected features from this exercise are used to
validate a held-out dataset with the predict() function. Note that this function identifies a random
subsample, which may result in a validation sample that is not representative of your training bias.
If this method is used, please use data exploration techniques (e.g. UMAP) to ensure that validation
accuracy is not confounded by stratification.

Value

(list) Keys are trainMAE and validationMAE. These contain corresponding MultiAssayExperi-
ments for training and test data

thresholdSmoothedMutations
Apply discretization to the matrix resulted from the propagation on the
sparse patient matrix

Description

Apply discretization to the matrix resulted from the propagation on the sparse patient matrix



90 thresholdSmoothedMutations

Usage

thresholdSmoothedMutations(
smoothedMutProfile,
unsmoothedMutProfile,
nameDataset,
n_topXmuts = c(10)

Arguments

smoothedMutProfile
(data.frame) continous matrix of patient profiles resulting from applying :.,$
s/network-based propagation algorithm (smoothMutations_LabelProp()) on a
binary somatic mutation sparse matrix.

unsmoothedMutProfile
(data.frame) binary somatic mutation sparse matrix. Rownames are unique
genes. Colnames are unique patients. A cell contains a zero or a one.

nameDataset (char) for titles on plot

n_topXmuts (numeric between 0 and 1) percent of top mutations to keep. This function
converts these to 1.0 when binarizing, so they remain in the thresholded output
matrix; other mutations are set to zero.

Details

This function is included in the netDx use case which involves propagating the sparse matrix of pa-
tient’s profiles to reduce its sparsity. This function applies discretization on the propagated matrix
of patient profiles. It sets to 1 the genes which got the highest propagation value. While, the remain-
ing genes are set to 0. This discretization is driven by the fact that higher is the propagation value
and higher is the chance that the gene is involved in the patient condition and expression/mutation
profile. On the contrary, genes which got either a medium or a low value are not trustable.

Value

(data.frame) binary somatic mutation matrix which sparsity has been decreased

Examples

suppressWarnings(suppressMessages(require(MultiAssayExperiment)))
require(doParallel)

# load mutation and phenotype data

genoFile <- system.file("extdata"”,"TGCT_mutSmooth_geno.txt",package="netDx")
geno <- read.delim(genoFile,sep="\t",header=TRUE, as.is=TRUE)

phenoFile <- system.file("extdata”, "TGCT_mutSmooth_pheno.txt",
package="netDx")

pheno <- read.delim(phenoFile,sep="\t",header=TRUE,as.is=TRUE)

rownames (pheno) <- pheno$ID

# load interaction nets to smooth over



toymodel 91

require(BiocFileCache)
netFileURL <- paste("https://download.baderlab.org/netDx/",
"supporting_data/CancerNets. txt", sep="")
cache <- rappdirs::user_cache_dir(appname = "netDx")
bfc <- BiocFileCache: :BiocFileCache(cache,ask=FALSE)
netFile <- bfcrpath(bfc,netFileURL)
cancerNets <- read.delim(netFile,sep="\t",header=TRUE,as.is=TRUE)
# smooth mutations
prop_net <- smoothMutations_LabelProp(geno,cancerNets,numCores=1L)
genoP <- thresholdSmoothedMutations(
prop_net,geno, "TGCT_CancerNets",c(20)

)

toymodel Example model returned by a buildPredictor() call.

Description

Output of buildPredictor() generated by a simple use-case of binary breast tumour classification us-
ing two genomic data sources. BRCA data were downloaded using curatedTCGAData for mRNA
and miRNA expression. buildPredictor()] was run by scoring features out of 2, with selected fea-
tures passing 1 out of 2. Tumours were labelled either "Luminal. A" or "other".

Usage

data(toymodel)

Examples

data(toymodel)
head(toymodel)

tSNEPlotter Plot tSNE

Description

Plot tSNE

Usage

tSNEPlotter(psn, pheno, ...)



92 updateNets

Arguments
psn (matrix) Patient similarity network represented as adjacency matrix (symmet-
ric). Row and column names are patient IDs. Note that NA values will be
replaced by very small number (effectively zero).
pheno (data.frame) Patient labels. ID column is patient ID and STATUS is patient label
of interest. tSNE will colour-code nodes by patient label.
Parameters for Rtsne() function.
Details

Plots tSNE of integrated patient similarity network using Rtsne

Value

(Rtsne) output of Rtsne call. Side effect of tSNE plot

Examples

pid <- paste(”P",1:100,sep="")

psn <- matrix(rnorm(100*100),nrow=100,dimnames=1list(pid,pid))
psn[lower.tri(psn)] <- NA; diag(psn) <- NA

psn2 <- reshape2::melt(psn); psn2 <- psn2[-which(is.na(psn2[,31)),]
colnames(psn2) <- c("SOURCE","TARGET","WEIGHT")

pheno <- data.frame(ID=pid, STATUS=c(rep("control”,50),rep("case"”,50)))
tSNEPlotter (psn2, pheno)

updateNets Synchronize patient set in sample table and network table.

Description

Synchronize patient set in sample table and network table.

Usage

updateNets(
p_net,
pheno_DF,
writeNewNets = TRUE,
oldNetDir,
newNetDir,
verbose = TRUE,



writeNetsSIF 93

Arguments
p_net (matrix) rows are patients, columns are networks. a[i,j] = 1 if patient i occurs in
network j, else 0.
pheno_DF (data.frame) patient ID and STATUS.
writeNewNets (logical) if TRUE writes new networks to newNetDir.
oldNetDir (char) path to directory with networks to be updated
newNetDir (char) path to directory where updated networks are to be written
verbose (logical) print messages

passed to pruneNets()

Details

This function is useful in applications with highly missing data or where each patient contributes
data points not present in the others; e.g. networks based on individual patient CNVs, which are
highly sparse. In such a scenario, any kind of patient subsetting - for example, limiting to training
samples - changes the population of eligible networks for analysis. Networks that no longer have
samples, or that have one patient with the neighbour removed, have to be excluded. This function
updates networks and patients so that each network contains at least two patients and only patients
in networks are retained. In other words, it keeps pheno_DF and p_net in sync.

Value

list with updated p_net and pheno_DF. pheno_DF will contain IDs in the updated p_net. p_net will
contain only those networks with 2+ patients and those patients present in 1+ network.

Examples

data(npheno)

netDir <- system.file("extdata”,"example_nets”, package="netDx")

netmat <- countPatientsInNet(netDir,dir(netDir,pattern="txt$'), npheno[,1])
x <- updateNets(netmat, npheno,writeNewNets=FALSE)

writeNetsSIF write patient networks in Cytoscape’s .sif format

Description

write patient networks in Cytoscape’s .sif format

Usage
writeNetsSIF(
netPath,
outFile = paste(tempdir(), "out.sif"”, sep = getFileSep()),
netSfx = "_cont.txt"



94 writeQueryBatchFile

Arguments
netPath (char): vector of path to network files; file suffix should be ’_cont.txt” networks
should be in format: A B 1 where A and B are nodes, and 1 indicates an edge
between them
outFile (char) path to .sif file
netSfx (char) suffix for network file name
Details

Converts a set of binary interaction networks into Cytoscape’s sif format. (http://wiki.cytoscape.org/Cytoscape_User_Manual
This utility permits visualization of feature selected networks.

Value

No value. Side effect of writing all networks to outFile

Examples

non

netDir <- system.file("extdata"”,"example_nets",package="netDx")
netFiles <- paste(netDir,dir(netDir,pattern="txt$"),
sep=getFileSep())

writeNetsSIF(netFiles, 'merged.sif', netSfx='.txt')

writeQueryBatchFile Write batch.txt file required to create GeneMANIA database

Description

Write batch.txt file required to create GeneMANIA database

Usage

writeQueryBatchFile(
netDir,
netlList,
outDir = tempdir(),
idFile,
orgName = "predictor”,
orgDesc = "my_predictor”,
orgAlias = "my_predictor”,
taxID = 1339



writeQueryFile 95

Arguments
netDir (char) path to dir with networks
netList (char) vector of network names
outDir (char) directory to write batch file
idFile (char) path to file with patient IDs
orgName (char) organism name. Don’t change the default unless you know what you are
doing.
orgDesc (char) organism description. Similar to orgName, don’t change the default
orgAlias (char) organism alias. Similar to orgName, don’t change the default.
taxID (integer) taxonomyID required for GeneMANIA . Similar to orgName, don’t
change the default.
Details

This file is used to compile features into a single database for feature selection.

Value

No value. Side effect of writing batch file to <outDir>/batch. txt.

Examples

data(npheno)

netDir <- system.file("extdata"”,"example_nets",package="netDx")
netList <- dir(netDir,pattern="txt$"')
writeQueryBatchFile(netDir,netList, tempdir(), npheno$ID)

writeQueryFile Wrapper to write GeneMANIA query file

Description

Wrapper to write GeneMANIA query file

Usage
writeQueryFile(
gSamps,
incNets = "all”,
numReturn = 1L,
outFile,
orgName = "predictor”



96 write WeightedNets

Arguments
gSamps (char) vector of patient IDs in query
incNets (char) vector of networks to include in this analysis (features/pathway names).
Useful for subset-based feature selection
numReturn (integer) number of patients to return in ranking file
outFile (char) path to output file
orgName (char) organism name
Value

No value. Side effect of writing the query file to outFile

Examples

data(pheno)
writeQueryFile(pheno$ID[seq_len(5)], 'all',nrow(pheno), 'myquery.txt')

writeWeightedNets Write an integrated similarity network consisting of selected networks.

Description

Write an integrated similarity network consisting of selected networks.

Usage

writeWeightedNets(
patientIDs,
netlDs,
netDir,
keepNets,
filterEdgeWt = 0,
aggNetFunc = "MAX",
limitToTop = 50L,
plotEdgeDensity = FALSE,
verbose = FALSE

)
Arguments
patientIDs (data.frame) patient identifiers. Columns include internally-generated identifiers
(GM_ID) and user-provided identifiers (ID)
netIDs (data.frame) network metadata. Columns include internal network name (NET_ID),

user-provided name (NETWORK). If a third optional column named "isBinary"
is provided, and contains binary values (i.e. 1 and 0), that indicates that the
network contains only binary weights and an alternate similarity computation
(PropBinary) will be used (see description).



xpr

netDir

keepNets

filterEdgeWt

aggNetFunc

limitToTop

plotEdgeDensity

verbose

Value

97

(char) path to directory containing interaction networks. Note that these are
networks where the node IDs have been recoded by GeneMANIA (e.g. 1,2,3)

(char or data.frame) networks to include in integrated net If data.frame must be
in "NETWORK" column,other columns will be ignored. Mainly included as
convenience so pathway scores can passed in table format (NETWORK), and a
multiplier constant for edges in that network (WEIGHT)

(numeric) keep edges with raw edge weight strictly greater than this value. Note
that "raw" refers to this filter being applied before the multiplier is applied.

(char, one of: [MEANIMAX]) Aggregate the network 2) MEAN: average of
weighted edges (raw x netDx score) 3) MAX: max of raw edge weight

(integer) limit to top strongest connections. Set to Inf to list all connections.

(logical) plot density plot of edge weights, one per input net. Used to trou-
bleshoot problems introduced by specific nets.

(logical) print messages if TRUE

(list) 1) filterEdgeWt (numeric) Value of filterEdgeWt parameter 2) aggNetFunc (char) Value of
aggNetFunc parameter 3) limitToTop (integer) Value of limitToTop parameter 4) aggNet (matrix)
Value of limitToTop parameter File format is: 1) source patient (SOURCE) 2) target patient (TAR-
GET) 3) network name (NET_NAME) 4) weight similarity for the network (WT_SIM)

Xpr

Example expression matrix

Description

data.frame with gene expression for 727 genes (rows) and 40 patients (columns). Data from TCGA
breast cancer subtyping study.

Usage

data(xpr)

Source

The Cancer Genome Atlas. (2012). Nature 490:61-70.

References

The Cancer Genome Atlas. (2012). Nature 490:61-70.

Examples

data(xpr)
head(xpr)



Index

+ datasets
cnv_GR, 16
cnv_netPass, 17
cnv_netScores, 17
cnv_patientNetCount, 17
cnv_pheno, 18
cnv_TTstatus, 18
confmat, 22
featScores, 34
genes, 35
MB.pheno, 56
modelres, 57
npheno, 58
pathway_GR, 59
pathwaylList, 59
pheno, 60
pheno_full, 61
predRes, 69
silh, 81
toymodel, 91
xpr, 97

.get_cache, 4

allowedSims, 5
avgNormDiff, 5

buildPredictor, 6
buildPredictor_sparseGenetic, 9

callFeatSel, 12
callOverallSelectedFeatures, 13
checkMakeNetFuncSims, 14
checkSimvalid, 15
cleanPathwayName, 15
cnv_GR, 16
cnv_netPass, 17
cnv_netScores, 17
cnv_patientNetCount, 17
cnv_pheno, 18
cnv_TTstatus, 18

98

compareShortestPath, 18
compileFeatures, 19
compileFeatureScores, 21
confmat, 22
confusionMatrix, 22
convertProfileToNetworks, 23
convertToMAE, 24
countIntType, 25
countIntType_batch, 26
countPatientsInNet, 27
createNetFuncFromSimList, 28
createPSN_MultiData, 29

dataList2List, 31
enrichLabelNets, 32

featScores, 34
fetchPathwayDefinitions, 34

genes, 35
getCorrType, 35
getEMapInput, 36
getEMapInput_many, 37
getEnr, 38
getFeatureScores, 39
getFileSep, 40
getGMjar_path, 41
getNetConsensus, 41
getOR, 42
getPatientPredictions, 43
getPatientRankings, 44
getPerformance, 45
getPSN, 45
getRegionOL, 47
getResults, 48
getSimilarity, 49

makeInputForEnrichmentMap, 49
makePSN_NamedMatrix, 50
makePSN_RangeSets, 52



INDEX

makeQueries, 54
makeSymmetric, 54
mapNamedRangesToSets, 55
matrix_getlJ, 56
MB.pheno, 56

modelres, 57
movelInteractionNets, 57

normDiff, 58
npheno, 58

pathway_GR, 59
pathwayList, 59
perfCalc, 60

pheno, 60

pheno_full, 61
plotEmap, 61
plotIntegratedPatientNetwork, 63
plotPerf, 65
plotPerf_multi, 66
predict, 67
predictPatientlLabels, 68
predRes, 69

pruneNet, 70
pruneNet_pctX, 71
pruneNets, 70
psn__builtIn, 72
psn__corr, 72
psn__custom, 73

randAlphanumString, 73
readPathways, 74
replacePattern, 75
RR_featureTally, 76
runFeatureSelection, 77
runQuery, 79

setupFeatureDB, 80

silh, 81

sim.eucscale, 81
sim.pearscale, 82
simpleCap, 83
smoothMutations_LabelProp, 83
sparsify2, 85

sparsify3, 86
splitTestTrain, 87
splitTestTrain_resampling, 88
subsampleValidationData, 89

thresholdSmoothedMutations, 89

toymodel, 91
tSNEPlotter, 91

updateNets, 92

writeNetsSIF, 93
writeQueryBatchFile, 94
writeQueryFile, 95
writeWeightedNets, 96

xpr, 97

99



	.get_cache
	allowedSims
	avgNormDiff
	buildPredictor
	buildPredictor_sparseGenetic
	callFeatSel
	callOverallSelectedFeatures
	checkMakeNetFuncSims
	checkSimValid
	cleanPathwayName
	cnv_GR
	cnv_netPass
	cnv_netScores
	cnv_patientNetCount
	cnv_pheno
	cnv_TTstatus
	compareShortestPath
	compileFeatures
	compileFeatureScores
	confmat
	confusionMatrix
	convertProfileToNetworks
	convertToMAE
	countIntType
	countIntType_batch
	countPatientsInNet
	createNetFuncFromSimList
	createPSN_MultiData
	dataList2List
	enrichLabelNets
	featScores
	fetchPathwayDefinitions
	genes
	getCorrType
	getEMapInput
	getEMapInput_many
	getEnr
	getFeatureScores
	getFileSep
	getGMjar_path
	getNetConsensus
	getOR
	getPatientPredictions
	getPatientRankings
	getPerformance
	getPSN
	getRegionOL
	getResults
	getSimilarity
	makeInputForEnrichmentMap
	makePSN_NamedMatrix
	makePSN_RangeSets
	makeQueries
	makeSymmetric
	mapNamedRangesToSets
	matrix_getIJ
	MB.pheno
	modelres
	moveInteractionNets
	normDiff
	npheno
	pathwayList
	pathway_GR
	perfCalc
	pheno
	pheno_full
	plotEmap
	plotIntegratedPatientNetwork
	plotPerf
	plotPerf_multi
	predict
	predictPatientLabels
	predRes
	pruneNet
	pruneNets
	pruneNet_pctX
	psn__builtIn
	psn__corr
	psn__custom
	randAlphanumString
	readPathways
	replacePattern
	RR_featureTally
	runFeatureSelection
	runQuery
	setupFeatureDB
	silh
	sim.eucscale
	sim.pearscale
	simpleCap
	smoothMutations_LabelProp
	sparsify2
	sparsify3
	splitTestTrain
	splitTestTrain_resampling
	subsampleValidationData
	thresholdSmoothedMutations
	toymodel
	tSNEPlotter
	updateNets
	writeNetsSIF
	writeQueryBatchFile
	writeQueryFile
	writeWeightedNets
	xpr
	Index

