Package ‘alpine’

April 12, 2022
Title alpine
Version 1.20.0
Author Michael Love, Rafael Irizarry
Maintainer Michael Love <michaelisaiahlove@gmail.com>

Description Fragment sequence bias modeling and correction for RNA-seq
transcript abundance estimation.

License GPL (>=2)
VignetteBuilder knitr
Depends R (>=3.3)

Imports Biostrings, IRanges, GenomicRanges, GenomicAlignments,
Rsamtools, SummarizedExperiment, GenomicFeatures, speedglm,
splines, graph, RBGL, stringr, stats, methods, graphics,
GenomelnfoDDb, S4Vectors

Suggests knitr, testthat, markdown, alpineData, rtracklayer,
ensembldb, BSgenome.Hsapiens. NCBI.GRCh38, RColorBrewer

biocViews Sequencing, RNASeq, AlternativeSplicing,
DifferentialSplicing, GeneExpression, Transcription, Coverage,
BatchEffect, Normalization, Visualization, QualityControl

RoxygenNote 5.0.1

git_url https://git.bioconductor.org/packages/alpine
git_branch RELEASE_3_14

git_last_commit 9348efl

git_last_commit_date 2021-10-26
Date/Publication 2022-04-12

R topics documented:

alpine-package L e
buildFragtypes e e e e e
estimateAbundance L

2 alpine-package
extractAlpine e e e e 6
fitBiasModels 7
getFragmentWidths o Lo 9
getReadlength L 10
mergeGeneso e e e e e e e 11
normalizeDESeq 12
plotFraglen L e e e 12
PlotGC e 13
PlotGRL e 14
plotOrderO 15
plotRelPos 16
predictCoverage e e e e e e e e 17
preprocessedData e 18
splitGenesAcrossChroms L o L 19
splitCongGenes 20

Index 21

alpine-package alpine: bias corrected transcript abundance estimation

Description

alpine is a package for estimating and visualizing many forms of sample-specific biases that can
arise in RNA-seq, including fragment length distribution, positional bias on the transcript, read
start bias (random hexamer priming), and fragment GC content (amplification). It also offers bias-
corrected estimates of transcript abundance (FPKM). It is currently designed for un-stranded paired-
end RNA-seq data.

Details

See the package vignette for a detailed workflow.

The main functions in this package are:

1. buildFragtypes - build out features for fragment types from exons of a single gene (GRanges)

2. fitBiasModels - fit parameters for one or more bias models over a set of ~100 medium to

highly expressed single isoform genes (GRangesList)

3. estimateAbundance - given a set of genome alignments (BAM files) and a set of isoforms

of a gene (GRangesList), estimate the transcript abundances for these isoforms (FPKM) for
various bias models

4. extractAlpine - given a list of output from estimateAbundance, compile an FPKM matrix

across transcripts and samples

5. predictCoverage - given the exons of a single gene (GRanges) predict the coverage for a set of

samples given fitted bias parameters and compute the observed coverage

Some helper functions for preparing gene objects:

1. splitGenesAcrossChroms - split apart "genes" where isoforms are on different chromosomes

buildFragtypes 3

2. splitLongGenes - split apart "genes" which cover a suspiciously large range, e.g. 1 Mb

3. mergeGenes - merge overlapping isoforms into new "genes"
Some other assorted helper functions:

1. normalizeDESeq - an across-sample normalization for FPKM matrices

2. getFragmentWidths - return a vector estimated fragment lengths given a set of exons for a
single gene (GRanges) and a BAM file

3. getReadLength - return the read length of the first read across BAM files
The plotting functions are:

1. plotGC - plot the fragment GC bias curves

2. plotFragLlen - plot the framgent length distributions

3. plotRelPos - plot the positional bias (5’ to 3°)

4. plotOrder0, plotOrderl, plotOrder2 - plot the read start bias terms

5. plotGRL - a simple function for visualizing GRangesList objects

Author(s)

Michael Love

References

Love, M.I., Hogenesch, J.B., and Irizarry, R.A., Modeling of RNA-seq fragment sequence bias
reduces systematic errors in transcript abundance estimation. Nature Biotechnologyh (2016) doi:
10.1038/nbt.3682

buildFragtypes Build fragment types from exons

Description

This function constructs a DataFrame of fragment features used for bias modeling, with one row
for every potential fragment type that could arise from a transcript. The output of this function is
used by fitBiasModels, and this function is used inside estimateAbundance in order to model the
bias affecting different fragments across isoforms of a gene.

Usage

buildFragtypes(exons, genome, readlength, minsize, maxsize, gc = TRUE,
gc.str = TRUE, vlimm = TRUE)

4 estimateAbundance

Arguments
exons a GRanges object with the exons for a single transcript
genome a BSgenome object
readlength the length of the reads. This doesn’t necessarily have to be exact (+/- 1 bp is
acceptable)
minsize the minimum fragment length to model. The interval between minsize and
maxsize should contain the at least the central 95 percent of the fragment length
distribution across samples
maxsize the maximum fragment length to model
gc logical, whether to calculate the fragment GC content
gc.str logical, whether to look for presence of stretches of very high GC within frag-
ments
v1imm logical, whether to calculate the Cufflinks Variable Length Markov Model (VLMM)
for read start bias
Value

a DataFrame with bias features (columns) for all potential fragments (rows)

Examples

library(GenomicRanges)

library(BSgenome.Hsapiens.NCBI.GRCh38)

data(preprocessedData)

readlength <- 100

minsize <- 125 # see vignette how to choose

maxsize <- 175 # see vignette how to choose

fragtypes <- buildFragtypes(ebt.fit[["ENSTQ0000624447"]1],
Hsapiens, readlength,
minsize, maxsize)

estimateAbundance Estimate bias-corrected transcript abundances (FPKM)

Description

This function takes the fitted bias parameters from fitBiasModels and uses this information to derive
bias corrected estimates of transcript abundance for a gene (with one or more isoforms) across
multiple samples.

Usage

estimateAbundance(transcripts, bam.files, fitpar, genome, model.names,
subset = TRUE, niter = 100, lib.sizes = NULL, optim = FALSE,
custom.features = NULL)

estimateAbundance

Arguments

transcripts

bam.files
fitpar
genome

model . names

subset
niter

lib.sizes

optim

custom. features

Value

a GRangesList of the exons for multiple isoforms of a gene. For a single-isoform
gene, just wrap the exons in GRangesList()

a named vector pointing to the indexed BAM files
the output of fitBiasModels
a BSGenome object

a character vector of the bias models to use. These should have already been
specified when calling fitBiasModels. Four exceptions are models that use none,

one or both of the offsets, and these are called with: "null”, "fraglen”, "vimm",
or "fraglen.vlmm".

logical, whether to downsample the non-observed fragments. Default is TRUE
the number of EM iterations. Default is 100.

a named vector of library sizes to use in calculating the FPKM. If NULL (the
default) a value of 1e6 is used for all samples.

logical, whether to use numerical optimization instead of the EM. Default is
FALSE.

an optional function to add custom features to the fragment types DataFrame.
This function takes in a DataFrame returned by buildFragtypes and returns a
DataFrame with additional columns added. Default is NULL, adding no custom
features.

a list of lists. For each sample, a list with elements: theta, lambda and count.

* theta gives the FPKM estimates for the isoforms in transcripts

* lambda gives the average bias term for the isoforms

* count gives the number of fragments which are compatible with any of the isoforms in

transcripts

References

The model describing how bias estimates are used to estimate bias-corrected abundances is de-
scribed in the Supplemental Note of the following publication:

Love, M.I., Hogenesch, J.B., and Irizarry, R.A., Modeling of RNA-seq fragment sequence bias
reduces systematic errors in transcript abundance estimation. Nature Biotechnologyh (2016) doi:

10.1038/nbt.3682

The likelihood formulation and EM algorithm for finding the maximum likelihood estimate for
abundances follows this publication:

Salzman, J., Jiang, H., and Wong, W.H., Statistical Modeling of RNA-Seq Data. Statistical Science
(2011) doi: 10.1214/10-STS343

6 extractAlpine

Examples

see vignette for a more realistic example

these next lines just write out a BAM file from R

typically you would already have a BAM file
library(alpineData)

library(GenomicAlignments)

library(rtracklayer)

gap <- ERR188088()

dir <- system.file(package="alpineData”, "extdata")
bam.file <- c("ERR188088" = file.path(dir,”"ERR188088.bam"))
export(gap, con=bam.file)

data(preprocessedData)
library(GenomicRanges)
library(BSgenome.Hsapiens.NCBI.GRCh38)

model.names <- c("fraglen”,"GC")
txs <- txdf.theta$tx_id[txdf.theta$gene_id == "ENSG00000198918"]

res <- estimateAbundance(transcripts=ebt.theta[txs],
bam.files=bam.file,
fitpar=fitpar.small,
genome=Hsapiens,
model . names=model . names)

extractAlpine Extract results from estimateAbundance run across genes

Description

This function extracts estimates for a given model from a list over many genes, returning a matrix
with dimensions: number of transcript x number of samples. Here, the count of compatible frag-
ments aligning to the genes is used to estimate the FPKM, dividing out the previously used estimate
lib.sizes.

Usage

extractAlpine(res, model, lib.sizes = 1e+06, divide.out = TRUE,
transcripts = NULL)

Arguments
res a list where each element is the output of estimate Abundance
model the name of a model, corresponds to names of models used in fitBiasModels

lib.sizes the vector of library sizes passed to estimateAbundance. not needed if divide.out=FALSE

fitBiasModels 7

divide.out logical, whether to divide out the initial estimate of library size and to instead use
the count of compatible fragments for genes calculated by estimateAbundance.
Default is TRUE

transcripts an optional GRangesList of the exons for each transcript. If this is provided,

the output will be a SummarizedExperiment. The transcripts do not need to be
provided in the correct order, extractAlpine will find the correct transcript by the
names in res and put them in the correct order.

Value
amatrix of FPKM values across transcripts and samples, or a SummarizedExperiment if transcripts
is provided

Examples

data(preprocessedData)
extractAlpine(res, "GC")

fitBiasModels Fit bias models over single-isoform genes

Description

This function estimates parameters for one or more bias models for a single sample over a set of
single-isoform genes. ~100 medium to highly expressed genes should be sufficient to estimate the
parameters robustly.

Usage

fitBiasModels(genes, bam.file, fragtypes, genome, models, readlength, minsize,
maxsize, speedglm = TRUE, gc.knots = seq(from = 0.4, to = 0.6, length =
3), gc.bk = c(0@, 1), relpos.knots = seq(from = 0.25, to = 0.75, length =
3), relpos.bk = c(@, 1))

Arguments
genes a GRangesList with the exons of different single-isoform genes
bam.file a character string pointing to an indexed BAM file
fragtypes the output of buildFragtypes. must contain the potential fragment types for the
genes named in genes
genome a BSgenome object
models a list of lists: the outer list describes multiple models. each element of the in-

ner list has two elements: formula and of fset. formula should be a character
strings of an R formula describing the bias models, e.g. "count ~ ns(gc) +
gene”. The end of the string is required to be "+ gene”. offset should be a

readlength
minsize
maxsize
speedglm
gc.knots
gc.bk
relpos.knots

relpos.bk

Value

fitBiasModels

character vector listing possible bias offsets to be used ("fraglen” or "vlmm").
Either of fset or formula can be NULL for a model. See vignette for recom-
mendations and details.

the read length

the minimum fragment length to model

the maximum fragment length to model

logical, whether to use speedglm to estimate the coefficients. Default is TRUE.
knots for the GC splines

boundary knots for the GC splines

knots for the relative position splines

boundary knots for the relative position splines

a list with elements: coefs, summary, models, model.params, and optional offets: fraglen.density,
vlmm.fivep, and vimm.threep.

* coefs gives the estimated coefficients for the different models that specified formula.

e summary gives the tables with coefficients, standard errors and p-values,

* models stores the incoming models list,

* model.params stores parameters for the models, such as knot locations

* fraglen.density is a estimated density object for the fragment length distribution,

* vimm.fivep and vimm.threep store the observed and expected tabulations for the different
orders of the VLMM for read start bias.

References

The complete bias model including fragment sequence bias is described in detail in the Supplemen-
tal Note of the following publication:

Love, M.I., Hogenesch, J.B., and Irizarry, R.A., Modeling of RNA-seq fragment sequence bias
reduces systematic errors in transcript abundance estimation. Nature Biotechnologyh (2016) doi:

10.1038/nbt.3682

The read start variable length Markov model (VLMM) for addressing bias introduced by random
hexamer priming was introduced in the following publication (the sequence bias model used in

Cufflinks):

Roberts, A., Trapnell, C., Donaghey, J., Rinn, J.L., and Pachter, L., Improving RNA-Seq expression
estimates by correcting for fragment bias. Genome Biology (2011) doi: 10.1186/gb-2011-12-3-r22

Examples

see vignette for a more realistic example

these next lines just write out a BAM file from R
typically you would already have a BAM file
library(alpineData)

getFragment Widths 9

library(GenomicAlignments)

library(rtracklayer)

gap <- ERR188088()

dir <- system.file(package="alpineData", "extdata")
bam.file <- c("ERR188088" = file.path(dir,"”ERR188088.bam"))
export(gap, con=bam.file)

library(GenomicRanges)
library(BSgenome.Hsapiens.NCBI.GRCh38)
data(preprocessedData)

readlength <- 75
minsize <- 125 # see vignette how to choose
maxsize <- 175 # see vignette how to choose

here a very small subset, should be ~100 genes

gene.names <- names(ebt.fit)[6:8]

names(gene.names) <- gene.names

fragtypes <- lapply(gene.names, function(gene.name) {

buildFragtypes(ebt.fit[[gene.namel],

Hsapiens, readlength,
minsize, maxsize)

»

models <- list(

"GC" = list(formula = "count ~ ns(gc,knots=gc.knots, Boundary.knots=gc.bk) + gene”,
offset=c("fraglen”,"vimm"))
)

fitpar <- fitBiasModels(genes=ebt.fit[gene.names],
bam.file=bam.file,
fragtypes=fragtypes,
genome=Hsapiens,
models=models,
readlength=readlength,
minsize=minsize,
maxsize=maxsize)

getFragmentWidths Get fragment widths

Description

From a BAM file and a particular transcript (recommened to be the single isoform of a gene),
this function returns estimates of the fragment widths, by mapping the fragment alignments to the
transcript coordinates.

Usage
getFragmentWidths(bam.file, tx)

10 getReadLength

Arguments

bam.file a character string pointing to a BAM file

tx a GRanges object of the exons of a single isoform gene
Value

a numeric vector of estimated fragment widths

Examples

these next lines just write out a BAM file from R

typically you would already have a BAM file
library(alpineData)

library(GenomicAlignments)

library(rtracklayer)

gap <- ERR188088()

dir <- system.file(package="alpineData”, "extdata")
bam.file <- c("ERR188088" = file.path(dir,"ERR188088.bam"))
export(gap, con=bam.file)

data(preprocessedData)

w <- getFragmentWidths(bam.file, ebt.fit[[2]])
quantile(w, c(.025, .975))

getReadlLength Get read length

Description

Gets the length of the first read in a BAM file

Usage

getReadlLength(bam.files)

Arguments

bam.files a character vector pointing to BAM files

Value

a numeric vector, one number per BAM file, the length of the first read in the file

mergeGenes 11

Examples

these next lines just write out a BAM file from R

typically you would already have a BAM file
library(alpineData)

library(GenomicAlignments)

library(rtracklayer)

gap <- ERR188088()

dir <- system.file(package="alpineData"”, "extdata")
bam.file <- c("ERR188088" = file.path(dir,"ERR188088.bam"))
export(gap, con=bam.file)

getReadLength(bam.file)

mergeGenes Merge overlapping "genes" into gene clusters

Description

This function looks for overlapping exons in ebg. The overlapping "genes" are used to form a
graph. Any connected components in the graph (sets of "genes" which can be reached from each
other through overlap relations) are connected into a new gene cluster, which is given the suffix
"_mrg" and using one of the original gene names.

Usage

mergeGenes(ebg, txdf, ignore.strand = TRUE)

Arguments
ebg an exons-by-genes GRangesList, created with exonsBy
txdf a data.frame created by running select on a TxDb object. Must have a column

GENEID.
ignore.strand Default is TRUE.

Value

a manipulated txdf.

Examples

library(GenomicRanges)

txdf <- data.frame(GENEID=c("”101","102","103","104"))

ebg <- GRangesList(GRanges("1",IRanges(c(100,200),width=50)),
GRanges("1",IRanges(c(200,300),width=50)),
GRanges("1",IRanges(c(300,400) ,width=50)),
GRanges("1",IRanges(c(500,600),width=50)))

names(ebg) <- c(”"101","102","103","104")

mergeGenes(ebg, txdf)

12 plotFraglen

normalizeDESeq DESeq median ratio normalization for matrix

Description

Simple implementation of DESeq median ratio normalization

Usage

normalizeDESeq(mat, cutoff)

Arguments
mat a matrix of numeric values
cutoff a numeric value to be used as the cutoff for the row means of mat. Only rows
with row mean larger than cutoff are used for calculating the size factors
Value

a matrix with the median ratio size factors divided out

References

Anders, S. and Huber, W., Differential expression analysis for sequence count data. Genome Biol-
ogy (2010) doi: 10.1186/gb-2010-11-10-r106

Examples

X <= runif(50,1,100)
mat <- cbind(x, 2*x, 3*x)
norm.mat <- normalizeDESeq(mat, 5)

plotFraglLen Plot fragment length distribution over samples

Description

Plots the fragment length distribution.

Usage

plotFragLen(fitpar, col, 1lty)

plotGC

Arguments

fitpar
col

1ty

Value

plot

Examples

13

a list of the output of fitBiasModels over samples
a vector of colors

a vector of line types

fitpar was fit using identical code

as found in the vignette, except with

25 genes, and with fragment size in 80-350 bp
data(preprocessedData)

perf <- rep(1:2, each=2)

plotFraglLen(fitpar, col=perf)

plotGC

Plot the fragment GC bias over samples

Description

Plots smooth curves of the log fragment rate over fragment GC content.

Usage

plotGC(fitpar, model, col, 1ty, ylim, gc.range = NULL, return.type = 0)

Arguments
fitpar
model
col
1ty
ylim

gc.range

return. type

Value

a list of the output of fitBiasModels over samples
the name of one of the models

a vector of colors

a vector of line types

the y limits for the plot

a numeric of length two, the range of the fragment GC content. By default,
[.2,.8] for plotting and [0,1] for returning a matrix

a numeric, either O: make a plot, 1: skip the plot and return a matrix of log
fragment rate, 2: skip the plot and return a matrix of probabilities

Either plot, or if return.type is 1 or 2, a matrix

14 plotGRL

Examples

fitpar was fit using identical code

as found in the vignette, except with

25 genes, and with fragment size in 80-350 bp
data(preprocessedData)

perf <- rep(1:2, each=2)

plotGC(fitpar, "all", col=perf)

plotGRL Simple segments plot for GRangesList

Description

Simple segments plot for GRangesList

Usage

plotGRL(grl, ...)

Arguments

grl GRangesList object

passed to plot

Value

plot

Examples

library(GenomicRanges)

grl <- GRangesList(GRanges("1",IRanges(c(100,200,300),width=50)),
GRanges("1",IRanges(c(100,300),width=c(75,50))),
GRanges("1",IRanges(c(100,200,400),width=c(75,50,50))),
GRanges("1",IRanges(c(200,300,400),width=50)))

plotGRL(grl)

plotOrder0 15

plotOrdero Plot parameters of the variable length Markov model (VLMM) for
read starts

Description

This function plots portions of the Cufflinks VLMM for read start bias. The natural log of observed
over expected is shown, such that 0 indicates no contribution of a position to the read start bias. As
the variable lenght Markov model has different dependencies for different positions (see Roberts et
al, 2011), it is difficult to show all the 744 parameters simultaneously. Instead this function offers to
show the 0-order terms for all positions, or the 1st and 2nd order terms for selected positions within
the read start sequence. For the 1- and 2-order terms, the log bias is shown for each nucleotide
(A,C,T,G) given the previous nucleotide (1-order) or di-nucleotide (2-order).

Usage
plotOrder@(ordero, ...)

plotOrderi1(orderl, pos1)

plotOrder2(order2, pos2)

Arguments
order@ the "order0" element of the list named "vimm.fivep" or "vlmm.threep" within
the list that is the output of fitBiasModels
parameters passed to plot
order1 as for "orderQ" but "order1"
pos1 the position of the 1st order VLMM to plot
order2 as for "orderQ" but "order2"
pos2 the position of the 2nd order VLMM to plot
Value
plot
Functions

* plotOrder1: Plot first order parameters for a position

* plotOrder2: Plot second order parameters for a position

References

Roberts et al, "Improving RNA-Seq expression estimates by correcting for fragment bias" Genome
Biology (2011) doi:101186/gb-2011-12-3-r22

16 plotRelPos

Examples

fitpar was fit using identical code

as found in the vignette, except with

25 genes, and with fragment size in 80-350 bp
data(preprocessedData)
plotOrder@(fitpar[[1J]1L["v1imm.fivep”"]1]1[["order@"]])
plotOrder1(fitpar[[111[["vlmm.fivep"11[["order1”]], pos1=5:19)
plotOrder2(fitpar[[111[["vimm.fivep"]1]1[["order2"]1], pos2=8:17)

plotRelPos Plot relative position bias over samples

Description

Plots the smooth curves of log fragment rate over relative position.

Usage

plotRelPos(fitpar, model, col, lty, ylim)

Arguments
fitpar a list of the output of fitBiasModels over samples
model the name of one of the models
col a vector of colors
1ty a vector of line types
ylim the y limits for the plot
Value
plot
Examples

fitpar was fit using identical code

as found in the vignette, except with

25 genes, and with fragment size in 80-350 bp
data(preprocessedData)

perf <- rep(1:2, each=2)

plotRelPos(fitpar, "all", col=perf)

predictCoverage 17

predictCoverage Predict coverage for a single-isoform gene

Description
Predict coverage for a single-isoform gene given fitted bias parameters in a set of models, and
compare to the observed fragment coverage.

Usage

predictCoverage(gene, bam.files, fitpar, genome, model.names)

Arguments

gene a GRangesList with the exons of different genes

bam.files a character string pointing to indexed BAM files

fitpar the output of running fitBiasModels

genome a BSgenome object

model.names a character vector listing the models, see same argument in estimate Abundance
Details

Note that if the range between minsize and maxsize does not cover most of the fragment length
distribution, the predicted coverage will underestimate the observed coverage.

Value

a list with elements frag.cov, the observed fragment coverage from the bam. files and pred.cov, a
list with the predicted fragment coverage for each of the models.

Examples

these next lines just write out a BAM file from R

typically you would already have a BAM file
library(alpineData)

library(GenomicAlignments)

library(rtracklayer)

gap <- ERR188088()

dir <- system.file(package="alpineData”, "extdata")
bam.file <- c("ERR188088" = file.path(dir,"ERR188088.bam"))
export(gap, con=bam.file)

data(preprocessedData)
library(BSgenome.Hsapiens.NCBI.GRCh38)

model.names <- c("fraglen”,"fraglen.vlmm”,6"GC","all")

pred.cov <- predictCoverage(gene=ebt.fit[["ENSTQ0000379660"]],

18 preprocessedData

bam.files=bam.file,
fitpar=fitpar.small,
genome=Hsapiens,

model . names=model . names)

plot the coverage:

note that, because [125,175] bp range specified in fitpar.small

does not cover the fragment width distribution, the predicted curves
will underestimate the observed. we correct here post-hoc

frag.cov <- pred.cov[["ERR188088"]1]1[["frag.cov"]]
plot(frag.cov, type="1", lwd=3, ylim=c(@,max(frag.cov)*1.5))
for (i in seqg_along(model.names)) {
m <- model.names[i]
pred <- pred.cov[["ERR188088"1][["pred.cov"]1]1[[m]]
lines(pred/mean(pred)*mean(frag.cov), col=i+1, lwd=3)
3
legend("topright”, legend=c("”observed"”,model.names),
col=seq_len(length(model.names)+1), lwd=3)

preprocessedData Preprocessed data for vignettes and examples

Description

The following data objects are prepared for use in the alpine vignette and examples pages, as the
preparation of these objects requires either long running time or a large amount of disk space.

Format

ebt.fit and ebt.theta are GRangesList. fitpar, fitpar.small, res are lists created by alpine
functions. genes. theta is a character vector. txdf. theta is a DataFrame.

Details

* ebt.fit - the GRangesList prepared in the vignette for fitting the bias models

* fitpar - the fitted parameters, similar to those made in the vignette, but using minsize=80 and
maxsize=350

* fitpar.small - the fitted parameters from the vignette, returned by fitBiasModels

* res - the results object from the vignette, returned by estimate Abundance

* ebt.theta - the GRangesList prepared in the vignette for running estimate Abundance
* genes.theta - the names of genes used in the vignette for running estimateAbundance

* txdf.theta - the DataFrame of gene and transcript information used in the vignette for running
estimate Abundance

splitGenesAcrossChroms 19

Source

See vignette for details of object construction. The alignments come from alpineData (4 samples
from GEUVADIS project), the Ensembl gene annotations come from Homo_sapiens.GRCh38.84.gtf,
and the genome is BSgenome .Hsapiens.NCBI.GRCh38.

splitGenesAcrossChroms
Split genes that have isoforms across chromosomes

Description

This function simply splits apart genes which have isoforms across multiple chromosomes. New
"genes" are created with the suffix "_cs" and a number.

Usage

splitGenesAcrossChroms(ebg, txdf)

Arguments
ebg an exons-by-genes GRangesList, created with exonsBy
txdf a data.frame created by running select on a TxDb object. Must have columns
TXCHROM and GENEID
Value

a list of manipulated ebg and txdf

Examples

library(GenomicRanges)

txdf <- data.frame(TXCHROM=c("1","1","2"),
GENEID=c("101","102","102"))

ebg <- GRangesList(GRanges("1",IRanges(c(100,200),width=50)),
GRanges(c("1","2"),IRanges(c(400,100),width=50)))

names(ebg) <- c("101","102")

splitGenesAcrossChroms(ebg, txdf)

20 splitLongGenes

splitLongGenes Split very long genes

Description

This function splits genes which have a very long range (e.g. 1 Mb), and new "genes" are formed
where each isoform is its own "gene", with the suffix "_Is" and a number. It makes sense to turn
each isoform into its own gene only if this function is followed by mergeGenes.

Usage
splitlLongGenes(ebg, ebt, txdf, long = 1e+@6)

Arguments
ebg an exons-by-genes GRangesList, created with exonsBy
ebt an exons-by-tx GRangesList, created with exonsBy
txdf a data.frame created by running select on a TxDb object. Must have columns
GENEID and TXID, where TXID corresponds to the names of ebt.
long a numeric value such that ranges longer than this are "long"
Value

a list of manipulated ebg and txdf

Examples

library(GenomicRanges)

txdf <- data.frame(GENEID=c("101","101","102"),
TXID=c("201","202","203"))

ebt <- GRangesList(GRanges("1",IRanges(c(100,200),width=50)),
GRanges("1",IRanges(2e6 + c(100,200),width=50)),
GRanges("1",IRanges(3e6 + c(100,200),width=50)))

names(ebt) <- c("201","202","203")

ebg <- GRangesList(reduce(unlist(ebt[1:2])),ebt[[3]]1)

names(ebg) <- c("101","102")

splitlLongGenes(ebg, ebt, txdf)

Index

* package
alpine-package, 2

alpine-package, 2
buildFragtypes, 2,3, 5,7

ebt.fit (preprocessedData), 18
ebt.theta (preprocessedData), 18
estimateAbundance, 2, 3,4, 6, 7, 17
extractAlpine, 2,6

fitBiasModels, 2-6, 7, 13, 15-17
fitpar (preprocessedData), 18

genes. theta (preprocessedData), 18
getFragmentWidths, 3,9
getReadlLength, 3, 10

mergeGenes, 3, 11, 20
normalizeDESeq, 3, 12

plotFragLen, 3, 12
plotGC, 3, 13

plotGRL, 3, 14
plotOrdero, 3, 15
plotOrderi, 3

plotOrder1 (plotOrdero), 15
plotOrder2, 3

plotOrder2 (plotOrdero), 15
plotRelPos, 3, 16
predictCoverage, 2, 17
preprocessedData, 18

res (preprocessedData), 18

splitGenesAcrossChroms, 2, 19
splitLongGenes, 3, 20

txdf.theta (preprocessedData), 18

21

	alpine-package
	buildFragtypes
	estimateAbundance
	extractAlpine
	fitBiasModels
	getFragmentWidths
	getReadLength
	mergeGenes
	normalizeDESeq
	plotFragLen
	plotGC
	plotGRL
	plotOrder0
	plotRelPos
	predictCoverage
	preprocessedData
	splitGenesAcrossChroms
	splitLongGenes
	Index

