Package 'VaSP'

April 12, 2022

Type Package

Version 1.6.0

- **Title** Quantification and Visualization of Variations of Splicing in Population
- **Description** Discovery of genome-wide variable alternative splicing events from short-read RNA-seq data and visualizations of gene splicing information for publication-quality multi-panel figures in a population.
- URL https://github.com/yuhuihui2011/VaSP

BugReports https://github.com/yuhuihui2011/VaSP/issues

- **License** GPL (≥ 2.0)
- **Depends** R (>= 4.0), ballgown
- Imports IRanges, GenomicRanges, S4Vectors, Sushi, parallel, matrixStats, GenomicAlignments, GenomeInfoDb, Rsamtools, cluster, stats, graphics, methods
- Suggests knitr, rmarkdown
- VignetteBuilder knitr
- **biocViews** RNASeq, AlternativeSplicing, DifferentialSplicing, StatisticalMethod, Visualization, Preprocessing, Clustering, DifferentialExpression, KEGG, ImmunoOncology

Encoding UTF-8

- LazyData false
- RoxygenNote 7.1.1
- git_url https://git.bioconductor.org/packages/VaSP
- git_branch RELEASE_3_14
- git_last_commit c68dc71
- git_last_commit_date 2021-10-26
- Date/Publication 2022-04-12
- Author Huihui Yu [aut, cre] (<https://orcid.org/0000-0003-2725-1937>), Qian Du [aut] (<https://orcid.org/0000-0003-3864-8745>), Chi Zhang [aut] (<https://orcid.org/0000-0002-1827-8137>)

Maintainer Huihui Yu <yuhuihui2011@foxmail.com>

R topics documented:

Mfinder	2	2
tDepth	3	3
tGeneinfo	4	4
e.bg	5	5
liceGene	6	5
liceGenome	7	7
licePlot	8	8
	1(•
	1(J

Index

BMfinder

Discover bimodal distrubition features

Description

Find bimodal distrubition features and divide the samples into 2 groups by k-means clustering.

Usage

Arguments

x	a numeric matrix with feature rows and sample columns, e.g., splicing score matrix from spliceGenome or spliceGene function.
p.value	p.value threshold for bimodal distrubition test
maf	minor allele frequency threshold in k-means clustering
miss	missing grouping rate threshold in k-means clustering
fold	fold change threshold between the two groups
log	whether the scores are to be logarithmic. If TRUE, all the scores are log2 tran- formed before k-means clustering: $x = log2(x+1)$.
cores	threads to be used. This value is passed to ?mclapply in parallel package

Details

The matrix contains 1, 2 and NA, and values of 'x' in group 2 are larger than group 1.

Value

a matrix with feature rows and sample columns.

getDepth

Examples

```
data(rice.bg)
score<-spliceGene(rice.bg,'MSTRG.183',junc.type='score')
score<-round(score,2)
as<-BMfinder(score,cores=1) # 4 bimodal distrubition features found
##compare
as
score[rownames(score)%in%rownames(as),]</pre>
```

getDepth

Get Read Depth

Description

Get read depth from a BAM file (in bedgraph format)

Usage

getDepth(x, chrom, start, end)

Arguments

Х	path to a BAM file
chrom	chromosome of a region to be searched
start	start position
end	end position

Value

a data.frame in bedgraph file format which can be used as input for plotBedgraph in the SuShi package.

See Also

splicePlot

Examples

getGeneinfo

```
plotBedgraph(depth,'Chr1',chromstart=1171800, chromend=1179400,yaxt='s')
mtext('Depth',side=2,line=2.5,cex=1.2,font=2)
labelgenome('Chr1',1171800,1179400,side=1,scipen=20,n=5,scale='Kb')
```

getGeneinfo

Get Gene Informaton from a ballgown object

Description

Get gene informaton from a ballgown object by genes or by genomic regions

Usage

Arguments

genes	a character vector specifying gene IDs in 'bg'. Any values other than NA over- ride genomic region (chrom, start, stop)
bg	ballgown object
chrom	chromosome of a region
start	start postion
end	stop postion
samples	names of samples. The transcrpts in these samples are subjected to 'trans.select'
trans.select	logical expression-like string, indicating transcript rows to select from a matrix of transcript coverages: NA value keeps all transcripts.

Value

a data.frame in bed-like file format that can be used as input for plotGenes in the SuShi package

See Also

splicePlot; plotGenes in Sushi package

Examples

```
data(rice.bg)
unique(geneIDs(rice.bg))
gene_id <- c('MSTRG.181', 'MSTRG.182', 'MSTRG.183')
geneinfo <- getGeneinfo(genes=gene_id,rice.bg)
trans <- table(geneinfo$name) # show how many exons each transcript has
trans</pre>
```

library(Sushi)

4

rice.bg

rice.bg

Rice ballgown object

Description

Small ballgown object created with a subset of rice RNAseq data, for demonstration purposes

Format

a ballgown object with 33 transcripts and 6 samples

Details

The raw RNA-seq data were screened and trimmed using Trimmomatic (Bolger et al., 2014) and RNA-seq mapping, transcript assembly, and quantification were conducted with HISAT, StringTie, and Ballgown by following the method described by Pertea et al. (Pertea et al., 2016). The rice.bg is a subset ballgown object with 33 transcripts and 6 samples (Yu et al., 2021).

Source

The raw RNA-seq data were from the project of variation in transcriptional responses to salt stress in rice (SRA Accession: SRP106054)

References

Yu, H., Du, Q., Campbell, M., Yu, B., Walia, H. and Zhang, C. (2021), Genome-wide discovery of natural variation in pre-mRNA splicing and prioritising causal alternative splicing to salt stress response in rice. New Phytol. https://doi.org/10.1111/nph.17189

Bolger, A.M., Lohse, M., and Usadel, B. (2014). Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114-2120.

Pertea, M., Kim, D., Pertea, G.M., Leek, J.T., and Salzberg, S.L. (2016). Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie and Ballgown. Nat Protoc 11, 1650-1667.

Examples

```
data(rice.bg)
rice.bg
# ballgown instance with 33 transcripts and 6 samples
```

spliceGene

Description

Calculate splicing Scores from ballgown object for a given gene. This function can only calculate one gene. Please use function spliceGenome to obtain genome-wide splicing scores.

Usage

Arguments

bg	ballgown object
gene	a character string specifying gene id
samples	names of samples
junc.type	type of junction estimate ('score' for junction score; 'count' for junction read count)
trans.select	logical expression-like string, indicating transcript rows to select from a matrix of transcript coverages: NA value keeps all transcripts. e.g. use trans.select='rowMaxs(x)>=1' to filter the transcripts with the maximium coverage among all the samples less than 1.
junc.select	logical expression-like string, indicating junction rows to select from a matrix of junction counts: NA value keeps all junctions. e.g. use junc.select='rowMaxs(x)>=5' to filter the junctions with the maximium read count among all the samples less than 5.

Details

score = junction count/gene-level per base read coverage. Row functions for matrices are useful to select transcripts and junctions. See matrixStats package.

Value

a matrix of junction scores with intron rows and sample columns.

References

Yu, H., Du, Q., Campbell, M., Yu, B., Walia, H. and Zhang, C. (2021), Genome-wide discovery of natural variation in pre-mRNA splicing and prioritising causal alternative splicing to salt stress response in rice. New Phytol. https://doi.org/10.1111/nph.17189

See Also

spliceGenome, which calculates splicing scores in whole genome.

spliceGenome

Examples

```
data(rice.bg)
rice.bg
head(geneIDs(rice.bg))
score<-spliceGene(rice.bg,'MSTRG.183',junc.type='score')
count<-spliceGene(rice.bg,'MSTRG.183',junc.type='count')
## compare
tail(score)
tail(count)
## get intron structrue
intron<-structure(rice.bg)$intron
intron[intron$id%in%rownames(score)]</pre>
```

spliceGenome

Calculate Genome-wide Splicing Scores

Description

Calculate splicing scores from ballgown objects for all genes.

Usage

Arguments

bg	ballgown object
gene.select	logical expression-like string, indicating genes to select from a matrix of gene- level coverages: NA value keeps all genes. e.g. gene.select = 'rowQuantiles(x,probs = 0.05)>=1' keeps the genes with the read coverage greater than or equal to 1 in at least 95 (0.05 quantile). Used to filter low expressed genes.
intron.select	logical expression-like string, indicating introns to select from a matrix of junction counts: NA value keeps all introns. e.g. intron.select = 'rowQuantiles(x,probs = 0.95)>=5' keeps the introns with the read count greater than or euqal to 5 in at least 5 (0.95 quantile). Used to filter introns with very few junction reads supporting.

Details

score = junction count/gene-level per base read coverage. Row functions for matrixStats package are useful to select genes and introns.

Value

a list of two elelments: 'score' is matrix of intron splicing scores with intron rows and sample columns and 'intron' is a GRanges object of intron structure. See structure in **ballgown** package

References

Yu, H., Du, Q., Campbell, M., Yu, B., Walia, H. and Zhang, C. (2021), Genome-wide discovery of natural variation in pre-mRNA splicing and prioritising causal alternative splicing to salt stress response in rice. New Phytol. https://doi.org/10.1111/nph.17189

See Also

spliceGene, which calculates splicing scores in one gene.

Examples

data(rice.bg)
rice.bg

splice<-spliceGenome(rice.bg,gene.select=NA,intron.select=NA)
names(splice)</pre>

```
head(splice$score)
splice$intron
```

splicePlot

```
Gene Splicing Plot
```

Description

Visualization of read coverage, splicing information and gene information in a gene region. This function is a wrapper of getDepth, getGeneinfo, spliceGene, plotBedgraph and plotGenes.

Usage

```
splicePlot(bg, gene, samples, bam.dir = NA, start = NA, end = NA,
labels = samples, junc.type = c("score", "count"), junc.text = TRUE,
trans.select = "rowMaxs(x)>=1", junc.select = "rowMaxs(x)>=5",
col = SushiColors(2)(length(samples) + 1)[-1],transparency = 0.5,
scale = "Kb", plotgenetype = "arrow", ...)
```

Arguments

bg	ballgown object. See ballgown.
gene	string indicating a gene ID (must be in the 'bg')
samples	names of the samples to be shown (must be in the 'bg' and have bam files in the 'bam.dir')

splicePlot

bam.dir	bam file directory of the samples. If NA, instead of read depth, conserved exons are drawn.
start	start position to be shown. If NA, start position of the gene will be used.
end	stop position to be shown. If NA, end position of the gene will be used.
labels	labels for samples (default: sample names). If it is NA, neigher sample names nor gene names will be labeled
junc.type	type of junction estimates to be shown ('score' for junction score; count' for junction read count)
junc.text	TRUE/FALSE indicating whether junction estimates should be labeled
trans.select	logical expression-like string, indicating transcript rows to select from a matrix of transcript coverages: NA value keeps all transcripts. See spliceGene
junc.select	logical expression-like string, indicating junction rows to select from a matrix of junction counts: NA value keeps all junctions. See spliceGene
col	a vector of length(samples) specifying colors of read depths.
transparency	value between 0 and 1 indicating the degree of transparency of read depths.
scale	scale of the labelgenome ('bp','Kb','Mb')
plotgenetype	string specifying whether the genes should resemble a 'box' or a 'arrow'. See plotGenes.
	values to be passed to plotGenes.

Value

see plotGenes.

Examples

```
data(rice.bg)
rice.bg
samples <- paste('Sample', c('027','102','237'),sep='_')
bam.dir <- system.file('extdata',package = 'VaSP')
## plot the whole gene region
splicePlot(rice.bg,samples,bam.dir,gene='MSTRG.183',bheight=0.2)
## plot the value of the set of th
```

```
## plot the alternative splicing region
splicePlot(rice.bg,samples,bam.dir,gene='MSTRG.183',start=1179000)
```

Index

* datasets rice.bg, 5 ballgown, 8 BMfinder, 2 getDepth, 3, 8 getGeneinfo, 4, 8 GRanges, 8 labelgenome, 9 matrixStats, 6, 7

plotBedgraph, 3, 8 plotGenes, 4, 8, 9

rice.bg, 5

spliceGene, 2, 6, 8, 9
spliceGenome, 2, 6, 7
splicePlot, 3, 4, 8
structure, 8