Package 'STAN'

April 12, 2022

Version 2.22.0

Date 2017-08-10

Title The Genomic STate ANnotation Package

Author Benedikt Zacher, Julia Ertl, Rafael Campos-Martin, Julien Gagneur, Achim Tresch

Maintainer Rafael Campos-Martin <campos@mpipz.mpg.de>

Imports GenomicRanges, IRanges, S4Vectors, BiocGenerics, GenomeInfoDb, Gviz, Rsolnp

Depends methods, poilog, parallel

VignetteBuilder knitr

Suggests BiocStyle, gplots, knitr

Description Genome segmentation with hidden Markov models has become a useful tool to annotate genomic elements, such as promoters and enhancers. STAN (genomic STate ANnotation) implements (bidirectional) hidden Markov models (HMMs) using a variety of different probability distributions, which can model a wide range of current genomic data (e.g. continuous, discrete, binary). STAN de novo learns and annotates the genome into a given number of 'genomic states'. The 'genomic states' may for instance reflect distinct genomeassociated protein complexes (e.g. 'transcription states') or describe recurring patterns of chromatin features (referred to as 'chromatin states'). Unlike other tools, STAN also allows for the integration of strand-specific (e.g. RNA) and non-strand-specific data (e.g. ChIP).

License GPL (>= 2)

biocViews HiddenMarkovModel, GenomeAnnotation, Microarray, Sequencing, ChIPSeq, RNASeq, ChipOnChip, Transcription, ImmunoOncology

LazyLoad yes

RoxygenNote 6.0.1

git_url https://git.bioconductor.org/packages/STAN

git_branch RELEASE_3_14

git_last_commit 3fab9c3

git_last_commit_date 2021-10-26

Date/Publication 2022-04-12

R topics documented:

STAN-package	3
bdHMM	3
bdHMM-class	4
binarizeData	5
c2optimize	6
call_dpoilog	6
data2Gviz	7
DimNames	7
DirScore	8
Emission	9
EmissionParams	9
example	0
fitBdClust	0
fitHMM	1
flags	3
getAvgSignal	3
getLogLik	4
getPosterior	5
getSizeFactors	6
getViterbi	6
HMM	7
HMM-class	8
HMMEmission	9
HMMEmission-class	9
initBdClust	0
initBdHMM	1
initHMM 2	2
InitProb	2
LogLik	3
observations	4
pilot.hg19	.4
runningMean	.4
StateNames	5
trainRegions	6
Transitions	6
ucscGenes	27
viterbi2GRanges	27
viterbi2Gviz	.8
yeastTF_databychrom_ex	8
yeastTF_SGDGenes	.9
[,bdHMM,ANY,ANY,ANY-method	.9
[,HMM,ANY,ANY,ANY-method	0

STAN-package

Description

The genomic STate ANnotation package

Author(s)

Benedikt Zacher, Julia Ertl, Julien Gagneur, Achim Tresch

References

Zacher, B. and Lidschreiber, M. and Cramer, P. and Gagneur, J. and Tresch, A. (2014): Annotation of genomics data using bidirectional hidden Markov models unveils variations in Pol II transcription cycle Mol. Syst. Biol. 10:768

bdHMM

Create a bdHMM object

Description

This function creates a bdHMM function.

Usage

```
bdHMM(initProb = numeric(), transMat = matrix(numeric(), ncol = 0, nrow =
0), emission, nStates = numeric(), status = character(),
stateNames = character(), dimNames = character(),
transitionsOptim = "analytical", directedObs = integer(),
dirScore = numeric())
```

Arguments

initProb	Initial state probabilities.
transMat	Transition probabilities
emission	Emission parameters as an HMMEmission object.
nStates	Number of states.
status	Status of the bdHMM. 'Initial' means that the model was not fitted yet. 'EM' means that the model was optimized using Expectation maximization.
stateNames	Indicates directinality of states. States can be forward (F1, F2,, Fn), reverse (R1, R2,, Rn) or undirectional (U1, U2,, Um). Number of F and R states must be equal and twin states are indicated by integers in id (e.g. F1 and R1 and twins).

dimNames	Names of data tracks.
transitionsOptim	
	There are three methods to choose from for fitting the transitions. Bidirectional transition matrices (invariant under reversal of time and direction) can be fitted using c('rsolnp', 'analytical'). 'None' uses standard update formulas and the resulting matrix is not constrained to be bidirectional.
directed0bs	An integer indicating which dimensions are directed. Undirected dimensions are 0. Directed observations must be marked as unique integer pairs. For instance $c(0,0,0,0,0,1,1,2,2,3,3)$ contains 5 undirected observations, and thre pairs (one for each direction) of directed observations.
dirScore	Directionlity score of states of a fitted bdHMM.

Value

bdHMM

See Also

HMMEmission

Examples

```
nStates = 5
stateNames = c('F1', 'F2', 'R1', 'R2', 'U1')
means = list(4,11,4,11,-1)
Sigma = lapply(list(4,4,4,4,4), as.matrix)
transMat = matrix(1/nStates, nrow=nStates, ncol=nStates)
initProb = rep(1/nStates, nStates)
myEmission = list(d1=HMMEmission(type='Gaussian', parameters=list(mu=means, cov=Sigma), nStates=length(means)))
```

bdhmm = bdHMM(initProb=initProb, transMat=transMat, emission=myEmission, nStates=nStates, status='initial', state

bdHMM-class This class is a generic container for bidirectional Hidden Markov Models.

Description

This class is a generic container for bidirectional Hidden Markov Models.

Slots

initProb Initial state probabilities. transMat Transition probabilities emission Emission parameters as an HMMEmission object. nStates Number of states.

binarizeData

status of the HMM. On of c('initial', 'EM').

stateNames State names.

dimNames Names of data tracks.

- LogLik Log likelihood of a fitted HMM.
- transitionsOptim There are three methods to choose from for fitting the transitions. Bidirectional transition matrices (invariant under reversal of time and direction) can be fitted using c('rsolnp', 'ipopt'). 'None' uses standard update formulas and the resulting matrix is not constrained to be bidirectional.
- directedObs An integer indicating which dimensions are directed. Undirected dimensions are 0. Directed observations must be marked as unique integer pairs. For instance c(0,0,0,0,0,1,1,2,2,3,3) contains 5 undirected observations, and thre pairs (one for each direction) of directed observations.

dirScore Directionlity score of states of a fitted bdHMM.

See Also

HMMEmission

Examples

```
nStates = 5
stateNames = c('F1', 'F2', 'R1', 'R2', 'U1')
means = list(4,11,4,11,-1)
Sigma = lapply(list(4,4,4,4,4), as.matrix)
transMat = matrix(1/nStates, nrow=nStates, ncol=nStates)
initProb = rep(1/nStates, nStates)
myEmission = list(d1=HMMEmission(type='Gaussian', parameters=list(mu=means, cov=Sigma), nStates=length(means)))
```

bdhmm = bdHMM(initProb=initProb, transMat=transMat, emission=myEmission, nStates=nStates, status='initial', state

binarizeData

Binarize Sequencing data with the default ChromHMM binarization

Description

Binarize Sequencing data with the default ChromHMM binarization

Usage

```
binarizeData(obs, thresh = 1e-04)
```

Arguments

obs	The observations. A list of one or more entries containing the observation matrix
	(numeric) for the samples (e.g. chromosomes).
thresh	Upper tail probability to find a value equal or higher than $Y(P(Y \ge y))$

Value

Binarized observation sequences as a list.

Examples

```
data(trainRegions)
binData = binarizeData(obs = trainRegions, thresh = 1e-4)
```

c2optimize

Optimize transitions

Description

The function is called from C++ to optimize transitions.

Usage

c2optimize(pars)

Arguments

pars Parameters for optimization.

Value

optimized transitions

call_dpoilog

Calculate density of the Poisson-Log-Normal distribution.

Description

Calculate density of the Poisson-Log-Normal distribution.

Usage

```
call_dpoilog(x)
```

Arguments

Х

A vector c(n, mu, sigma), where n is the number of observed counts, mu the mean of the Log-Normal distribution and sigma its variance.

Value

Density of the Poisson-Log-Normal distribution.

data2Gviz

Examples

call_dpoilog(c(5, 2, 1))

data2Gviz

Convert data for plotting with Gviz

Description

Convert data for plotting with Gviz

Usage

```
data2Gviz(obs, regions, binSize, gen, col = "black", type = "h", chrom)
```

Arguments

obs	The observations. A list of one or more entries containing the observation matrix (numeric) for the samples (e.g. chromosomes).
regions	GRanges object of the regions (e.g. chromosomes) stored in the viterbi path.
binSize	The bin size of the viterbi path.
gen	The geome id, e.g. hg19, hg38 for human.
col	The color of the data tracks.
type	Type of plot (See Gviz DataTrack documentation).
chrom	Chromosome in chich to create the object.

Value

A list containing the data tracks converted to Gviz objects for plotting.

DimNames

Get dimNames of a (bd)HMM

Description

This function returns the names of dimensions (data tracks).

Usage

DimNames(hmm)

Arguments

hmm

An object of class HMM or bdHMM.

Value

A character vector

Examples

```
nStates = 5
means = list(4,11,4,11,-1)
Sigma = lapply(list(4,4,4,4,4), as.matrix)
transMat = matrix(1/nStates, nrow=nStates, ncol=nStates)
initProb = rep(1/nStates, nStates)
hmm = HMM(dimNames="1", initProb=initProb, transMat=transMat, emission=HMMEmission(type='Gaussian', parameters=1
DimNames(hmm)
```

DirScore

Get directionality score of a bdHMM

Description

This function returns the directionality score of a bdHMM.

Usage

DirScore(bdhmm)

Arguments

bdhmm An object of class bdHMM.

Value

Directionality score of the bdHMM after model fitting.

Examples

```
data(example)
bdhmm_ex = initBdHMM(observations, dStates=3, method="Gaussian", directedObs=0)
```

```
# without flags
bdhmm_fitted_noFlags = fitHMM(observations, bdhmm_ex)
DirScore(bdhmm_fitted_noFlags)
```

```
# with flags
bdhmm_fitted_flags = fitHMM(observations, bdhmm_ex, dirFlags=flags)
DirScore(bdhmm_fitted_flags)
```

8

Emission

Description

This function returns the Emission functions of a (bd)HMM.

Usage

Emission(hmm)

Arguments

hmm

An object of class HMM or bdHMM.

Value

An object of class HMMEmission

See Also

HMMEmission

Examples

```
nStates = 5
means = list(4,11,4,11,-1)
Sigma = lapply(list(4,4,4,4,4), as.matrix)
transMat = matrix(1/nStates, nrow=nStates, ncol=nStates)
initProb = rep(1/nStates, nStates)
hmm = HMM(initProb=initProb, transMat=transMat, emission=HMMEmission(type='Gaussian', parameters=list(mu=means,
Emission(hmm)
```

EmissionParams	Get Emission parameters of a (bd)HMM	•
----------------	--------------------------------------	---

Description

This function returns the parameters of emission functions of a (bd)HMM object.

Usage

EmissionParams(hmm)

fitBdClust

Arguments

hmm

An object of class (bd)HMM.

Value

A list containing the parameters of the Emission functions.

See Also

HMMEmission, HMM, bdHMM

Examples

```
nStates = 5
means = list(4,11,4,11,-1)
Sigma = lapply(list(4,4,4,4,4), as.matrix)
transMat = matrix(1/nStates, nrow=nStates, ncol=nStates)
initProb = rep(1/nStates, nStates)
hmm = HMM(initProb=initProb, transMat=transMat, emission=HMMEmission(type='Gaussian', parameters=list(mu=means,
EmissionParams(hmm)
```

example	The data for the bdHMM example in the vignette and examples in the
	manual

Description

The data for the bdHMM example in the vignette and examples in the manual

Author(s)

Benedikt Zacher, Julia Ertl, Julien Gagneur, Achim Tresch

fitBdClust

Fit a bidirectional Clustering

Description

The function is used to fit (bidirectional) Clusters, given one or more observation sequence.

Usage

fitBdClust(obs=list(), BdClust , convergence=1e-6, maxIters=1000, dirFlags=list(), emissionProbs=list

10

fitHMM

Arguments

obs	The observations. A list of one or more entries containing the observation matrix (numeric) for the samples (e.g. chromosomes).
BdClust	The initial Bidirectional Cluster.
convergence	Convergence cutoff for EM-algorithm (default: 1e-6).
maxIters	Maximum number of iterations.
dirFlags	The flag sequence is needed when a bdHMM is fitted on undirected data (e.g.) ChIP only. It is a list of character vectors indication for each position its knwon directionality. U allows all states. F allows undirected states and states in forward direction. R allows undirected states and states in reverse direction.
emissionProbs	List of precalculated emission probabilities of emission function is of type 'null'.
effectiveZero	Transitions below this cutoff are analytically set to 0 to speed up comptuations.
verbose	logical for printing algorithm status or not.
nCores	Number of cores to use for computations.
incrementalEM	When TRUE, the incremental EM is used to fit the model, where parameters are updated after each iteration over a single observation sequence.
updateTransMat	Wether transitions should be updated during model learning, default: TRUE.
sizeFactors	Library size factors for Emissions PoissonLogNormal or NegativeBinomial as a length(obs) x ncol(obs[[1]]) matrix.

Value

A list containing the trace of the log-likelihood during EM learning and the fitted HMM model.

Examples

```
data(example)
bdclust_ex = initBdClust(observations, dStates=3, method="Gaussian")
bdclust_fitted = fitBdClust(observations, bdclust_ex)
```

fitHMM

Fit a Hidden Markov Model

Description

The function is used to fit (bidirectional) Hidden Markov Models, given one or more observation sequence.

Usage

fitHMM(obs=list(), hmm, convergence=1e-6, maxIters=1000, dirFlags=list(), emissionProbs=list(), effec

Arguments

obs	The observations. A list of one or more entries containing the observation matrix (numeric) for the samples (e.g. chromosomes).
hmm	The initial Hidden Markov Model. This is a HMM.
convergence	Convergence cutoff for EM-algorithm (default: 1e-6).
maxIters	Maximum number of iterations.
dirFlags	The flag sequence is needed when a bdHMM is fitted on undirected data (e.g.) ChIP only. It is a list of character vectors indication for each position its knwon directionality. U allows all states. F allows undirected states and states in forward direction. R allows undirected states and states in reverse direction.
emissionProbs	List of precalculated emission probabilities of emission function is of type 'null'.
effectiveZero	Transitions below this cutoff are analytically set to 0 to speed up comptuations.
verbose	logical for printing algorithm status or not.
nCores	Number of cores to use for computations.
incrementalEM	When TRUE, the incremental EM is used to fit the model, where parameters are updated after each iteration over a single observation sequence.
updateTransMat	Wether transitions should be updated during model learning, default: TRUE.
sizeFactors	Library size factors for Emissions PoissonLogNormal or NegativeBinomial as a length(obs) x ncol(obs[[1]]) matrix.
clustering	Boolean variable to specify wether it should be fit as an HMM or or bdCluster- ing. Please, use function bdClust when bdClust is prefered.

Value

A list containing the trace of the log-likelihood during EM learning and the fitted HMM model.

See Also

HMM

```
data(example)
hmm_ex = initHMM(observations, nStates=3, method="Gaussian")
hmm_fitted = fitHMM(observations, hmm_ex)
```

flags

Description

Pre-computed flag sequence for the 'example' data.

Author(s)

Benedikt Zacher, Julia Ertl, Julien Gagneur, Achim Tresch

getAvgSignal

Compute average signal in state segmentation

Description

Compute average signal in state segmentation

Usage

getAvgSignal(viterbi, obs, fct=mean)

Arguments

viterbi	A list containing the viterbi paths as factors. The output from getViterbi.
obs	The observations. A list of one or more entries containing the observation matrix (numeric) for the samples (e.g. chromosomes).
fct	The averaging function, default: mean.

Value

A state x data track matrix containing the average signal.

```
data(yeastTF_databychrom_ex)
dStates = 6
dirobs = as.integer(c(rep(0,10), 1, 1))
bdhmm_gauss = initBdHMM(yeastTF_databychrom_ex, dStates = dStates, method = "Gaussian", directedObs=dirobs)
bdhmm_fitted_gauss = fitHMM(yeastTF_databychrom_ex, bdhmm_gauss)
viterbi_bdhmm_gauss = getViterbi(bdhmm_fitted_gauss, yeastTF_databychrom_ex)
avg_signal = getAvgSignal(viterbi_bdhmm_gauss, yeastTF_databychrom_ex)
```

getLogLik

Description

The function calculates log likelihood for one or more observation sequence.

Usage

getLogLik(hmm, obs = list(), emissionProbs = list(), dirFlags = list(), verbose = FALSE, nCores = 1, size

Arguments

hmm	The Hidden Markov Model.
obs	The observations. A list of one or more entries containing the observation matrix (numeric) for the samples (e.g. chromosomes).
emissionProbs	List of precalculated emission probabilities of emission function is of type 'null'.
dirFlags	The flag sequence is needed when a bdHMM is fitted on undirected data (e.g.) ChIP only. It is a list of character vectors indication for each position its knwon directionality. U allows all states. F allows undirected states and states in forward direction. R allows undirected states and states in reverse direction.
verbose	logical for printing algorithm status or not.
nCores	Number of cores to use for computations.
sizeFactors	Library size factors for Emissions PoissonLogNormal or NegativeBinomial as a length(obs) x ncol(obs[[1]]) matrix.

Value

The log likelihood of the observations sequences, given the model.

See Also

HMM

```
data(example)
hmm_ex = initHMM(observations, nStates=3, method="Gaussian")
hmm_fitted = fitHMM(observations, hmm_ex)
loglik = getLogLik(hmm_fitted, observations)
loglik
```

getPosterior

Description

The function calculates posterior state probabilities for one or more observation sequence.

Usage

```
getPosterior(hmm, obs=list(), emissionProbs=list(), dirFlags=list(), verbose=FALSE, nCores=1, sizeFac
```

Arguments

hmm	The Hidden Markov Model.
obs	The observations. A list of one or more entries containing the observation matrix (numeric) for the samples (e.g. chromosomes).
emissionProbs	List of precalculated emission probabilities of emission function is of type 'null'.
dirFlags	The flag sequence is needed when a bdHMM is fitted on undirected data (e.g.) ChIP only. It is a list of character vectors indication for each position its knwon directionality. U allows all states. F allows undirected states and states in forward direction. R allows undirected states and states in reverse direction.
verbose	logical for printing algorithm status or not.
nCores	Number of cores to use for computations.
sizeFactors	Library size factors for Emissions PoissonLogNormal or NegativeBinomial as a length(obs) x ncol(obs[[1]]) matrix.

Value

A list containing for the observation sequences the posterior state (col) distribution at each position (row).

```
data(example)
hmm_ex = initHMM(observations, nStates=3, method="Gaussian")
hmm_fitted = fitHMM(observations, hmm_ex)
posterior = getPosterior(hmm_fitted, observations)
```

getSizeFactors

Description

Compute size factors

Usage

getSizeFactors(obs, celltypes)

Arguments

obs	The observations. A list of one or more entries containing the observation matrix (numeric) for the samples (e.g. chromosomes).
celltypes	Indicates the cell type/tissue for each entry in obs.

Value

A celltype/tissue x data tracks matrix containing the size factors.

Examples

```
data(trainRegions)
celltypes = list("E123"=grep("E123", names(trainRegions)),
            "E116"=grep("E116", names(trainRegions)))
sizeFactors = getSizeFactors(trainRegions, celltypes)
sizeFactors
```

getViterbi

Calculate the most likely state path

Description

Given a Hidden Markov Model, the function calculates the most likely state path (viterbi) for one or more observation sequence.

Usage

```
getViterbi(hmm, obs=list(), NAtol=5, emissionProbs=list(), verbose=FALSE, sizeFactors=matrix(1, nrow=
```

HMM

Arguments

hmm	The initial Hidden Markov Model.
obs	The observations. A list of one or more entries containing the observation matrix (numeric) for the samples (e.g. chromosomes).
NAtol	Successive positions having NAs longer than this threshold are masked in the viterbi path.
emissionProbs	List of precalculated emission probabilities of emission function is of type 'null'.
verbose	logical for printing algorithm status or not.
sizeFactors	Library size factors for Emissions PoissonLogNormal or NegativeBinomial as a length(obs) x ncol(obs[[1]]) matrix.

Value

A list containint the vterbi paths.

Examples

```
data(example)
hmm_ex = initHMM(observations, nStates=3, method="Gaussian")
hmm_fitted = fitHMM(observations, hmm_ex)
viterbi = getViterbi(hmm_fitted, observations)
```

HMM

Create a HMM object

Description

This function creates a HMM object.

Usage

```
HMM(initProb = numeric(), transMat = matrix(numeric(), ncol = 1, nrow = 1),
emission, nStates = numeric(), status = character(),
stateNames = character(), dimNames = character(), LogLik = numeric())
```

Arguments

initProb	Initial state probabilities.
transMat	Transition probabilities
emission	Emission parameters as an HMMEmission object.
nStates	Number of states.
status	of the HMM. On of c('initial', 'EM').
stateNames	State names.
dimNames	Names of data tracks.
LogLik	Log likelihood of a fitted HMM.

HMM-class

Value

HMM

See Also

HMMEmission

Examples

```
nStates = 5
means = list(4,11,4,11,-1)
Sigma = lapply(list(4,4,4,4,4), as.matrix)
transMat = matrix(1/nStates, nrow=nStates, ncol=nStates)
initProb = rep(1/nStates, nStates)
HMM(initProb=initProb, transMat=transMat, emission=HMMEmission(type='Gaussian', parameters=list(mu=means, cov=Si
```

HMM-class

This class is a generic container for Hidden Markov Models.

Description

This class is a generic container for Hidden Markov Models.

Slots

initProb Initial state probabilities. transMat Transition probabilities emission Emission parameters as an HMMEmission object. nStates Number of states. status of the HMM. On of c('initial', 'EM'). stateNames State names. dimNames Names of data tracks. LogLik Log likelihood of a fitted HMM.

See Also

HMMEmission

Examples

```
nStates = 5
means = list(4,11,4,11,-1)
Sigma = lapply(list(4,4,4,4,4), as.matrix)
transMat = matrix(1/nStates, nrow=nStates, ncol=nStates)
initProb = rep(1/nStates, nStates)
```

HMM(initProb=initProb, transMat=transMat, emission=HMMEmission(type='Gaussian', parameters=list(mu=means, cov=Si

18

HMMEmission

Description

This function creates a HMMEmission object.

Usage

```
HMMEmission(type = character(), parameters = list(), nStates = numeric())
```

Arguments

type	The type of emission function c('Gaussian').
parameters	A list containing the the parameters for each state.
nStates	The number of states.

Value

HMMEmission

Examples

```
nStates = 5
means = list(4,11,4,11,-1)
Sigma = lapply(list(4,4,4,4,4), as.matrix)
transMat = matrix(1/nStates, nrow=nStates, ncol=nStates)
initProb = rep(1/nStates, nStates)
HMMEmission(type='Gaussian', parameters=list(mu=means, cov=Sigma), nStates=length(means))
```

HMMEmission-class This class is a generic container for different emission functions of Hidden Markov Models.

Description

This class is a generic container for different emission functions of Hidden Markov Models.

Slots

type The type of emission function c('Gaussian').

parameters A list containing the the parameters for each state.

dim Number of dimensions.

nStates The number of states.

Examples

```
nStates = 5
means = list(4,11,4,11,-1)
Sigma = lapply(list(4,4,4,4,4), as.matrix)
transMat = matrix(1/nStates, nrow=nStates, ncol=nStates)
initProb = rep(1/nStates, nStates)
HMMEmission(type='Gaussian', parameters=list(mu=means, cov=Sigma), nStates=length(means))
```

initBdClust

Initialization of bidirectional Clustering

Description

Initialization of bidirectional Clustering

Usage

initBdClust(obs, dStates = 0, uStates = 0, method, directedObs = rep(0, ncol(obs[[1]])), sizeFactors = m

Arguments

obs	The observations. A list of one or more entries containing the observation matrix (numeric) for the samples (e.g. chromosomes).
dStates	The number of directed states.
uStates	The number of undirected states.
method	Emission distribution of the model. One out of c("NegativeBinomial", "Poisson- LogNormal", "NegativeMultinomial", "ZINegativeBinomial", "Poisson", "Bernoulli", "Gaussian", "IndependentGaussian")
directed0bs	Integer vector defining the directionality (or strand-specificity) of the data tracks. Undirected (non-strand-specific) data tracks (e.g. ChIP) are indicated indicated by '0'. Directed (strand-specific) data tracks are indicated by increasing pairs of integers. For instance $c(0,0,0,1,1,2,2)$: The first three data tracks are undirected, followed by two pairs of directed measurements.
sizeFactors	Library size factors for Emissions PoissonLogNormal or NegativeBinomial as a length(obs) x ncol(obs[[1]]) matrix.
sharedCov	If TRUE, (co-)variance of (Independent)Gaussian is shared over states. Only applicable to 'Gaussian' or 'IndependentGaussian' emissions. Default: FALSE.
dirFlags	The flag sequence is needed when a bdHMM is fitted on undirected data (e.g.) ChIP only. It is a list of character vectors indication for each position its knwon directionality. U allows all states. F allows undirected states and states in forward direction. R allows undirected states and states in reverse direction.

Value

A HMM object.

20

initBdHMM

Description

Initialization of bidirectional hidden Markov models

Usage

initBdHMM(obs, dStates = 0, uStates = 0, method, dirFlags = NULL, directedObs = rep(0, ncol(obs[[1]])),

Arguments

obs	The observations. A list of one or more entries containing the observation matrix (numeric) for the samples (e.g. chromosomes).
dStates	The number of directed states.
uStates	The number of undirected states.
method	Emission distribution of the model. One out of c("NegativeBinomial", "Poisson- LogNormal", "NegativeMultinomial", "ZINegativeBinomial", "Poisson", "Bernoulli", "Gaussian", "IndependentGaussian")
dirFlags	The flag sequence is needed when a bdHMM is fitted on undirected data (e.g.) ChIP only. It is a list of character vectors indication for each position its knwon directionality. U allows all states. F allows undirected states and states in forward direction. R allows undirected states and states in reverse direction.
directed0bs	Integer vector defining the directionality (or strand-specificity) of the data tracks. Undirected (non-strand-specific) data tracks (e.g. ChIP) are indicated by '0'. Di- rected (strand-specific) data tracks are indicated by increasing pairs of integers. For instance $c(0,0,0,1,1,2,2)$: The first three data tracks are undirected, followed by two pairs of directed measurements.
sizeFactors	Library size factors for Emissions PoissonLogNormal or NegativeBinomial as a length(obs) x ncol(obs[[1]]) matrix.
sharedCov	If TRUE, (co-)variance of (Independent)Gaussian is shared over states. Only applicable to 'Gaussian' or 'IndependentGaussian' emissions. Default: FALSE.

Value

A HMM object.

```
data(example)
bdHMM_ex = initBdHMM(observations, dStates=3, method="Gaussian")
```

initHMM

Description

Initialization of hidden Markov models

Usage

```
initHMM(obs, nStates, method, sizeFactors = matrix(1, nrow = length(obs), ncol = ncol(obs[[1]])), share
```

Arguments

obs	The observations. A list of one or more entries containing the observation matrix (numeric) for the samples (e.g. chromosomes).
nStates	The number of states.
method	Emission distribution of the model. One out of c("NegativeBinomial", "Poisson- LogNormal", "NegativeMultinomial", "ZINegativeBinomial", "Poisson", "Bernoulli", "Gaussian", "IndependentGaussian")
sizeFactors	Library size factors for Emissions PoissonLogNormal or NegativeBinomial as a length(obs) x ncol(obs[[1]]) matrix.
sharedCov	If TRUE, (co-)variance of (Independent)Gaussian is shared over states. Only applicable to 'Gaussian' or 'IndependentGaussian' emissions. Default: FALSE.

Value

A HMM object.

Examples

```
data(example)
hmm_ex = initHMM(observations, nStates=3, method="Gaussian")
```

InitProb	Ge

et initial state probabilities of a (bd)HMM

Description

This function returns the initial state probabilities of a (bd)HMM.

Usage

InitProb(hmm)

LogLik

Arguments

hmm

An object of class HMM or bdHMM.

Value

The initial state probabilities as a numeric vector.

See Also

HMM, bdHMM

Examples

```
nStates = 5
means = list(4,11,4,11,-1)
Sigma = lapply(list(4,4,4,4,4), as.matrix)
transMat = matrix(1/nStates, nrow=nStates, ncol=nStates)
initProb = rep(1/nStates, nStates)
hmm = HMM(initProb=initProb, transMat=transMat, emission=HMMEmission(type='Gaussian', parameters=list(mu=means,
InitProb(hmm)
```

LogLik

Get stateNames of a (bd)HMM

Description

This function returns the Log-Likelihood of a (bd)HMM.

Usage

LogLik(hmm)

Arguments

hmm An object of class HMM or bdHMM.

Value

Log likelihood during model fitting.

```
data(example)
hmm_ex = initHMM(observations, nStates=3, method="Gaussian")
hmm_fitted = fitHMM(observations, hmm_ex)
LogLik(hmm_fitted)
```

observations

Description

Observation sequence for the 'example' data.

Author(s)

Benedikt Zacher, Julia Ertl, Julien Gagneur, Achim Tresch

pilot.hg19	Genomic positions of processed signal for the Roadmap Epigenomics
	data set. Regions from the ENCODE pilot phase.

Description

Genomic positions of processed signal for the Roadmap Epigenomics data set. Regions from the ENCODE pilot phase.

Author(s)

Benedikt Zacher, Julia Ertl, Julien Gagneur, Achim Tresch

runningMean

Smooth data with running mean

Description

Smooth data with running mean

Usage

```
runningMean(x, winHalfSize = 2)
```

Arguments

Х	A vector with the data.
winHalfSize	The smoothing window half size.

Value

A vector containing the smoothed data.

StateNames

Examples

```
data(trainRegions)
celltypes = list("E123"=grep("E123", names(trainRegions)),
            "E116"=grep("E116", names(trainRegions)))
sizeFactors = getSizeFactors(trainRegions, celltypes)
sizeFactors
```

StateNames

Get stateNames of a (bd)HMM

Description

This function returns the names of states.

Usage

StateNames(hmm)

Arguments

hmm An object of class HMM or bdHMM.

Value

A character vector

```
nStates = 5
means = list(4,11,4,11,-1)
Sigma = lapply(list(4,4,4,4,4), as.matrix)
transMat = matrix(1/nStates, nrow=nStates, ncol=nStates)
initProb = rep(1/nStates, nStates)
hmm = HMM(stateNames=as.character(1:5), initProb=initProb, transMat=transMat, emission=HMMEmission(type='Gaussia
StateNames(hmm)
```

trainRegions

Training regions for the Roadmap Epigenomics data set. Three EN-CODE pilot regions with data from two cell lines.

Description

Training regions for the Roadmap Epigenomics data set. Three ENCODE pilot regions with data from two cell lines.

Author(s)

Benedikt Zacher, Julia Ertl, Julien Gagneur, Achim Tresch

Transitions Get transitions of a (bd)HMM

Description

This function returns the transition matrix of a (bd)HMM.

Usage

Transitions(hmm)

Arguments

hmm An object of class HMM or bdHMM.

Value

The transitions as a nStates x nStates matrix.

See Also

HMM, bdHMM

```
nStates = 5
means = list(4,11,4,11,-1)
Sigma = lapply(list(4,4,4,4,4), as.matrix)
transMat = matrix(1/nStates, nrow=nStates, ncol=nStates)
initProb = rep(1/nStates, nStates)
hmm = HMM(initProb=initProb, transMat=transMat, emission=HMMEmission(type='Gaussian', parameters=list(mu=means,
Transitions(hmm)
```

ucscGenes

Description

UCSC gene annotation for the Roadmap Epigenomics data set.

Author(s)

Benedikt Zacher, Julia Ertl, Julien Gagneur, Achim Tresch

viterbi2GRanges Convert the viterbi path to a GRanges object

Description

Convert the viterbi path to a GRanges object

Usage

viterbi2GRanges(viterbi, regions, binSize)

Arguments

viterbi	A list containing the viterbi paths as factors. The output from getViterbi.
regions	GRanges object of the regions (e.g. chromosomes) stored in the viterbi path.
binSize	The bin size of the viterbi path.

Value

The viterbi path as GRanges object.

```
library(GenomicRanges)
data(yeastTF_databychrom_ex)
dStates = 6
dirobs = as.integer(c(rep(0,10), 1, 1))
bdhmm_gauss = initBdHMM(yeastTF_databychrom_ex, dStates = dStates, method ="Gaussian", directedObs=dirobs)
bdhmm_fitted_gauss = fitHMM(yeastTF_databychrom_ex, bdhmm_gauss)
viterbi_bdhmm_gauss = getViterbi(bdhmm_fitted_gauss, yeastTF_databychrom_ex)
yeastGRanges = GRanges(IRanges(start=1214616, end=1225008), seqnames="chrIV")
names(viterbi_bdhmm_gauss) = "chrIV"
viterbi_bdhmm_gauss_gr = viterbi2GRanges(viterbi_bdhmm_gauss, yeastGRanges, 8)
```

viterbi2Gviz

Description

Convert state segmentation for plotting with Gviz

Usage

```
viterbi2Gviz(viterbi, chrom, gen, from, to, statecols, col = NULL)
```

Arguments

viterbi	A list containing the viterbi paths as factors. The output from getViterbi.
chrom	The chromosome/sequence if to convert.
gen	The geome id, e.g. hg19, hg38 for human.
from	Genomic start poistion.
to	Genomic end poistion.
statecols	Named vector with state colors.
col	Background color.

Value

A list containing the viterbi path converted to Gviz objects for plotting.

yeastTF_databychrom_ex

Processed ChIP-on-chip data for yeast TF example

Description

Processed ChIP-on-chip data for yeast TF example

Author(s)

Benedikt Zacher, Julia Ertl, Julien Gagneur, Achim Tresch

yeastTF_SGDGenes SGD annotation for the yeast TF example

Description

SGD annotation for the yeast TF example

Author(s)

Benedikt Zacher, Julia Ertl, Julien Gagneur, Achim Tresch

[,bdHMM,ANY,ANY,ANY-method

extract parts of bdHMM

Description

extract parts of bdHMM

Usage

S4 method for signature 'bdHMM,ANY,ANY,ANY'
x[i, j, ..., drop = "missing"]

Arguments

Х	A bidirectional hidden Markov model.
i	State ids to extract.
j	Emissions to extract.
drop	

Value

Extract parts of bdHMM

[,HMM,ANY,ANY,ANY-method

extract parts of HMM

Description

extract parts of HMM

Usage

S4 method for signature 'HMM,ANY,ANY,ANY'
x[i, j, ..., drop = "missing"]

Arguments

x	A hidden Markov model.
i	State ids to extract.
j	Emissions to extract.
drop	

Value

extract parts of HMM

Index

* data example, 10 flags, 13 observations, 24 pilot.hg19,24 trainRegions, 26 ucscGenes, 27 yeastTF_databychrom_ex, 28 yeastTF_SGDGenes, 29 * package STAN-package, 3 .HMM (HMM-class), 18 .HMMEmission (HMMEmission-class), 19 .bdHMM(bdHMM-class),4 [,HMM,ANY,ANY,ANY-method, 30 [, bdHMM, ANY, ANY, ANY-method, 29 bdHMM, 3, 10, 23, 26 bdHMM-class, 4 binarizeData, 5 c2optimize, 6 call_dpoilog, 6 data2Gviz,7 DimNames, 7 DirScore, 8 Emission, 9 EmissionParams, 9 example, 10 fitBdClust, 10 fitHMM, 11 flags, 13getAvgSignal, 13 getLogLik, 14 getPosterior, 15 getSizeFactors, 16

getViterbi, 16

HMM, 10, 12, 14, 17, 23, 26 HMM-class, 18 HMMEmission, 4, 5, 9, 10, 18, 19 HMMEmission-class, 19 initBdClust, 20 initBdHMM, 21 initHMM, 22 InitProb, 22 LogLik, 23 observations, 24 pilot.hg19, 24 runningMean, 24 STAN-package, 3 StateNames, 25 trainRegions, 26 Transitions, 26 ucscGenes, 27 viterbi2GRanges, 27 viterbi2Gviz, 28 $yeastTF_databychrom_ex, 28$ yeastTF_SGDGenes, 29