
Package ‘GCSscore’
April 12, 2022

Type Package

Title GCSscore: an R package for microarray analysis for
Affymetrix/Thermo Fisher arrays

Version 1.8.0

Author Guy M. Harris & Shahroze Abbas & Michael F. Miles

Maintainer Guy M. Harris <harrisgm@vcu.edu>

Description
For differential expression analysis of 3'IVT and WT-style microarrays from Affymetrix/Thermo-
Fisher. Based on S-score algorithm originally described by Zhang et al 2002.

License GPL (>=3)

Encoding UTF-8

Depends R (>= 3.6)

Imports BiocManager, Biobase, utils, methods, RSQLite, devtools, dplR,
stringr, graphics, stats, affxparser, data.table

Suggests siggenes, GEOquery, R.utils

biocViews DifferentialExpression, Microarray, OneChannel,
ProprietaryPlatforms, DataImport

LazyData FALSE

NeedsCompilation no

git_url https://git.bioconductor.org/packages/GCSscore

git_branch RELEASE_3_14

git_last_commit d7f279c

git_last_commit_date 2021-10-26

Date/Publication 2022-04-12

R topics documented:
calcSF . 2
computeSscore . 3
GCSscore . 4

1

2 calcSF

get3primeIVTprobefileData . 6
getClariomSprobefileData . 8
getXTAprobefileData . 9
mismatch . 11
normalize . 12
rawScore . 12
zoneRQ . 13

Index 15

calcSF calculates Scaling Factor (SF) values

Description

This internally called function calculates the scaling factor (SF) values for Affymetrix microarrays,
for use in computing GCS-score values

Usage

calcSF(diff, probetab, trim, clean.chip)

Arguments

diff The GC-content background corrected probe groupings for every probesetID or
transcriptionclusterID on the given array type. This is generated internally by
the computeSscore function

probetab The internal datafile that contains the probe groupings and annotations for each
array type and method type

trim The internal setting for the trimmed mean of every probe grouping on the array,
as used in the calculation of SF. For 3’ IVT arrays, the trim is set to 0.02 by
default. For all newer WT-type arrays, the trim is set to 0.04 by default

clean.chip The clean chiptype name, based on the platform design package name.

Value

calcSF returns a numeric SF value for a given CEL file

Examples

if (length(list.files(path = ".", pattern = "*.CEL")) != 0){

#Example of input, as the function would be called internally:
calcSF(diff, probetab, trim, clean.chip)
}

computeSscore 3

computeSscore Computes GCS-score values

Description

This internally called function computes the GCS-score values between two Affymetrix-style mi-
croarrays. The computeSscore function contains the majority of the GCS-score algorithm.

Usage

computeSscore(cel1, cel2, probeFile, bgp, method, infoKey, SF1 = NULL, SF2 = NULL,
verbose = FALSE, trim = NULL, clean.chip)

Arguments

cel1 The 1st Affymetrix CEL file, as read in by the affxparser package

cel2 The 2nd Affymetrix CEL file, as read in by the affxparser package

probeFile The internal datafile that contains the probe groupings and annotations for each
array type and method type

bgp The index of the probe location, GC-content, and annotations of the background
probes of a given chip type. For WT-type arrays, the bgp consists of 16,943
antigenomic background probes. For 3’ IVT arrays, the MisMatch (MM) probes
are used to calculate the bgp list in both methods

method Determines the method used to group and tally the probes when calculating
GCS-score values

infoKey The key of how to group the probes together for the GCS-score calculations.
Determines the method used to group and tally the probes when calculating
GCS-score values. For example, exon-level analysis groups probes by probe-
set_ids while gene-level groups probes by transcript_cluster_ids

SF1 If the user has predetermined scaling factors, input user Scaling Factor (SF) for
the 1st CEL file. Otherwise, the computeSscore function will caluclate SF1
directly from the 1st CEL file

SF2 If the user has predetermined scaling factors, input user Scaling Factor (SF) for
the 2nd CEL file. Otherwise, the computeSscore function will caluclate SF2
directly from the 2nd CEL file

verbose If set to TRUE, additional information will be printed to the console while the
algorithm is running.

trim Internal parameter determined by chip type .trim=0.04 for WT-type arrays and
0.02 for 3’ IVT type arrays

clean.chip The clean chiptype name, based on the platform design package name.

4 GCSscore

Details

This internally called function computes the raw difference scores between the probes on each
microarray, then groups the probes into probesets or transcript cluset ids, and normalizes the re-
sults to produce GCS-score values. The function returns the values to the main GCscore2, where
BioConductor-based annotations are added to either the exon-level or gene-level probe groupings

Value

A data.table object with GCS-Score values for the probe groupings (determined by the method
argument)

Examples

if (length(list.files(path = ".", pattern = "*.CEL")) != 0){

#Example of input, as the function would be called internally:
computeSscore(cel1, cel2, probeFile, bgp, infoKey, method, SF1 = NULL, SF2 = NULL,

verbose = FALSE, trim = NULL)
}

GCSscore Main GCS-score Function

Description

The main function used to call and run the GCS-score algorithm.

Usage

GCSscore(celFile1 = NULL, celFile2 = NULL, celTable = NULL,celTab.names = FALSE,
typeFilter = 0, method = 1, rm.outmask = FALSE, SF1 = NULL, SF2 = NULL, fileout = FALSE,
gzip = FALSE, verbose = FALSE)

Arguments

celFile1 If a one comparison run is desired, enter the filename and path to the 1st Affymetrix
CEL file

celFile2 If a one comparison run is desired, enter the filename and path to the 2nd
Affymetrix CEL file

celTable If a batch run is desired, enter the filename and path to the CSV file containing
the batch information

celTab.names If set to TRUE, then the GCS-score batch output is assigned the user-designated
name (specified in the first column of the celTable CSV file (see examples))

typeFilter If set to 0, all available probe types are included in the calculation and normaliza-
tion of the GCS-score values. If set to 1, only probes well-annotated probe_ids
(from BioConductor .db packages) are included in the calculation and normal-
ization of the GCS-score output

GCSscore 5

method This determines the method used to group and tally the probes_ids when calcu-
lating GCS-scores. For Whole Transcriptome arrays, for gene-level (transcript_cluster_id-
based) analysis, set method = 1, and for exon-level (probeset_id-based) analy-
sis, set method = 2. For the older generation arrays (3’ IVT-style), if a PM-MM
based background correction is desired, set method = 1 (PM-MM gives identi-
cal results to the original sscore package). If a GC-content based background
correction is desired on the 3’ IVT arrays, set method = 2

rm.outmask If set to TRUE, then probes that are flagged as MASKED or OUTLIER in either
CEL file 1 or CEL file 2 will be removed from the analysis. If set to FALSE,
these probes are not filtered out and will be used in the GCS-score calculation

SF1 Input a pre-determined Scaling Factor (SF) for the 1st CEL file

SF2 Input a pre-determined Scaling Factor (SF) for the 2nd CEL file

fileout Determines if the resulting GCS-score output is written to disk in a CSV format
following the completion of the function.

gzip If set to TRUE, the GCSscore output that is written to disk is compressed. This
could prove useful if a large number runs are input using the batch submission

verbose If set to TRUE, more information will be printed to the console during while the
algorithm is running

Details

The input accepts individual CEL files or reads in a CSV file for batch runs. The user also inputs pa-
rameters to determine the method used by the GCS-score algorithm to group and tally the individual
probes on a given array.

Value

An ExpressionSet object with GCS-score values for the probe groupings (determined by the
method argument) and the relevant annotation informtaion

Examples

if (length(list.files(path = ".", pattern = "*.CEL")) != 0){

######################## Single run example ###########################

get the path to example CEL files provided with package:
celpath1 <- system.file("extdata/","MN_2_3.CEL", package = "GCSscore")
celpath2 <- system.file("extdata/","MN_4_1.CEL", package = "GCSscore")

run GCSscore() function directly on the two .CEL files above:
GCSs.single <- GCSscore::GCSscore(celFile1 = celpath1, celFile2 = celpath2)

convert GCSscore single-run from ExpressionSet to data.table:
GCSs.single.dt <-
data.table::as.data.table(cbind(GCSs.single@featureData@data,

GCSs.single@assayData[["exprs"]]))

show all column names included in the output:

6 get3primeIVTprobefileData

colnames(GCSs.single.dt)

show simplified output of select columns and rows:
GCSs.single.dt[10000:10005,

c("transcriptclusterid","symbol",
"ref_id","Sscore")]

######################## batch run example ############################

get the path to example batch (.csv) file provided with package:
celtab_path <- system.file("extdata",

"GCSs_batch_ex.csv",
package = "GCSscore")

read in the .CSV file using fread():
celtab <- data.table::fread(celtab_path)

view structure of 'celTable' input:
celtab

add the path to the sample CEL files to the batch input:
NOTE: this step is not necessary if the .CEL files
are in the working directory:

path <- system.file("extdata", package = "GCSscore")
celtab$CelFile1 <- celtab[,paste(path,CelFile1,sep="/")]
celtab$CelFile2 <- celtab[,paste(path,CelFile2,sep="/")]

run GCSscore function on the batch input:
GCSs.batch <- GCSscore::GCSscore(celTable = celtab, celTab.names = TRUE)

convert GCS-score output from 'ExpressionSet' to 'data.table':
GCSs.batch.dt <-

data.table::as.data.table(cbind(GCSs.batch@featureData@data,
GCSs.batch@assayData[["exprs"]]))

show all columns included in the output:
colnames(GCSs.batch.dt)

show simplified output of GCSscore batch example:
GCSs.batch.dt[10000:10005,

c("transcriptclusterid","symbol",
"example01","example02","example03")]

}

get3primeIVTprobefileData

Read a data file describing the probe sequences on an Affymetrix
genechip

get3primeIVTprobefileData 7

Description

Read a data file describing the probe sequences on an Affymetrix genechip

Usage

get3primeIVTprobefileData(arraytype, datafile, pkgname, chip.pd, comparewithcdf = FALSE)

Arguments

arraytype Character. Array type (e.g. ’HG-U133A’)

datafile Character. The filename of the input data file, or a connection (see example).
If omitted a default name is constructed from arraytype (for details you will
need to consult this function’s source code).

pkgname Character. Package name. If NULL the name is derived from arraytype.

chip.pd Character. Name of the platform design file for the arraytype.

comparewithcdf Logical. If TRUE, run a consistency check against a CDF package of the same
name (what used to be Laurent’s "extraparanoia".)

Details

This function serves as an interface between the (1) representation of array probe information data
in the packages that are generated by makeProbePackageGCSs and (2) the vendor- and possibly
version-specific way the data are represented in datafile.

datafile is a tabulator-separated file with one row per probe, and column names 'probesetid',
'fsetid', 'fid', 'x', 'y', and 'GC.count'. See the vignette for an example.

Value

A list with three components

dataEnv an environment which contains the data frame with the probe sequences and the
other probe data.

symVal a named list of symbol value substitutions which can be used to customize the
man pages. See createPackage.

pkgname a character with the package name; will be the same as the function parameter
pkgname if it was specified; otherwise, the name is constructed from the param-
eter arraytype.

See Also

makeProbePackageGCSs

8 getClariomSprobefileData

Examples

if (length(list.files(path = ".", pattern = "*.CEL")) != 0){
Example using the "Mouse430 2.0" chip-type

Input the clean name for the given chip:
chip <- "mouse4302"

Input the .probe_tab file, as generated using the internal function:
IVT3primepFBuilder()

probedata <- "GCSs.mouse4302.probeFile.probe_tab"

Run function:
get3primeIVTprobefileData(arraytype = chip, datafile = probedata)
}

getClariomSprobefileData

Read a data file describing the probe sequences on an Affymetrix
genechip

Description

Read a data file describing the probe sequences on an Affymetrix genechip

Usage

getClariomSprobefileData(arraytype, datafile, pkgname, chip.pd, comparewithcdf = FALSE)

Arguments

arraytype Character. Array type (e.g. ’HG-U133A’)

datafile Character with the filename of the input data file, or a connection (see example).
If omitted a default name is constructed from arraytype (for details you will
need to consult this function’s source code).

pkgname Character. Package name. If NULL the name is derived from arraytype.

chip.pd Character. Name of the platform design file for the arraytype.

comparewithcdf Logical. If TRUE, run a consistency check against a CDF package of the same
name (what used to be Laurent’s "extraparanoia".)

Details

This function serves as an interface between the (1) representation of array probe information data
in the packages that are generated by makeProbePackageGCSs and (2) the vendor- and possibly
version-specific way the data are represented in datafile.

datafile is a tabulator-separated file with one row per probe, and column names 'Probe X',
'Probe Y', 'Probe Sequence', and 'Probe.Set.Name'. See the vignette for an example.

getXTAprobefileData 9

Value

A list with three components

dataEnv an environment which contains the data frame with the probe sequences and the
other probe data.

symVal a named list of symbol value substitutions which can be used to customize the
man pages. See createPackage.

pkgname a character with the package name; will be the same as the function parameter
pkgname if it was specified; otherwise, the name is constructed from the param-
eter arraytype.

See Also

makeProbePackage

Examples

if (length(list.files(path = ".", pattern = "*.CEL")) != 0){
Example using the "Clariom S mouse" chip-type

Input the clean name for the given chip:
chip <- "clariomsmouse"

Input the .probe_tab file, as generated using the internal function:
ClariomSpFBuilder()

probedata <- "GCSs.clariomsmouse.probeFile.probe_tab"

Run function:
getClariomSprobefileData(arraytype = chip, datafile = probedata)
}

getXTAprobefileData Read a data file describing the probe sequences on an Affymetrix
genechip

Description

Read a data file describing the probe sequences on an Affymetrix genechip

Usage

getXTAprobefileData(arraytype, datafile, pkgname, chip.pd, comparewithcdf = FALSE)

10 getXTAprobefileData

Arguments

arraytype Character. Array type (e.g. ’HG-U133A’)

datafile Character with the filename of the input data file, or a connection (see example).
If omitted a default name is constructed from arraytype (for details you will
need to consult this function’s source code).

pkgname Character. Package name. If NULL the name is derived from arraytype.

chip.pd Character. Name of the platform design file for the arraytype.

comparewithcdf Logical. If TRUE, run a consistency check against a CDF package of the same
name (what used to be Laurent’s "extraparanoia".)

Details

This function serves as an interface between the (1) representation of array probe information data
in the packages that are generated by makeProbePackageGCSs and (2) the vendor- and possibly
version-specific way the data are represented in datafile.

datafile is a tabulator-separated file with one row per probe, and column names 'Probe X',
'Probe Y', 'Probe Sequence', and 'Probe.Set.Name'. See the vignette for an example.

Value

A list with three components

dataEnv an environment which contains the data frame with the probe sequences and the
other probe data.

symVal a named list of symbol value substitutions which can be used to customize the
man pages. See createPackage.

pkgname a character with the package name; will be the same as the function parameter
pkgname if it was specified; otherwise, the name is constructed from the param-
eter arraytype.

See Also

makeProbePackage

Examples

if (length(list.files(path = ".", pattern = "*.CEL")) != 0){
Example using the "MTA_1-0" chip-type:

Input the clean name for the given chip:
chip <- "mta10"

Input the .probe_tab file, as generated using the internal function:
ClariomDXTApFBuilder()

probedata <- "GCSs.mta10.probeFile.probe_tab"

Run function:

mismatch 11

getXTAprobefileData(arraytype = chip, datafile = probedata)
}

mismatch Calculates mismatch values for probes

Description

This internally called function calculates the background correction for each probe based on the
median intensity of all background probes with the same GC-content of as the target probe in
question

Usage

mismatch(probes, bgp, intensity)

Arguments

probes probe indicies for target probes. Each probe index contains the gc-content of the
probe

bgp contains probe location (indicies), GC-content, and annotations of the back-
ground probes of a given chip type. For WT-type arrays, the bgp consists of
16,943 antigenomic background probes. For 3’ IVT arrays, the mismatch (MM)
probes are used to calculate the bgp list in both methods

intensity The intensities value of the bgp probes as read in from the .CEL file

Details

This internally called function calculates the probe background correction based on the median
intensity of all background probes with the same gc-content of as the target probe in question

Value

mismatch returns a numeric vector containing the gc-content based background correction for every
probe included in the analysis

Examples

if (length(list.files(path = ".", pattern = "*.CEL")) != 0){

#Example of input, as the function would be called internally:
mismatch(probes, bgp, intensity)
}

12 rawScore

normalize Normalization of GCS-score values

Description

Normalizes the GCS-score values using all scores within 3*SD of the mean. This normalization
step occurs after the probes have been tallied and grouped into probe_ids, according to the method
(probeset_id for exon-level or transcription_cluster_id for gene-level

Usage

normalize(Score)

Arguments

Score The unnormalized GCS-score values (grouped and tallied according to the method
selection) that are generated in the computeScore function

Value

normalize Returns a numeric vector containing normalized GCS-score values for every probe_id
grouping included in the analysis

Examples

if (length(list.files(path = ".", pattern = "*.CEL")) != 0){

#Example of input, as the function would be called internally:
normalize(Score)
}

rawScore Calculates the rawScore values

Description

Calculates rawScore values based on differences between the two background corrected arrays in
a given GCS-score analysis (e.g. CEL_1 vs. CEL_2), using the internally generated Statistical
Difference Threshold (SDT) values.

Usage

rawScore(diff1, diff2, SDT1, SDT2)

zoneRQ 13

Arguments

diff1 The gc-background-corrected values for the probe intensities on the 1st array

diff2 The gc-background-corrected values for the probe intensities on the 2nd array

SDT1 The internally calculated Statistical Difference Threshold (SDT=4*rawQ*SF)
for the 1st array

SDT2 The internally calculated Statistical Difference Threshold (SDT=4*rawQ*SF)
for the 2nd array

Value

rawScore returns a numeric vector containing the raw, ungrouped scores for every probe grouping
included in the analysis (as determined by method)

Examples

if (length(list.files(path = ".", pattern = "*.CEL")) != 0){

#Example of input, as the function would be called internally:
rawScore(diff1, diff2, SDT1, SDT2)
}

zoneRQ Calculates the zone-based RawQ values

Description

This internally called function calculates the zone-based RawQ values. RawQ is a measure of the
noise within a given zone on a microarray chip. This noise value is used in the error model contained
in the GCS-score algorithm

Usage

zoneRQ(DT, affyCel, trim)

Arguments

DT Internally generated data.table containing the .CEL data, generated from the
list that is created by the affxparser package

affyCel The .CEL file data, in list structure, as read in using the readCel function
included in the affxparser package

trim The internal setting for the trimmed mean of every probe grouping on the array.
For 3’ IVT arrays, the trim is set to 0.02 by default. For all newer WT-type
arrays, the trim is set to 0.04 by default

Value

zoneRQ returns a numeric vector containing zone-based rawQ values for a given array

14 zoneRQ

Examples

if (length(list.files(path = ".", pattern = "*.CEL")) != 0){

#Example of input, as the function would be called internally:
zoneRQ(DT, affyCel, trim)
}

Index

∗ IO
get3primeIVTprobefileData, 6
getClariomSprobefileData, 8
getXTAprobefileData, 9

∗ utilities
get3primeIVTprobefileData, 6
getClariomSprobefileData, 8
getXTAprobefileData, 9

calcSF, 2
computeSscore, 3
createPackage, 7, 9, 10

GCSscore, 4
get3primeIVTprobefileData, 6
getClariomSprobefileData, 8
getXTAprobefileData, 9

mismatch, 11

normalize, 12

rawScore, 12

zoneRQ, 13

15

	calcSF
	computeSscore
	GCSscore
	get3primeIVTprobefileData
	getClariomSprobefileData
	getXTAprobefileData
	mismatch
	normalize
	rawScore
	zoneRQ
	Index

