Package 'abseqR' April 12, 2022 Type Package **Title** Reporting and data analysis functionalities for Rep-Seq datasets of antibody libraries Version 1.12.0 **Description** AbSeq is a comprehensive bioinformatic pipeline for the analysis of sequencing datasets generated from antibody libraries and abseqR is one of its packages. abseqR empowers the users of abseqPy (https://github.com/malhamdoosh/abseqPy) with plotting and reporting capabilities and allows them to generate interactive HTML reports for the convenience of viewing and sharing with other researchers. Additionally, abseqR extends abseqPy to compare multiple repertoire analyses and perform further downstream analysis on its output. License GPL-3 | file LICENSE **Encoding** UTF-8 LazyData true **Depends** R (>= 3.5.0) Imports ggplot2, RColorBrewer, circlize, reshape2, VennDiagram, plyr, flexdashboard, BiocParallel (>= 1.1.25), png, grid, gridExtra, rmarkdown, knitr, vegan, ggcorrplot, ggdendro, plotly, BiocStyle, stringr, utils, methods, grDevices, stats, tools, graphics VignetteBuilder knitr RoxygenNote 6.1.0 Collate 'accessors-AbSeq.R' 'AbSeqCRep.R' 'util.R' 'distributions.R' 'upstreamAnalysis.R' 'productivityAnalysis.R' 'primerAnalysis.R' 'diversityAnalysis.R' 'annotationAnalysis.R' 'abundanceAnalysis.R' 'plotter.R' 'AbSeqRep.R' 'abseqReport.R' 'statistics.R' 'pairwise.R' **SystemRequirements** pandoc (>= 1.19.2.1) URL https://github.com/malhamdoosh/abseqR BugReports https://github.com/malhamdoosh/abseqR/issues | biocViews Sequencing, Visualization, ReportWriting, QualityControl, MultipleComparison | |---| | Suggests testthat | | git_url https://git.bioconductor.org/packages/abseqR | | git_branch RELEASE_3_14 | | git_last_commit 2fdfd3e | | git_last_commit_date 2021-10-26 | | Date/Publication 2022-04-12 | | Author JiaHong Fong [cre, aut],
Monther Alhamdoosh [aut] | | Maintainer JiaHong Fong <jiahfong@gmail.com></jiahfong@gmail.com> | # R topics documented: | +,AbSeqCRep,AbSeqCRep-method | 4 | |------------------------------|----| | +,AbSeqCRep,AbSeqRep-method | 5 | | +,AbSeqRep,AbSeqCRep-method | 6 | | +,AbSeqRep,AbSeqRep-method | 7 | | .abundanceAnalysis | 8 | | .abundancePlot | 8 | | .alignQualityHeatMaps | 9 | | .allPrimerNames | 9 | | .aminoAcidBar | 10 | | .aminoAcidPlot | 10 | | .analyzeUpstreamValidity | 11 | | .annotAnalysis | 11 | | .asRepertoireAlignLen | 12 | | .asRepertoireBitscore | 13 | | .asRepertoireChain | 13 | | .asRepertoireDir | 14 | | .asRepertoireList | 14 | | .asRepertoireName | 15 | | .asRepertoirePrimer3 | 15 | | .asRepertoirePrimer5 | 16 | | .asRepertoireQueryStart | 16 | | .asRepertoireSubjectStart | 17 | | .asRepertoireUpstream | 17 | | .boxPlot | 18 | | .calculateDInd | 18 | | .calculateDiversityEstimates | 19 | | .canonicalizeTitle | 19 | | .capitalize | 20 | | .checkVert | 20 | | .cloneDistHist | 21 | | .cloneDistMarginal | 21 | | .clonotypeAnalysis | |---------------------------------| | .collateReports | | .commonPrimerNames | | .correlationTest | | .distanceMeasure | | .diversityAnalysis | | .emptyPlot | | .findRepertoires | | .generateAllSpectratypes | | .generateDelayedReport | | generateReport | | getLineTypes | | getTotal | | .hmFromMatrix | | inferAnalyzed | | loadMatrixFromDF | | loadSamplesFromString | | pairwiseComparison | | plotCirclize | | plotDist | | plotDiversityCurves | | plotDiversityCurves | | | | .plotErrorDist | | .plotIGVErrors | | .plotIGVUpstreamLenDist | | .plotIGVUpstreamLenDistDetailed | | .plotPrimerIGVStatus | | .plotPrimerIntegrity | | .plotRarefaction | | .plotRecapture | | .plotSamples | | .plotSpectratype | | .plotUpstreamLength | | .plotUpstreamLengthDist | | .primerAnalysis | | .prodDistPlot | | .productivityAnalysis | | .productivityPlot | | .readSummary | | .regionAnalysis | | .reportLBE | | .saveAs | | .scatterPlot | | .scatterPlotComplex | | .secretionSignalAnalysis | | .substituteStringInFile | | .summarySE | | .topNDist | **59** | .UTR5Analysis . |-------------------| | .vennIntersection | AbSeqCRep-class | AbSeqRep-class . | abseqReport | report | +,AbSeqCRep,AbSeqCRep-method Combines 2 AbSeqCRep objects together for comparison # Description Combines 2 AbSeqCRep objects together for comparison #### Usage Index ``` ## S4 method for signature 'AbSeqCRep,AbSeqCRep' e1 + e2 ``` #### **Arguments** - e1 AbSeqCRep. - e2 AbSeqCRep. #### Value AbSeqCRep object. Calling abseqR's functions on this object will always result in a comparison. #### See Also abseqReport returns a list of AbSeqReps ``` # Use example data from abseqR as abseqPy's output, substitute this # with your own abseqPy output directory abseqPyOutput <- tempdir() file.copy(system.file("extdata", "ex", package = "abseqR"), abseqPyOutput, recursive=TRUE) samples <- abseqReport(file.path(abseqPyOutput, "ex"), report = 0) # The provided example data has PCR1, PCR2, and PCR3 samples contained within # pcr12 and pcr13 are instances of AbSeqCRep pcr12 <- samples[["PCR1"]] + samples[["PCR2"]] pcr13 <- samples[["PCR1"]] + samples[["PCR3"]] # all_S is also an instance of AbSeqCRep</pre> ``` ``` all_S <- pcr12 + pcr13 # you can now call the report function on this object # report(all_S) # uncomment this line to execute report</pre> ``` +, AbSeqCRep, AbSeqRep-method Combines a AbSeqCRep object with a AbSeqRep object together for comparison #### **Description** Combines a AbSeqCRep object with a AbSeqRep object together for comparison ## Usage ``` ## S4 method for signature 'AbSeqCRep,AbSeqRep' e1 + e2 ``` #### **Arguments** e1 AbSeqCRep. e2 AbSeqRep. #### Value AbSeqCRep object. Calling abseqR's functions on this object will always result in a comparison. # See Also ``` abseqReport returns a list of AbSeqReps ``` ``` # Use example data from abseqR as abseqPy's output, substitute this # with your own abseqPy output directory abseqPyOutput <- tempdir() file.copy(system.file("extdata", "ex", package = "abseqR"), abseqPyOutput, recursive=TRUE) samples <- abseqReport(file.path(abseqPyOutput, "ex"), report = 0) # The provided example data has PCR1, PCR2, and PCR3 samples contained within # pcr12 is an instance of AbSeqCRep pcr12 <- samples[["PCR1"]] + samples[["PCR2"]] # pcr3 is instance of AbSeqRep pcr3 <- samples[["PCR3"]] # pcr123 is an instance of AbSeqCRep pcr123 <- pcr12 + pcr3</pre> ``` ``` # you can now call the report function on this object # report(pcr123) # uncomment this line to execute report ``` +, AbSeqRep, AbSeqCRep-method Combines a AbSeqRep object with a AbSeqCRep object together for comparison ## Description Combines a AbSeqRep object with a AbSeqCRep object together for comparison #### Usage ``` ## S4 method for signature 'AbSeqRep,AbSeqCRep' e1 + e2 ``` #### **Arguments** - e1 AbSeqRep. e2 AbSeqCRep. - Value AbSeqCRep object. Calling abseqR's functions on this object will always result in a comparison. # See Also abseqReport returns a list of AbSeqReps ``` # Use example data from abseqR as abseqPy's output, substitute this # with your own abseqPy output directory abseqPyOutput <- tempdir() file.copy(system.file("extdata", "ex", package = "abseqR"), abseqPyOutput, recursive=TRUE) samples <- abseqReport(file.path(abseqPyOutput, "ex"), report = 0) # The provided example data has PCR1, PCR2, and PCR3 samples contained within # pcr1 is an instance of AbSeqRep pcr1 <- samples[["PCR1"]] # pcr23 is instance of AbSeqCRep pcr23 <- samples[["PCR2"]] + samples[["PCR3"]] # pcr123 is an instance of AbSeqCRep pcr123 <- pcr1 + pcr23 # you can now call the report function on this object # report(pcr123) # uncomment this line to execute report</pre> ``` +,AbSeqRep,AbSeqRep-method Combines 2 AbSeqRep objects together for comparison ## **Description** Combines 2 AbSeqRep objects together for comparison ## Usage ``` ## S4 method for signature 'AbSeqRep,AbSeqRep' e1 + e2 ``` #### **Arguments** - e1 AbSeqRep object. - e2 AbSeqRep object. #### Value AbSeqCRep object. Calling abseqR's functions on this object will always result in a comparison. #### See Also abseqReport returns a list of AbSeqReps ``` # Use example data from abseqR as abseqPy's output, substitute this # with your own abseqPy output directory abseqPyOutput <- tempdir() file.copy(system.file("extdata", "ex", package = "abseqR"), abseqPyOutput, recursive=TRUE) samples <- abseqReport(file.path(abseqPyOutput, "ex"), report = 0) # The provided example data has PCR1, PCR2, and PCR3 samples contained within # pcr1 and pcr2 are instances of AbSeqRep pcr1 <- samples[["PCR1"]] pcr2 <- samples[["PCR2"]] # pcr12 is an instance of AbSeqCRep pcr12 <- pcr1 + pcr2 # you can now call the report function on this object # report(pcr12) # uncomment this line to execute report</pre> ``` 8 abundancePlot .abundanceAnalysis Conducts abundance analysis # Description Conducts abundance analysis ## Usage ``` .abundanceAnalysis(abundanceDirectories, abunOut, sampleNames, combinedNames, mashedNames, skipDgene = FALSE, .save = TRUE) ``` #### **Arguments** abundanceDirectories list type. List of sample directories abunOut string type. Output directory sampleNames vector type. 1-1 correspondence with abundanceDirectories combinedNames string type. Title "combined" sample names mashedNames string type. File "mashed" names - avoid special chars skipDgene logical type. Skip D gene plots? . save logical type. Save ggplot as Rdata ## Value None .abundancePlot Abundance distribution # Description Abundance distribution ## Usage ``` .abundancePlot(files, sampleNames, outputDir, skipDgene = FALSE, .save = TRUE) ``` #### Arguments files list type. list of files in abundance directory sampleNames vector type.
1-1 correspondance to files outputDir string type. skipDgene logical type. Skip D germline abundance plot if TRUE. . save logical type. Save Rdata ggplot item ## Value None ## **Description** Plots alignment quality vs: - · mismatches - gaps - bitscore - percent identity - subject start # Usage $. \verb| alignQualityHeatMaps(abundanceDirectory, sampleName)|\\$ #### **Arguments** ``` abundanceDirectory ``` character type. fully qualified path to abundance directory sampleName character type. sample name #### Value list of ggplotly heatmaps .allPrimerNames Collect primer names from FASTA # Description Collect primer names from FASTA # Usage .allPrimerNames(primerFile) #### **Arguments** primerFile string type. Path to primer file ## Value vector of primer names as seen in primerFile 10 .aminoAcidPlot | .am | in | $\cap \Delta$ | Ci | ЯR | ar | |-----|----|---------------|----|----|----| | | | | | | | Plots amino acid composition logo #### **Description** Plots amino acid composition logo # Usage ``` .aminoAcidBar(df, scale, region, germ = "") ``` ## **Arguments** df dataframe scale logical. scale to proportion? region string. which region is this germ string. V germline family #### Value ggplot2 object .aminoAcidPlot Composition logo plot # Description Plots 2 kinds: scaled and unscaled composition logos # Usage ``` .aminoAcidPlot(compositionDirectory, outdir, sampleName, regions = c("FR1", "CDR1", "FR2", "CDR2", "FR3", "CDR3", "FR4"), .save = TRUE) ``` ## **Arguments** compositionDirectory string type. string type. outdir string type. sampleName string type. regions logical type. vector of FR/CDR regions to plot . save logical type. save ggplot object #### Value none ``` .analyzeUpstreamValidity ``` Plots the validity of upstream sequences ## Description Plots the distribution of valid, faulty, and missing start codon in IGV germlines (repeated for gene and family levels). #### Usage ``` .analyzeUpstreamValidity(upstreamDirectories, upstreamOut, expectedLength, upstreamLengthRange, sampleNames, combinedNames, mashedNames, .save = TRUE) ``` #### **Arguments** upstreamDirectories list type. List of sample directories upstreamOut string type. Output directory expectedLength int type. Expected length of upstream sequences. (i.e. upstream_end - up- stream_start + 1). If this is infinite, no plots will be generated. ${\tt upstreamLengthRange}$ string type. start_end format sampleNames vector type. 1-1 with upstream directories combinedNames string type. Title friendly "combined" sample names string type. File friendly "mashed-up" sample names . save logical type. Save Rdata? #### Value None .annotAnalysis ${\it A}$ Annotation analysis #### **Description** Annotation analysis #### Usage ``` .annotAnalysis(annotDirectories, annotOut, sampleNames, mashedNames, .save = TRUE) ``` #### **Arguments** annotDirectories list type. List of sample directories annotOut string type. Output directory sampleNames vector type. 1-1 with annotDirectories mashedNames string type. File output "mashed" sample names . save logical type. Saves ggplot object ## Value none .asRepertoireAlignLen Accessor for alignlen slot # Description Accessor for alignlen slot # Usage ``` .asRepertoireAlignLen(object, collapse = " - ") ``` # Arguments object AbSeqRep object collapse character type, collapse the range using this string. # Value character type. If collapse is a string, then the ranges are represented as 'start - end' in a string, if collapse is NULL, returns a character vector of length two, denoting the start and end value respectively. .asRepertoireBitscore 13 .asRepertoireBitscore Accessor for bitscore slot # Description Accessor for bitscore slot #### Usage ``` .asRepertoireBitscore(object, collapse = " - ") ``` ## **Arguments** object AbSeqRep object collapse character type, collapse the range using this string. #### Value character type. If collapse is a string, then the ranges are represented as 'start - end' in a string, if collapse is NULL, returns a character vector of length two, denoting the start and end value respectively. .asRepertoireChain Acce Accessor for chain slot # Description Accessor for chain slot #### Usage ``` .asRepertoireChain(object) ``` #### **Arguments** object AbSeqRep object # Value character type, the chain type of this sample 14 .asRepertoireList .asRepertoireDir Accessor for the outdir slot # Description Accessor for the outdir slot # Usage ``` .asRepertoireDir(object) ``` ## **Arguments** object AbSeqRep object #### Value character type, the output directory of this object $. \, as {\tt RepertoireList}$ Accessor for AbSeqCRep's list of AbSeqRep objects # Description Accessor for AbSeqCRep's list of AbSeqRep objects ## Usage ``` .asRepertoireList(object) ``` # Arguments object AbSeqCRep object ## Value list type, list of AbSeqRep objects that together, compose this AbSeqCRep object. .asRepertoireName 15 .asRepertoireName Accessor for the name slot # Description Accessor for the name slot # Usage .asRepertoireName(object) # Arguments object AbSeqRep object #### Value character type, the sample name of this object. # Description Accessor for the primer3end slot ## Usage ``` .asRepertoirePrimer3(object) ``` # Arguments object AbSeqRep object ## Value character type, the FASTA file name for primer 3' end sequences .asRepertoirePrimer5 Accessor for the primer5 end slot # Description Accessor for the primer5end slot ## Usage ``` .asRepertoirePrimer5(object) ``` # Arguments object AbSeqRep object #### Value character type, the FASTA file name for primer 5' end sequences $. as {\tt RepertoireQueryStart}$ $Accessor for \ {\it qstart} \ slot$ ## **Description** Accessor for qstart slot ## Usage ``` .asRepertoireQueryStart(object, collapse = " - ") ``` ## **Arguments** object AbSeqRep object collapse character type, collapse the range using this string. # Value character type. If collapse is a string, then the ranges are represented as 'start - end' in a string, if collapse is NULL, returns a character vector of length two, denoting the start and end value respectively. .asRepertoireSubjectStart Accessor for sstart slot ## **Description** Accessor for sstart slot ## Usage ``` .asRepertoireSubjectStart(object, collapse = " - ") ``` # Arguments object AbSeqRep object collapse character type, collapse the range using this string. #### Value character type. If collapse is a string, then the ranges are represented as 'start - end' in a string, if collapse is NULL, returns a character vector of length two, denoting the start and end value respectively. .as RepertoireUpstream $\ Accessor for the \ {\it upstream } slot$ ## **Description** Accessor for the upstream slot # Usage .asRepertoireUpstream(object) # Arguments object AbSeqRep object #### Value character type 18 .calculateDInd .boxPlot Creates a box plot # Description Creates a box plot ## Usage ``` .boxPlot(dataframes, sampleNames, plotTitle, xlabel = "", ylabel = "", subs = "") ``` # **Arguments** dataframes list type. List of sample dataframes sampleNames vector type. 1-1 with dataframes plotTitle string type xlabel string type ylabel string type subs string type #### Value ggplot2 object $. \verb|calculateDInd|$ Calculates the "standard" diversity indices # Description Calculates the "standard" diversity indices # Usage ``` .calculateDInd(df) ``` # Arguments ``` clonotype dataframe. Vegan format: + + | S.1| S.2| S.3 | S.4 | ... | (each species should have its own column) + + | v1 | v2 | v3 | | (each species' count values are placed in the corresponding column) + + | v1 | v2 | v3 | | ``` ## Value dataframe with the column headers: shannon , simpson.con , simpson.inv , simpson.gini , renyi.0 , renyi.1 , renyi.2 , renyi.1nf , hill.0 , hill.1 , hill.2 , hill.1nf renyi.0 => species richness renyi.1 => shannon entropy renyi.2 => inv.gini renyi.Inf => min.entropy finally: hill_a = exp(renyi_a) .calculateDiversityEstimates Calculates Lower Bound Estimates for unseen species and Common Diversity Indices from clonotype tables # **Description** Employ common techniques to calculate LBE for unseen species and commonly used diversity indices #### Usage ``` .calculateDiversityEstimates(diversityDirectories, diversityOut, sampleNames) ``` # Arguments diversityDirectories list type. List of directories to diversity dir diversityOut string type. Output directory sampleNames vector type. 1-1 with diversityDirectories sample names # Value None .canonicalizeTitle Convert file names to human friendly text ## **Description** Convert file names to human friendly text # Usage ``` .canonicalizeTitle(str) ``` 20 .checkVert ## **Arguments** str string type #### Value string .capitalize Helper function to capitalize the first letter of str # Description Helper function to capitalize the first letter of str # Usage ``` .capitalize(str) ``` ## **Arguments** str string type #### Value string, str capitalized .checkVert Checks if abseqPy has a metadata line that suggests the orientation # Description Checks if abseqPy has a metadata line that suggests the orientation ## Usage ``` .checkVert(filename) ``` # Arguments filename csv filename ## Value True if CSV metadata says "plot vertically" .cloneDistHist 21 | .cloneDistHist | Marginal histogram of clonotypes (blue for shared, grey for total). The y axis is scaled by sqrt (but it doesn't really matter anyway, since we're | |----------------|--| | | stripping away the y-ticks) | ## **Description** Marginal histogram of clonotypes (blue for shared, grey for total). The y axis is scaled by sqrt (but it doesn't really matter anyway, since we're stripping away the y-ticks) ## Usage ``` .cloneDistHist(df.original, otherClones, lim.min, flip) ``` #### **Arguments** df.original dataframe with all clones otherClones clones from the other dataframe lim.min x-axis minimum limit flip logical type ## Value
ggplot2 object $. \verb|cloneDistMarginal| & \textit{Marginal density graph of clonotypes (blue for shared, grey for total, and the property of pr$ purple for exclusive clones) ## **Description** Marginal density graph of clonotypes (blue for shared, grey for total, purple for exclusive clones) #### **Usage** ``` .cloneDistMarginal(df.original, otherClones, lim.min, flip) ``` ## **Arguments** df.original dataframe with all clones otherClones clones from the other dataframe lim.min x-axis minimum limit flip logical type #### Value ggplot2 object 22 .collateReports .clonotypeAnalysis Comprehensive clonotype analyses #### **Description** Comprehensive clonotype analyses #### Usage ``` .clonotypeAnalysis(diversityDirectories, clonotypeOut, sampleNames, mashedNames, .save = TRUE) ``` #### **Arguments** diversityDirectories list type. List of directories to diversity dir clonotypeOut string type. Output directory sampleNames vector type. 1-1 with diversityDirectories mashedNames string type. Prefix for ooutput files using "mashed-up" . save logical type. Save ggplot object? #### Value Nothing .collateReports Collate all HTML reports into a single directory and cretate an entry index.html file that redirects to all collated HTML files ## **Description** Collate all HTML reports into a single directory and cretate an entry index.html file that redirects to all collated HTML files # Usage ``` .collateReports(reports, individualSamples, outputDirectory) ``` ## **Arguments** $reports \hspace{1cm} list/vector \ type. \ Collection \ of \ strings \ that \ are \ path(s) \ to \ <sample>_report.html \\ individual Samples$ list type. list of AbSeqRep objects. Used to extract filtering information and % read counts. outputDirectory string type. Where should the report be placed. .commonPrimerNames 23 #### Value Nothing .commonPrimerNames Collect the intersection of all primer names within a collection of primer files ## **Description** Collect the intersection of all primer names within a collection of primer files #### Usage ``` .commonPrimerNames(primerFiles) ``` ## **Arguments** primerFiles list / vector type. Collection of primer files ## Value vector type. Vector of primerNames that are present in ALL primerFiles. NULL if there's no intersection at all .correlationTest Conducts pearson and spearman correlation analysis on dataframe ## **Description** Conducts pearson and spearman correlation analysis on dataframe ## Usage ``` . {\tt correlationTest}({\tt df}) ``` ## Arguments df dataframe with at least the following 2 columns: + + + | prop.x | prop.y | + + + | | | + + where prop.x and prop.y are normalized counts (i.e. frequencies) of the clones They may contain 0 in a column to denote it being missing from sample x or y. #### Value named list of pearson, pearson.p, spearman, spearman.p 24 .diversityAnalysis .distanceMeasure Computes the distance between pariwise samples #### **Description** Computes the distance between pariwise samples #### Usage .distanceMeasure(df) ## **Arguments** df dataframe with at least the following 2 columns: +—+ | prop.x | prop.y | +—+ | | | +—+ where prop.x and prop.y are normalized counts (i.e. frequencies) of the clones They may contain 0 in a column to denote it being missing from sample x or y. #### Value named list of bray.curtis, jaccard, and morisita.horn .diversityAnalysis Title Diversity analysis # Description Title Diversity analysis #### **Usage** ``` .diversityAnalysis(diversityDirectories, diversityOut, sampleNames, mashedNames, .save = TRUE) ``` #### Arguments diversityDirectories list type. List of directories to diversity dir diversityOut string type. Output directory sampleNames vector type. 1-1 with diversityDirectories mashedNames string type. Prefix for output files using "mashed-up" sample names . save logical type. Save ggplot object? #### Value None .emptyPlot 25 .emptyPlot Creates and returns an empty plot # Description Creates and returns an empty plot ## Usage ``` .emptyPlot() ``` #### Value empty ggplot2 object $. \\ find \\ Repertoires$ Given a directory = <abseqPy_outputdir>/RESULT_DIR/, returns the directories (repositories) in 'directory'. That is, will not return any sample_vs_sample directories. This is done by asserting that a 'repository' must have an (analysis.params) file, and a summary.txt file. # Description A sample_vs_sample directory will not have these files. # Usage ``` .findRepertoires(directory) ``` ## **Arguments** directory string. Path up until <abseqPy_outputdir>/RESULT_DIR/ #### Value vector of strings that are samples in 'directory', note, this is NOT a full path, but just the sample/repertoire name itself .generateAllSpectratypes Generates all FR/CDR spectratypes #### **Description** Generates all FR/CDR spectratypes #### Usage ``` .generateAllSpectratypes(diversityDirectories, diversityOut, sampleNames, mashedNames, .save = TRUE) ``` #### **Arguments** diversityDirectories list type. List of directories to diversity dir diversityOut string type. Output directory sampleNames vector type. 1-1 with diversityDirectories mashedNames string type. Prefix for output files using "mashed-up" sample names . save logical type. Save ggplot object? #### Value Nothing .generateDelayedReport Generates report for all samples in 'compare' # Description This function is needed because we are delaying the generation of reports until after all threads/processes have joined. There's currently an issue with rmarkdown::render() in parallel execution, see: https://github.com/rstudio/rmarkdown # Usage .generateDelayedReport(root, compare, interactivePlot) # Arguments root string, project root directory. compare vector of strings, each string is a comparison defined by the user (assumes that this value has been checked). interactivePlot logical, whether or not to plot interactive plotly plots. .generateReport 27 #### Value a named list of samples, each an AbSeqRep object found in "root" .generateReport Generates HTML report from AbSeqRep and AbSeqCRep ojects ## **Description** Generates HTML report from AbSeqRep and AbSeqCRep ojects #### Usage ``` .generateReport(object, root, outputDir, interactivePlot = TRUE, .indexHTML = "#") ``` ## **Arguments** object AbSeqCRep type. root string type. Root directory of the sample(s) outputDir string type. The path where the HTML will be generated interactivePlot logical type. Interactive or not . indexHTML character type. The back button will redirect to this link. This is typically used to redirect users back to index.html page ## Value path (including HTML name) where the report (HTML file) was saved to .getLineTypes Helper function to return line types by importance based on provided CD/Fs regions ## **Description** In the aesthetics of diversity plots (rarefaction, recapture, and duplication), the line types should emphasise the most important antibody region, they're ranked in ascending order of: "FR4", "FR1", "FR2", "FR3", "CDR1", "CDR2", "CDR3", "V". # Usage ``` .getLineTypes(regions) ``` 28 .hmFromMatrix #### **Arguments** regions a list/vector of strings (regions) ## Value vector of strings, each corresponding to the appropriate line type for regions. .getTotal Get total number of samples (n) ## **Description** Often enough, the CSV values supplied do not contain raw counts but percentages (so this value will let us know exactly the sample size). # Usage ``` .getTotal(filename) ``` # **Arguments** filename csv filename ## Value string, sample size. .hmFromMatrix Plots a plotly heatmap from provided matrix ## **Description** Plots a plotly heatmap from provided matrix #### Usage ``` .hmFromMatrix(m, title, xlabel = "", ylabel = "") ``` # Arguments m matrix type title character type xlabel character type ylabel character type #### Value list with keys: static and interactive (ggplot2 object and plotly object respectivelyb) .inferAnalyzed 29 .inferAnalyzed Returns all samples found under sampleDirectory #### **Description** Returns all samples found under sampleDirectory #### Usage ``` .inferAnalyzed(sampleDirectory) ``` #### **Arguments** ``` sampleDirectory ``` string, path to sample directory. #### Value un-normalized path to all samples under sampleDirectory .loadMatrixFromDF Given a dataframe with the columns "from", "to", and value.var, return a symmetric matrix (with diagonal values = diag). I.e. a call to isSymmetric(return_value_of_this_function) will always be TRUE. ## **Description** Given a dataframe with the columns "from", "to", and value.var, return a symmetric matrix (with diagonal values = diag). I.e. a call to isSymmetric(return_value_of_this_function) will always be TRUE. #### Usage ``` .loadMatrixFromDF(dataframe, value.var, diag, unidirectional = TRUE) ``` # Arguments | dataframe | dataframe with 3 required columns, namely: + | |----------------|---| | | + from to value.var + | | | | | | parameter | | value.var | the column to use as the matrix value | | diag | what should the diagonal values be if the dataframe doesn't provide them | | unidirectional | logical type. If the dataframe provided has the reverse pairs (i.e. a from-to pair AND a to-from pair with the save values in the value.var column), then this should be FALSE. Otherwise, this function will flip the from-to columns to generate a symmetric dataframe (and hence, a symmetric matrix). | .pairwiseComparison #### Value a symmetric matrix with rownames(mat) == colnames(mat) The diagonal values are filled with diag if the dataframe itself doesn't have diagonal data .loadSamplesFromString Loads AbSeqCRep or AbSeqRep objects from a list of sampleNames # Description Loads AbSeqCRep or AbSeqRep objects from a list of sampleNames # Usage
.loadSamplesFromString(sampleNames, root, warnMove = TRUE) # **Arguments** sampleNames vector, singleton or otherwise root string type. root directory warnMove logical type. Warning message ("message" level, not "warning" level) if the directory has been moved? #### Value AbSeqRep or AbSeqCRep object depending on sampleNames .pairwiseComparison Conduct all vs all pairwise comparison analyses #### **Description** Conduct all vs all pairwise comparison analyses ## Usage .pairwiseComparison(dataframes, sampleNames, outputPath, .save = TRUE) # Arguments dataframes list of dataframes sampleNames 1-1 vector corresponding to dataframes outputPath string . save logical .plotCirclize 31 ## Value nothing .plotCirclize V-J association plot ## **Description** V-J association plot # Usage ``` .plotCirclize(sampleName, path, outputdir) ``` # Arguments sampleName string type path string type. Path to _vjassoc.csv outputdir string type #### Value None .plotDist Bar plotter # Description Plots barplot for all sample in dataframes. If length(sampleNames) == 1, then the bars will also have y-values (or x if horizontal plot) labels on them. Use 'perc' to control if the values are percentages. # Usage ``` .plotDist(dataframes, sampleNames, plotTitle, vert = TRUE, xlabel = "", ylabel = "", perc = TRUE, subs = "", sorted = TRUE, cutoff = 15, legendPos = "right") ``` 32 .plotDiversityCurves #### **Arguments** dataframes list type. List of dataframes sampleNames vector type. 1-1 correspondence to dataframes. plotTitle string type. vert boolean type. True if the plot should be vertical xlabel string type ylabel string type perc boolean type. True if data's axis is a percentage proportion (instead of 0-1) only used if length(sampleNames) == 1 subs string type sorted boolean type. True if bar plot should be sorted in descending order cutoff int type. Number of maximum ticks to show (x on vert plots, y on hori plots). legendPos string type. Where to position legend (see ggplot's theme()) #### Value ggplot2 object #### **Description** Plots rarefaction, recapture, and de-dup plots for specified region ## Usage ``` .plotDiversityCurves(region, diversityDirectories, sampleNames, mashedNames, diversityOut, .save = TRUE) ``` #### **Arguments** region string type. One of: "cdr", "cdr_v", and "fr". "cdr" means CDR1-3, "cdr_v" means CDR3 and V only, and finally "fr" means FR1-4. diversityDirectories list type. List of directories to diversity dir sampleNames vector type. 1-1 with diversityDirectories mashedNames string type. Prefix for output files using "mashed-up" diversityOut string type. Output directory sample names . save logical type. Save ggplot object? #### Value Nothing .plotDuplication 33 | plotDuplication Duplication level plot | |--| |--| ## **Description** bins singletons, doubletons, and higher order clonotypes into a line plot #### Usage ``` .plotDuplication(files, sampleNames, regions = c("CDR3", "V")) ``` #### **Arguments** files list type. List of strings to _cdr_v_duplication.csv pathname sampleNames vector type. Vector of strings each representing sample names regions vector type. Which regions to include in the plot. Default = c("CDR3", "V") #### Value ggplot2 object | .plotErrorDist | Plots the error distribution for each region: CDRs, FRs, IGV, IGD, | |----------------|--| | | and IGJ | ## **Description** Plots the distribution of indels (gaps), indels in out-of-frame sequences, and the distribution of mismatches for CDRs, FRs, IGV, IGD, and IGJ. ## Usage ``` .plotErrorDist(productivityDirectories, prodOut, sampleNames, combinedNames, mashedNames, .save = TRUE) ``` #### **Arguments** productivityDirectories list type. List of directories prod0ut string type. Output directory sampleNames vector type. 1-1 with productivity directories combinedNames string type. Title friendly "combined" sample names string type. File friendly "mashed-up" sample names . save logical type. Save Rdata? #### Value None .plotIGVErrors Plots the error distribution for IGV germlines #### **Description** Plots the distribution of in-frame unproductive, out-of-frame unproductive, and productive IGV germlines. #### Usage ``` .plotIGVErrors(productivityDirectories, prodOut, sampleNames, combinedNames, mashedNames, .save = TRUE) ``` ## **Arguments** productivityDirectories list type. List of directories prod0ut string type. Output directory sampleNames vector type. 1-1 with productivity directories combinedNames string type. Title friendly "combined" sample names string type. File friendly "mashed-up" sample names . save logical type, save Rdata? #### Value None .plotIGVUpstreamLenDist Plot IGV family distribution for a given upstreamLengthRange # Description Given an upstream length range, plot the distributions of IGV family without showing their actual lengths. If their actual lengths matter, refer to .plotIGVUpstreamLenDistDetailed. #### Usage ``` .plotIGVUpstreamLenDist(upstreamDirectories, upstreamOut, upstreamLengthRange, lengthType, sampleNames, combinedNames, mashedNames, .save = TRUE) ``` #### **Arguments** upstreamDirectories list type. List of sample directories upstreamOut string type. Output directory upstreamLengthRange The range of upstream sequences to be included in this plot. This is usually determined by abseqPy and the format should be as follows: "min_max", e.g.: 1_15 means range(1, 15) inclusive.string type. lengthType string type. "" (the empty string) denotes everything and "_short" denotes a short sequence. abseqPy dictates this because it's used for locating the files. sampleNames vector type. 1-1 with upstream directories combinedNames string type. Title friendly "combined" sample names string type. File friendly "mashed-up" sample names . save logical type. Save Rdata? #### Value None .plotIGVUpstreamLenDistDetailed Plots the detailed length distribution for IGV families # Description A boxplot for each IGV families showing the IQR of upstream lengths. In contrast to .plotIGVUpstreamLenDist, which only shows the distribution of IGV families over upstreamLengthRange. # Usage ``` .plotIGVUpstreamLenDistDetailed(upstreamDirectories, upstreamOut, upstreamLengthRange, lengthType, sampleNames, combinedNames, mashedNames, .save = TRUE) ``` # Arguments upstreamDirectories list type. List of sample directories upstreamOut string type. Output directory upstreamLengthRange The range of upstream sequences to be included in this plot. This is usually determined by abseqPy and the format should be as follows: "min_max", e.g.: 1_15 means range(1, 15) inclusive.string type. 36 .plotPrimerIGVStatus lengthType string type. "" (the empty string) denotes everything and "_short" denotes a short sequence. abseqPy dictates this because it's used for locating the files. sampleNames vector type. 1-1 with upstream directories combinedNames string type. Title friendly "combined" sample names string type. File friendly "mashed-up" sample names . save logical type. Save Rdata? #### Value None .plotPrimerIGVStatus Plots, for a given category and pend, the primer IGV indelled dis- tribution in a bar plot # **Description** Plots the abundace of indelled primers relative to IGV germlines ## Usage ``` .plotPrimerIGVStatus(primer, pend, category, primerDirectories, sampleNames, primerOut, combinedNames, mashedNames, .save = TRUE) ``` # **Arguments** primer string, primer name pend string, either 3 or 5 (primer end) category string, either "all", "productive", or "outframe" primerDirectories string type. Path to primer analysis directory sampleNames vector type. 1-1 with primerDirectories primerOut string type. output directory combinedNames string type. Title friendly "combined" sample names string type. File friendly "mashed-up" sample names . save logical type. Save Rdata? #### Value None .plotPrimerIntegrity 37 .plotPrimerIntegrity $Plots\ the\ distribution\ of\ primer\ integrity\ for\ a\ given\ {\it category\ and\ 5'}\ or\ 3'\ {\it pend}$ #### **Description** Plots the distribution of primer integrity for a given category and 5' or 3' pend ## Usage ``` .plotPrimerIntegrity(primerIntegrity, pend, category, primerDirectories, sampleNames, primerOut, combinedNames, mashedNames, .save = TRUE) ``` #### **Arguments** primerIntegrity string. One of "stopcodon", "integrity", "indelled", "indel_pos" pend string, either 3 or 5 (primer end) category string, either "all", "productive", or "outframe" primerDirectories string type. Path to primer analysis directory sampleNames vector type. 1-1 with primerDirectories primerOut string type. output directory combinedNames string type. Title friendly "combined" sample names string type. File friendly "mashed-up" sample names . save logical type. Save Rdata? ## Value None .plotRarefaction Rarefaction plot ## **Description** Plots the number of unique clonotypes (on the y-axis) drawn from a sample size on the x axis. The number of unique clonotypes is averaged over 5 repeated rounds. ``` .plotRarefaction(files, sampleNames, regions = c("CDR3", "V")) ``` .plotRecapture ## Arguments files list type. A list of files consisting of path to samples sampleNames vector type. A vector of strings, each being the name of samples in files regions vector type. A vector of strings, regions to be included. Defaults to c("CDR3", "V") #### Value ggplot2 object .plotRecapture Plots capture-recapture # Description Plots the percent of recapture clonotypes (on the y-axis) drawn from a repeated (with replacement) sample size on the x axis. The percentage of recaptured clonotypes is averaged over 5 recapture rounds. ## Usage ``` .plotRecapture(files, sampleNames, regions = c("CDR3", "V")) ``` # Arguments files list type. List of _cdr_v_recapture.csv.gz files. sampleNames vector type. A vector of strings each representing the name of samples in files. regions vector type. A vector of strings, regions to be
included in the plot. defaults to c("CDR3", "V") #### Value ggplot2 object .plotSamples 39 | .plotSamples | Monolith AbSeq Plot function - the "driver" program | |-----------------------|---| | , p 2 0 0 0 0 p 2 0 0 | interior in the different programs | # Description Monolith AbSeq Plot function - the "driver" program # Usage ``` .plotSamples(sampleNames, directories, analysis, outputDir, primer5Files, primer3Files, upstreamRanges, skipDgene = FALSE) ``` ## **Arguments** | sampleNames | vector type. Vector of sample names in strings | |----------------|--| | directories | vector type. Vector of directories in strings, must be 1-1 with sampleNames | | analysis | vector / list type. What analysis to plot for. If sampleNames or directories is > 1 (i.e. AbSeqCRep), then make sure that it's an intersection of all analysis conducted by the repertoires, otherwise, it wouldn't make sense | | outputDir | string type. Where to dump the output | | primer5Files | vector / list type. Collection of strings that the sample used for primer5 analysis. If sample N doesn't have a primer 5 file, leave it as anthing but a valid file path. | | primer3Files | vector / list type. Collection of strings that the sample used for primer 3 analysis. If sample N doesn't have a primer 3 file, leave it as anthing but a valid file path. | | upstreamRanges | list type. Collection of "None"s or vector denoting upstreamStart and upstreamEnd for each sample. | | skipDgene | logical type. Whether or not to skip D gene distribution plot | | | | #### Value none |--|--|--| # Description Plots length distribution ``` .plotSpectratype(dataframes, sampleNames, region, title = "Spectratype", subtitle = "", xlabel = "Length(AA)", ylabel = "Distribution", showLabel = FALSE) ``` # **Arguments** dataframes list type. List of dataframes. sampleNames vector type. 1-1 correspondance with dataframes region string type. Region that will be displayed in the plot title. This specifies which region this spectratype belongs to. If not supplied, a default (start, end) range will be displayed instead title string type. Ignored if region is specified. subtitlestring typexlabelstring typeylabelstring type showLabel bool type. Show geom_text? - Ignored if samples > 1 #### Value ggplot2 object .plotUpstreamLength Plot upstream distribution ## **Description** Plot upstream distribution #### Usage ``` .plotUpstreamLength(upstreamDirectories, upstreamOut, expectedLength, upstreamLengthRange, sampleNames, combinedNames, mashedNames, .save = TRUE) ``` #### **Arguments** upstreamDirectories list type. List of sample directories upstreamOut string type. Output directory expectedLength int type. Expected length of upstream sequences. (i.e. upstream_end - up- stream start + 1). ${\tt upstreamLengthRange}$ string type. start_end format sampleNames vector type. 1-1 with upstream directories combinedNames string type. Title friendly "combined" sample names string type. File friendly "mashed-up" sample names . save logical type. Save Rdata? #### Value None .plotUpstreamLengthDist Plot upstream sequence length distribution for upstream sequences (5'UTR or secretion signal) for a given upstreamLengthRange #### **Description** Given an upstream length range, plot the distribution of upstream sequence lengths. ## Usage ``` .plotUpstreamLengthDist(upstreamDirectories, upstreamOut, upstreamLengthRange, lengthType, sampleNames, combinedNames, mashedNames, .save) ``` ## **Arguments** upstreamDirectories list type. List of sample directories upstreamOut string type. Output directory upstreamLengthRange The range of upstream sequences to be included in this plot. This is usually determined by abseqPy and the format should be as follows: "min_max", e.g.: 1_15 means range(1, 15) inclusive.string type. lengthType string type. "" (the empty string) denotes everything and "_short" denotes a short sequence. abseqPy dictates this because it's used for locating the files. sampleNames vector type. 1-1 with upstream directories combinedNames string type. Title friendly "combined" sample names mashedNames string type. File friendly "mashed-up" sample names . save logical type. Save Rdata? #### Value None .prodDistPlot ## **Description** Conducts primer specificity analysis #### Usage ``` .primerAnalysis(primerDirectories, primer5Files, primer3Files, primerOut, sampleNames, combinedNames, mashedNames, .save = TRUE) ``` ## **Arguments** primerDirectories string type. Path to primer analysis directory primer5Files vector / list type. 5' end primer files primer3Files vector / list type. 3' end primer files primerOut string type. output directory sampleNames vector type. 1-1 with primerDirectories combinedNames string type. Title friendly "combined" sample names string type. File friendly "mashed-up" sample names . save logical type. Save Rdata? #### Value None | .prodDistPlot | Plots a distribution plot for different productivity analysis files | |---------------|---| |---------------|---| # Description A wrapper for plotDist ``` .prodDistPlot(productivityDirectories, sampleNames, title, reg, outputFileName, region, .save = TRUE) ``` .productivityAnalysis 43 #### **Arguments** productivityDirectories vector type. directories where all productivity csv files lives (usually <sample- name>/productivity/) sampleNames vector type. title string type. reg string type. Regular expression to find the right files for this particular distribu- tion plot outputFileName string type. Vector of file names to save in the order of regions region string type. Most of the dist plots are regional based. use "" if no regions are involved . save logical type. Save Rdata? #### Value None .productivityAnalysis Conducts productivty analysis #### **Description** Conducts productivty analysis #### Usage ``` .productivityAnalysis(productivityDirectories, prodOut, sampleNames, combinedNames, mashedNames, .save = TRUE) ``` ## **Arguments** productivityDirectories list type. List of directories prod0ut string type. Output directory sampleNames vector type. 1-1 with productivity directories combinedNames string type. Title friendly "combined" sample names string type. File friendly "mashed-up" sample names . save logical type. Save Rdata ## Value None .readSummary .productivityPlot Summary of productivity #### **Description** Shows the percentage of 1. productivity, 2. non-functional + reason for being unproductive, i.e. "Stop Codon" or "Out of frame" or "Stop & Out" ## Usage ``` .productivityPlot(dataframes, sampleNames) ``` #### Arguments dataframes list type. List of sample dataframes sampleNames vector type. 1-1 with dataframes #### Value ggplot2 object .readSummary Return value specifed by key from AbSeq's summary file #### **Description** Return value specifed by key from AbSeq's summary file ## Usage .readSummary(sampleRoot, key) #### **Arguments** sampleRoot sample's root directory. For example, /path/to/<outputdir>/reports/<sample_name>. key character type. Possible values are (though they might change) - · RawReads - · AnnotatedReads - · FilteredReads - · ProductiveReads #### Value value associated with key from summary file. "NA" (in string) if the field is not available refer to util.R for the key values regionAnalysis 45 .regionAnalysis Title Shows varying regions for a given clonotype defined by its CDR3 #### **Description** Title Shows varying regions for a given clonotype defined by its CDR3 #### Usage ``` .regionAnalysis(path, sampleName, top = 15) ``` ## **Arguments** path string type. Path to diversity folder where <sampleName>_clonotype_diversity_region_analysis.csv.gz is located sampleName string type top int type. Top N number of clones to analyze #### Value ggplot2 object .reportLBE Reports abundance-based (Lower bound) diversity estimates using the Vegan package # Description Reports abundance-based (Lower bound) diversity estimates using the Vegan package #### Usage ``` .reportLBE(df) ``` ## **Arguments** df #### Value 46 .scatterPlot .saveAs Saves ggplot object as a Rdata file. ## **Description** It's a convinient function that does the check and saves at the same time, for brevity within other areas of the code (to eliminate repeated if checks). #### Usage ``` .saveAs(.save, filename, plot) ``` ## **Arguments** . save logical type. Whether or not we should save. filename string. plot ggplot object. #### Value nothing .scatterPlot Title Creates a scatter plot #### **Description** Title Creates a scatter plot ## Usage ``` .scatterPlot(df1, df2, name1, name2, cloneClass) ``` ## **Arguments** df1 dataframe for sample 1 df2 dataframe for sample 2 name1 string type, Sample 1 name name2 string type. Sample 2 name cloneClass string type. What region was used to classify clonotypes - appears in title. For example, CDR3 or V region #### Value ggplot2 object .scatterPlotComplex 47 .scatterPlotComplex Creates a complex scatter plot #### **Description** Creates a complex scatter plot #### Usage ``` .scatterPlotComplex(df.union, df1, df2, name1, name2, cloneClass) ``` #### **Arguments** df.union a 'lossless' dataframe created by intersecting sample1 and sample2's dataframes. It should contain NAs where clones that appear in one sample doesn't appear in the other. For example: df1 dataframe for sample 1 df2 dataframe for sample 2 name1 string type, Sample 1 name name2 string type. Sample 2 name cloneClass string type. What region was used to classify clonotypes - appears in title. For example, CDR3 or V region this plotting techique was shamelessly plagarised from https://github.com/mikessh/vdjtools/blob/master/s. (VDJTools) with
minor modifications #### Value ``` ggplot2 object ``` ``` .secretionSignalAnalysis ``` Secretion signal analysis # Description Generates all the required plots for Secretion signal analysis. This includes upstream length distributions and upstream sequence validity. ``` .secretionSignalAnalysis(secDirectories, secOut, sampleNames, combinedNames, mashedNames, upstreamRanges, .save = TRUE) ``` #### **Arguments** secDirectories list type. Secretion signal directories where files are located secOut string type. Where to dump output sampleNames vector type. 1-1 with secDirectories combinedNames string type. Title friendly string mashedNames string type. File name friendly string upstreamRanges list type. Upstream ranges for each sample. If length(secDirectories) > 1, the plots will only be generated for upstream ranges that are present in ALL sam- ples. (i.e. the intersection) . save logical type, save Rdata? #### Value none .substituteStringInFile Substitutes the first occurance of 'key' with 'value' in 'filename' ## **Description** Substitutes the first occurance of 'key' with 'value' in 'filename' ## Usage ``` .substituteStringInFile(filename, key, value, fixed = FALSE) ``` ## **Arguments** filename character type key character type value character type fixed logical type ## Value None .summarySE 49 | .summarySE | Summary of dataframe | | |------------|----------------------|--| | | | | #### **Description** Gives count, mean, standard deviation, standard error of the mean, and confidence interval (default 95%). adapted from http://www.cookbook-r.com/Graphs/Plotting_means_and_error_bars_(ggplot2)/#Helper functions #### Usage ``` .summarySE(data = NULL, measurevar, groupvars = NULL, na.rm = FALSE, conf.interval = 0.95, .drop = TRUE) ``` #### **Arguments** data a data frame. measurevar the name of a column that contains the variable to be summariezed groupvars a vector containing names of columns that contain grouping variables na.rm a boolean that indicates whether to ignore NA's conf.interval the percent range of the confidence interval (default is 95%) .drop logical. #### Value dataframe | .topNDist | Title Clonotype table | | |-----------|-----------------------|--| | | | | # Description Title Clonotype table # Usage ``` .topNDist(dataframes, sampleNames, top = 10) ``` #### **Arguments** dataframes list type. List of dataframes. sampleNames vector type. vector of strings representing sample names should have one-to-one correspondence with dataframes top int type. Top N clonotypes to plot 50 .UTR5Analysis ## Value None .UTR5Analysis 5' UTR analysis # Description Generates all the required plots for 5' UTR analysis. This includes upstream length distributions and upstream sequence validity. # Usage ``` .UTR5Analysis(utr5Directories, utr5Out, sampleNames, combinedNames, mashedNames, upstreamRanges, .save = TRUE) ``` ## **Arguments** utr5Directories list type. 5UTR directories where files are located utr50ut string type. Where to dump output sampleNames vector type. 1-1 with utr5Directories combinedNames string type. Title friendly string mashedNames string type. File name friendly string upstreamRanges list type. Upstream ranges for each sample. If length(utr5Directories) > 1, the plots will only be generated for upstream ranges that are present in ALL sam- ples. (i.e the intersection) . save logical type, save Rdata? ## Value none vennIntersection 51 | .vennIntersection | Title Creates Venndiagram for clonotype intersection | |-------------------|--| | | | #### **Description** Title Creates Venndiagram for clonotype intersection ## Usage ``` .vennIntersection(dataframes, sampleNames, outFile, top = Inf) ``` ## Arguments dataframes list type. List of sample dataframes. Only accepts 2 - 5 samples. Warning message will be generated for anything outside of the range sampleNames vector type. 1-1 with dataframes outFile string type. Filename to be saved as top int type. Top N cutoff, defaults to ALL clones if not specified #### Value Nothing AbSeqCRep-class S4 class - AbSeqCompositeRepertoire analysis object ## **Description** AbSeqCRep is a collection of AbSeqRep S4 objects. This S4 class contains multiple samples(repertoires) and it can be "combined" with other samples by using the + operator to create an extended AbSeqCRep object. This value, in turn, can be used as the first argument to report which generates a comparison between all samples included in the + operation. Users do not manually construct this class, but rather indirectly obtain this class object as a return value from the + operation between two AbSeqRep objects, which are in turn, obtained indirectly from abseqReport and report functions. It is also possible to obtain this class object by + (adding) AbSeqCRep objects. #### Value AbSeqCRep #### Slots repertoires list of AbSeqRep objects. 52 AbSeqRep-class #### See Also AbSeqRep #### **Examples** ``` # Use example data from abseqR as abseqPy's output, substitute this # with your own abseqPy output directory abseqPyOutput <- tempdir() file.copy(system.file("extdata", "ex", package = "abseqR"), abseqPyOutput, recursive=TRUE) samples <- abseqReport(file.path(abseqPyOutput, "ex"), report = 0) # The provided example data has PCR1, PCR2, and PCR3 samples contained within # pcr12 and pcr13 are instances of AbSeqCRep pcr12 <- samples[["PCR1"]] + samples[["PCR2"]] pcr13 <- samples[["PCR1"]] + samples[["PCR3"]] # all_S is also an instance of AbSeqCRep all_S <- pcr12 + pcr13</pre> ``` AbSeqRep-class S4 class - AbSeqRepertoire analysis object ## **Description** The AbSeqRep object contains all metadata associated with the AbSeq (python backend) run conducted on it. This S4 class represents a single sample(repertoire) and it can be "combined" with other samples by using the + operator to create an AbSeqCRep object. This value, in turn, can be used as the first argument to report which generates a comparison between all samples included in the + operation. Users do not manually construct this class, but rather indirectly obtain this class object as a return value from the abseqReport and report functions. #### Value AbSeqRep #### Slots ``` f1 character. Path to FASTA/FASTQ file 1.f2 character. Path to FASTA/FASTQ file 2. ``` chain character. Type of chain, possible values: - hv - 1v - kv - klv each representing Heavy, Lambda and Kappa respectively. AbSeqRep-class 53 task character. Type of analysis conducted, possible values: - all - · annotate - · abundance - · diversity - · productivity - fastqc - · primer - 5utr - rsasimple - seqlen - · secretion - seqlenclass name character. Name of analysis. bitscore numeric. Part of filtering criteria: V gene bitscore filter value. qstart numeric. Part of filtering criteria: V gene query start filter value. sstart numeric. Part of filtering criteria: V gene subject start filter value. alignlen numeric. Part of filtering criteria: V gene alignment length filter value. clonelimit numeric. Number of clones to export into csv file. This is only relevant in -t all or -t diversity where clonotypes are exported into <outdir>/<name>/diversity/clonotypes detailedComposition logical. Plots composition logo by IGHV families if set to true, otherwise, plots logos by FR/CDRs. log character. Path to log file. merger character. Merger used to merge paired-end reads. fmt character. File format of file1 and (if present) file2. Possible values are FASTA or FASTQ. sites character. Path to restriction sites txt file. This option is only used if -t rsasimple primer5end ANY. Path to 5' end primer FASTA file. primer3end ANY. Path to 3' end primer FASTA file. trim5 numeric. Number of nucleotides to trimd at the 5' end; trim3 numeric. Number of nucleotides to trimd at the 3' end; outdir character. Path to output directory primer5endoffset numeric. Number of nucleotides to offset before aligning 5' end primers in primer5end FASTA file. threads numeric. Number of threads to run. upstream character. Index (range) of upstream nucleotides to analyze. This option is only used if -t 5utr or -t secretion. seqtype character. Sequence type, possible values are either dna or protein. database character. Path to IgBLAST database. actualqstart numeric. Query sequence's starting index (indexing starts from 1). This value overrides the inferred query start position by AbSeq. 54 abseqReport fr4cut logical. The end of FR4 is marked as the end of the sequence if set to TRUE, otherwise the end of the sequence is either the end of the read itself, or trimmed to --trim3 <num>. domainSystem character. Domain system to use in IgBLAST, possible values are either imgt or kabat. #### See Also abseqReport returns a list of AbSeqRep objects. #### **Examples** ``` # this class is not directly constructed by users, but as a return # value from the abseqReport method. # Use example data from abseqR as abseqPy's output, substitute this # with your own abseqPy output directory abseqPyOutput <- tempdir() file.copy(system.file("extdata", "ex", package = "abseqR"), abseqPyOutput, recursive=TRUE) samples <- abseqReport(file.path(abseqPyOutput, "ex"), report = 0)</pre> ``` abseqReport Visualize all analysis conducted by abseqPy ## Description Plots all samples in the output directory supplied to abseqPy's --outdir or -o argument. Users can optionally specify which samples in directory should be compared. Doing so generates additional plots for clonotype comparison and the usual plots will also conveniently include these samples using additional aesthetics. Calling this function with a valid directory will always return a named list of objects; these individual objects can be combined using the + operator to form a new comparison, in which the report function accepts as its first parameter. #### Usage ``` abseqReport(directory, report, compare, BPPARAM) ``` #### **Arguments** directory string type. directory as specified in -o or --outdir in abseqPy. This tells AbSeq where to look for
abseqPy's output. report (optional) integer type. The possible values are: - 0 does nothing (returns named list of AbSeqRep objects) - 1 generates plots for csv files - 2 generates a report that collates all plots - 3 generates interactive plots in report (default) abseqReport 55 each higher value also does what the previous values do. For example, report = 2 will return a named list of AbSeqRep objects, plot csv files, and generate a (non-interactive)HTML report that collates all the plots together. compare (optional) vector of strings. From the samples in found in directory directory, they can be selected and compared against each other. For example, to compare "sample1" with "sample2" and "sample3" with "sample4", compare should be c("sample1, sample2", "sample3, sample4"). An error will be thrown if the samples specified in this parameter are not found in directory. BPPARAM (optional) BiocParallel backend. Configures the parallel implementation. Refer to BiocParallel for more information. By default, use all available cores. #### Value named list. List of AbSeqRep objects. The names of the list elements are taken directly from the repertoire object itself. This return value is consistent with the return value of report. #### See Also #### AbSeqRep report. Analogous function, but takes input from an AbSeqRep or AbSeqCRep object instead. #### **Examples** ``` # Use example data from abseqR as abseqPy's output, substitute this # with your own abseqPy output directory abseqPyOutput <- tempdir()</pre> file.copy(system.file("extdata", "ex", package = "abseqR"), abseqPyOutput, recursive=TRUE) ### 1. The `report` parameter usage example: # report = 0; don't plot, don't collate a HTML report, don't show anything interactive samples <- abseqReport(file.path(abseqPyOutput, "ex"), report = 0)</pre> # samples is now a named list of AbSeqRep objects # report = 1; just plot pngs; don't collate a HTML report; nothing interactive # samples <- abseqReport(file.path(abseqPyOutput, "ex"), report = 1)</pre> # samples is now a named list of AbSeqRep objects # report = 2; plot pngs; collate a HTML report; HTML report will NOT be interactive # samples <- abseqReport(file.path(abseqPyOutput, "ex"), report = 2)</pre> # samples is now a named list of AbSeqRep objects # report = 3 (default); plot pngs; collate a HTML report; HTML report will be interactive # samples <- abseqReport(file.path(abseqPyOutput, "ex"), report = 3)</pre> # samples is now a named list of AbSeqRep objects ### 2. Using the return value of abseqReport: # NOTE, often, this is used to load multiple samples from different directories \# using abseqReport (with report = 0), then the samples are added together # before calling the report function. This is most useful when the samples ``` 56 report ``` # live in different abseqPy output directory. # Note that the provided example data has PCR1, PCR2, and PCR3 # samples contained within the directory stopifnot(names(samples) == c("PCR1", "PCR2", "PCR3")) # as a hypothetical example, say we found something # interesting in PCR1 and PCR3, and we want to isolate them: # we want to explicitly compare PCR1 with PCR3 pcr13 <- samples[["PCR1"]] + samples[["PCR3"]]</pre> # see abseqR::report for more information. # abseqR::report(pcr13) # uncomment this line to run ### BPPARAM usage: # 4 core machine, use all cores - use whatever value that suits you # samples <- abseqReport(file.path(abseqPyOutput, "ex"),</pre> BPPARAM = BiocParallel::MulticoreParam(nproc)) # run sequentially - no multiprocessing # samples <- abseqReport(file.path(abseqPyOutput, "ex"),</pre> BPPARAM = BiocParallel::SerialParam()) # see https://bioconductor.org/packages/release/bioc/html/BiocParallel.html # for more information about how to use BPPARAM and BiocParallel in general. ``` report Plots AbSeqRep or AbSeqCRep object to the specfied directory ## Description Plots all samples in the object argument and saves the analysis in outputDir. Users can optionally specify which samples in object should be compared. Doing so generates additional plots for clonotype comparison and the usual plots will also conveniently include these samples using additional aesthetics. This method is analogous to abseqReport. The only difference is that this method accepts AbSeqRep or AbSeqCRep objects as its first parameter, and the outputDir specifies where to store the result. ``` report(object, outputDir, report = 3) ## S4 method for signature 'AbSeqRep' report(object, outputDir, report = 3) ``` report 57 ``` ## S4 method for signature 'AbSeqCRep' report(object, outputDir, report = 3) ``` #### **Arguments** object AbSeqRep or AbSeqCRep object to plot. outputDir string type. Directory where analysis will be saved to. report (optional) integer type. The possible values are: • 0 - does nothing (returns named list of AbSeqRep objects) • 1 - generates plots for csv files • 2 - generates a report that collates all plots • 3 - generates interactive plots in report (default) each value also does what the previous values do. For example, report = 2 will return a named list of AbSeqRep objects, plot csv files, and generate a (non-interactive)HTML report that collates all the plots together. #### Value named list. List of AbSeqRep objects. The names of the list elements are taken directly from the repertoire object itself. This return value is consistent with the return value of abseqReport. #### See Also abseqReport. Analogus function, but takes input from a string that signifies the output directory of abseqPy as the first arugment instead. AbSeqRep AbSeqCRep # Examples ``` # Use example data from abseqR as abseqPy's output, substitute this # with your own abseqPy output directory abseqPyOutput <- tempdir() file.copy(system.file("extdata", "ex", package = "abseqR"), abseqPyOutput, recursive=TRUE) samples <- abseqReport(file.path(abseqPyOutput, "ex"), report = 0) # The provided example data has PCR1, PCR2, and PCR3 samples contained within # We can use the + operator to combine samples, thus requesting the # report function to compare them: pcr12 <- samples[["PCR1"]] + samples[["PCR2"]] # generate plots and report for this new comparison # report(pcr12, "PCR1_vs_PCR2") # generate plots only # report(pcr12, "PCR1_vs_PCR2", report = 1) # generate plots, and a non-interactive report</pre> ``` 58 report ``` # report(pcr12, "PCR1_vs_PCR2", report = 2) # generate plots, and an interactive report # report(pcr12, "PCR1_vs_PCR2", report = 3) # this is the default ``` # **Index** | + AbSagCDan AbSagCDan-mathad 4 | .findRepertoires, 25 | |--|--| | +, AbSeqCRep, AbSeqCRep-method, 4 +, AbSeqCRep, AbSeqRep-method, 5 | generateAllSpectratypes, 26 | | | | | +, AbSeqRep, AbSeqCRep-method, 6 | .generateDelayedReport, 26 | | +, AbSeqRep, AbSeqRep-method, 7 | .generateReport, 27 | | .UTR5Analysis, 50 | .getLineTypes, 27 | | .abundanceAnalysis, 8 | .getTotal, 28 | | .abundancePlot, 8 | .hmFromMatrix, 28 | | .alignQualityHeatMaps, 9 | .inferAnalyzed, 29 | | .allPrimerNames, 9 | .loadMatrixFromDF, 29 | | .aminoAcidBar, 10 | .loadSamplesFromString, 30 | | .aminoAcidPlot, 10 | .pairwiseComparison, 30 | | .analyzeUpstreamValidity, 11 | .plotCirclize, 31 | | .annotAnalysis, 11 | .plotDist, 31 | | .asRepertoireAlignLen, 12 | .plotDiversityCurves,32 | | .asRepertoireBitscore, 13 | .plotDuplication, 33 | | .asRepertoireChain, 13 | .plotErrorDist, 33 | | .asRepertoireDir, 14 | .plotIGVErrors, 34 | | .asRepertoireList, 14 | .plotIGVUpstreamLenDist, 34, 35 | | .asRepertoireName, 15 | .plotIGVUpstreamLenDistDetailed, $34,35$ | | .asRepertoirePrimer3, 15 | .plotPrimerIGVStatus, 36 | | .asRepertoirePrimer5, 16 | .plotPrimerIntegrity, 37 | | .asRepertoireQueryStart, 16 | .plotRarefaction, 37 | | .asRepertoireSubjectStart, 17 | .plotRecapture, 38 | | .asRepertoireUpstream, 17 | .plotSamples, 39 | | .boxPlot, 18 | .plotSpectratype, 39 | | .calculateDInd, 18 | .plotUpstreamLength, 40 | | .calculateDiversityEstimates, 19 | .plotUpstreamLengthDist,41 | | .canonicalizeTitle, 19 | .primerAnalysis,42 | | .capitalize, 20 | .prodDistPlot,42 | | .checkVert, 20 | .productivityAnalysis,43 | | .cloneDistHist, 21 | .productivityPlot,44 | | .cloneDistMarginal, 21 | .readSummary,44 | | .clonotypeAnalysis, 22 | .regionAnalysis,45 | | .collateReports, 22 | .reportLBE,45 | | .commonPrimerNames, 23 | .saveAs, 46 | | .correlationTest, 23 | .scatterPlot, 46 | | .distanceMeasure, 24 | .scatterPlotComplex, 47 | | .diversityAnalysis, 24 | .secretionSignalAnalysis,47 | | .emptyPlot, 25 | .substituteStringInFile,48 | | | | 60 INDEX ``` .summarySE, 49 .topNDist, 49 .vennIntersection, 51 AbSeqCRep, 4–7, 14, 27, 51, 52, 55–57 AbSeqCRep (AbSeqCRep-class), 51 AbSeqRep-class, 51 AbSeqRep, 5–7, 14, 27, 51, 52, 54–57 AbSeqRep (AbSeqRep-class), 52 AbSeqRep-class, 52 abseqReport, 4–7, 51, 52, 54, 54, 56, 57 report, 51, 52, 54, 55, 56 ```