Package ‘FindMyFriends’

October 3, 2021

Type Package

Title Microbial Comparative Genomics in R

Version 1.23.0

Date 2016-10-06

Author Thomas Lin Pedersen

Maintainer Thomas Lin Pedersen <thomasp85@gmail .com>

Description A framework for doing microbial comparative genomics in R.
The main purpose of the package is assisting in the creation of
pangenome matrices where genes from related organisms are
grouped by similarity, as well as the analysis of these data.
FindMyFriends provides many novel approaches to doing pangenome

analysis and supports a gene grouping algorithm that scales
linearly, thus making the creation of huge pangenomes feasible.

URL https://github.com/thomasp85/FindMyFriends

BugReports https://github.com/thomasp85/FindMyFriends/issues

License GPL (>=2)

biocViews ComparativeGenomics, Clustering, DataRepresentation,
Genomic Variation, SequenceMatching, GraphAndNetwork

VignetteBuilder knitr

LinkingTo Rcpp

Encoding UTF-8

Imports methods, BiocGenerics, Biobase, tools, dplyr, IRanges,
Biostrings, S4Vectors, kebabs, igraph, Matrix, digest,
filehash, Rcpp, ggplot2, gtable, grid, reshape2, ggdendro,
BiocParallel, utils, stats

Suggests BiocStyle, testthat, knitr, rmarkdown, reutils

Collate 'FindMyFriends-package.R' 'ReppExports.R' 'aaa.R' 'generics.R’
'‘pgVirtual.R' 'pgVirtualLoc.R' 'pgInMemLoc.R' 'pgInMem.R'
'PgLM.R' 'pgLMLoc.R' 'pgFull.R' 'pgFullLoc.R" 'constructor.R'
'ggGraph.R' 'grouping.R' 'investigating.R' 'linearKernel.R'
'linking.R' 'modifying.R' 'pgSlim.R' 'pgSlimLoc.R' 'progress.R’
'similarities.R' 'splitting.R’

https://github.com/thomasp85/FindMyFriends
https://github.com/thomasp85/FindMyFriends/issues

R topics documented:

NeedsCompilation yes

RoxygenNote 6.1.1

git_url https://git.bioconductor.org/packages/FindMyFriends

git_branch master

git_last commit al5600d
git_last_commit_date 2021-05-19
Date/Publication 2021-10-03

R topics documented:

FindMyFriends-package 3
fillDefaults oL 4
JoadPgExample e 5
addGenomes e 6
addGroupInfo L 7
addOrgInfo e 8
cdhitGrouping e e e e e e e 9
collapseParalogues 11
defaults e 12
genelocation L. e e e e e 13
CENENAMESt v i e e e e e e e e e e e e e e e e 14
GEMES . v o e 16
geneWidth e 17
getNeighborhood 18
getReD e e 19
gpcGrouping e e e e e e e 20
graphGrouping e e e e 22
groupInfo 23
GrOUPNAMES v e e e e e e e e e e 24
groupStat oL e e e e 25
hasGeneGroups 26
hasGenelnfo L 27
hasParaloguelinks 28
kmerLink e 28
kmerSimilarity L. 30
kmerSplit 31
manualGrouping e e e e e 32
neighborhoodSplit. 33
NGEeNeGIOUPS ¢ v v i e e e e e e e e e e 35
NGENES e e 35
NOrganiSMS o v it e e e e e 36
orglnfo 37
orgNames e e e e 38
OrgStat e e e e e e 39
PANZENOIME o o v v e e e e e e e e e e e e e e e e e 40

peGraph L e 41

FindMyFriends-package 3

Index

pgFRull-class e e e e e 42
pgFRullloc-class e 42
pgInMem-class L. e e e e 42
pglnMemLoc-class 43
PELM-cClass e e e e 44
pgLMLoc-class 44
PEMALIIX e e 45
peSHmM-class 45
pgSlimLoc-class 46
pgVirtual-class L e 46
pgVirtualLoc-class 49
plotEvolution e e e e 49
PlotGroup e e 50
plotNeighborhood 51
plotSimilarity 52
plotStat L e e e e 53
plotTree e 54
readANNOt e 55
removeGeNe L e e e e 56
reportGroupChanges 58
$eqToGeneGroup o o e e e e e 59
seqToOrg e 60
translated L 61
variableRegions 62

64

FindMyFriends-package FindMyFriends: Comparative microbial genomics in R

Description

FindMyFriends: Comparative microbial genomics in R

Details

This package has two objectives: Define a framework for working with pangenomic data in R and
provide speed and memory effecient algorithms that makes it possible to create huge pangenomes
in a reasonable amount of time. While providing novel algorithms itself it also makes it possible to
import results from other algorithms into the framework thus facilitating doing post-processing of
results from other tools that only provides an initial grouping of genes.

In order to balance speed and memory consumption FindMyFriends provides two different sequence
storage modes - either in-memory or as a reference to the original fasta file. The former excels in
lookup speed but can end up too unwieldy for big pangenomes with Gb of sequence data. The latter
in contrast can handle extremely huge sets of genes but can in turn slow down calculations due to
longer sequence lookups.

4 fillDefaults

The novelty of the FindMyFriends algorithms lie primarily in the fact that they utilise allignment-
free sequence comparisons based on cosine similarity of kmer feature vectors. This is substantially
faster than BLAST while retaining the needed resolution. Another novelty is the introduction of
Guided Pairwise Comparison - a different approach than standard all-vs-all comparisons.

Author(s)

Thomas Lin Pedersen

.fillDefaults Assign object defaults to missing values

Description

This function takes care of investigating the enclosing functions arguments and identifying the
missing ones. If they are missing and a default is given this value is assigned to the enclosing
functions environment

Usage

.fillDefaults(def)
Arguments

def A named list of default values
Value

This function is called for its side effects

See Also

Set and get pangenome defaults with defaults

Examples

Should only be called within methods/functions

This will obviously fail
Not run:
t <- function(x) {
x+1
}
tO

End(Not run)

Using .fillDefaults
t <- function(x, defs) {

.JoadPgExample 5

.fillDefaults(defs)
X+1

}

With defaults
t(defs=1list(x=5))

Direct setting takes precedence
t(x=2, defs=list(x=5))

Still fails if defs doesn't contain the needed parameter
Not run:
t(defs=list(y='no no'))

End(Not run)

Usually defs are derived from the object in a method:
Not run:
setMethod('fillDefExample', 'pgFull’,
function(object, x, y) {
.fillDefaults(defaults(object))
X+y
3
)

End(Not run)

.loadPgExample Load an example pangenome

Description

This function loads an example pangenome at various stages of calculation, useful for examples and
tests.

Usage

.loadPgExample(lowMem = FALSE, geneLoc = FALSE, withGroups = FALSE,
withNeighborhoodSplit = FALSE, withParalogues = FALSE)

Arguments
lowMem logical. Should the returned object inherit from pgLM
geneloc logical. Should the returned object inherit from pgVirtualLoc
withGroups logical. Should gene groups be defined

withNeighborhoodSplit
logical. Should neighborhoodsplitting have been performed

withParalogues logical. Should paralogue linking have been performed

6 addGenomes

Value

A pgVirtual subclass object to the specifications defined

Examples

Load standard (pgFull)
.loadPgExample()

Use pgLM
.loadPgExample (1owMem=TRUE)

Create with pgVirtualLoc subclass (here pgFullloc)
.loadPgExample (geneLoc=TRUE)

Create with grouping information
.loadPgExample (withGroups=TRUE)

Create with gene groups split by neighborhood (pgVirtualLoc implied)
.loadPgExample (withNeighborhoodSplit=TRUE)

Create with paralogue links
.loadPgExample (withGroups=TRUE, withParalogues=TRUE)

addGenomes Add new organisms to an existing pangenome

Description

This method allows new genomes to be added to an already processed pangenome, preserving
existing grouping and adding new genes to their relevant groups. This makes it possible to gradually
grow the pangenome as new sequences becomes available without redoing the grouping at each
time, loosing the gene group metadata.

Usage
addGenomes(object, newSet, ...)
S4 method for signature 'pgVirtual,pgVirtual'

addGenomes(object, newSet, kmerSize,
lowerLimit, pParam, nsParam = list(), klParam = list())

Arguments
object A pgVirtual subclass to merge the new genomes into
newSet An object of the same class as object containing the new organisms to add.

Grouping of the genes contained in this object can already exist, if not it will be
done automatically.

addGrouplnfo

kmerSize
lowerLimit
pParam

nsParam

k1lParam

Value

parameters passed on.

The size of the kmers to use for comparing new genes to existing

The lower threshold for sequence similarity, below which it is set to 0
A BiocParallelParam object

A list of parameters to pass to neighborhoodSplit or FALSE to skip neigh-
borhood splitting altogether. If object has had neighborhood splitting performed
and nsParam is set to FALSE it is bound to cause problems, so don’t do that.

A list of parameters to pass to kmerLink or FALSE to skip paralogue linking
altogether. Independent of the value of klParam kmerLink will only be run if
paralogue links have been defined on object beforehand.

An object of the same class as object containing the new organisms from newSet and possible new
gene groups from genes with no orthologues in the original pangenome.

Methods (by class)

* object = pgVirtual,newSet = pgVirtual: Genome addition for all pgVirtual subclasses

Examples

Get base pangenome
pg <- .loadPgExample(geneLoc = TRUE, withGroups = TRUE,

withNeighborhoodSplit = TRUE)

Get some additional genomes
location <- tempdir()
unzip(system.file('extdata', 'Mycoplasma.zip', package = 'FindMyFriends'),
exdir = location)
genomeFiles <- list.files(location, full.names = TRUE, pattern = '%.fasta')[6:10]
pg2 <- pangenome(genomeFiles, translated = TRUE, genelLocation = 'prodigal')

Combine the two (too computational heavy to include)

Not run:

pg3 <- addGenomes(pg, pg2, nsParam = list(lowerLimit = 0.8))

End(Not run)

addGroupInfo

Safely add group info

Description

This method allows for adding of group metadata by specifying the name of the metadata and the
gene groups it should be added to. It protects the user from overwriting information that is derived
from the data, and ensures the proper formatting. Should be prefered to groupInfo<- for all but

the simplest cases.

8 addOrglnfo
Usage
addGroupInfo(object, ...)

S4 method for signature 'pgVirtual'
addGroupInfo(object, info, key)

Arguments
object A pgVirtual subclass
parameters passed on.
info A data.frame with information to add
key Either an integer vector with the index of each gene group the rows in info
corresponds to, or the name of the column in info that holds the indexes.
Value

An object of the same class as object with the new gene group information.

Methods (by class)

* pgVirtual: Add gene group info safely for all pgVirtual subclasses

See Also

Other Metadata: addOrgInfo, groupInfo, orgInfo

Examples

testPG <- .loadPgExample(withGroups=TRUE)

Create some info
info <- data.frame(nickname=c('Tessie', 'Johnny'), index=c(4, 500))

Add it to the object
testPG <- addGroupInfo(testPG, info=info, key='index')

addOrgInfo Safely add organisms info

Description

This method allows for adding of organism metadata by specifying the name of the metadata and the
organisms it should be added to. It protects the user from overwriting information that is derived
from the data and ensures proper formatting. Should be prefered to orgInfo<- for all but the
simplest cases.

cdhitGrouping 9
Usage
addOrgInfo(object, ...)

S4 method for signature 'pgVirtual'
addOrgInfo(object, info, key)

Arguments
object A pgVirtual subclass
parameters passed on.
info A data.frame with information to add
key Either an integer vector with the index of each organism the rows in info corre-
sponds to, or the name of the column in info that holds the indexes.
Value

An object of the same class as object with the added organism information.

Methods (by class)

* pgVirtual: Add organism info safely for all pgVirtual subclasses

See Also
Other Metadata: addGroupInfo, groupInfo, orgInfo

Examples

testPG <- .loadPgExample()

Create some information
info <- data.frame(location=c('Copenhagen', 'Paris', 'London'),
name=c('AEQ17243', 'AP@12303', 'AEQ17244')

)

Add the information
testPG <- addOrgInfo(testPG, info=info, key='name')

cdhitGrouping Gene grouping by preclustering with CD-HIT

Description

This grouping algorithm partly mimicks the approach used by Roary, but instead of using BLAST
in the second pass it uses cosine similarity of kmer feature vectors, thus providing an even greater
speedup. The algorithm uses the CD-HIT algorithm to precluster highly similar sequences and
then groups these clusters by extracting a representative and clustering these using the standard
FindMyFriends kmer cosine similarity.

10

Usage

cdhitGrouping

cdhitGrouping(object, ...)

S4 method for signature 'pgVirtual'

cdhitGrouping(object, kmerSize, lowerLimit,
maxLengthDif, geneChunkSize, cdhitOpts, cdhitIter = TRUE, nrep = 1,
from = 0.9, by = 0.05)

Arguments

object

kmerSize

lowerLimit

maxLengthDif

geneChunkSize

cdhitOpts

cdhitlIter

nrep

from

by

Value

A pgVirtual subclass
parameters passed on.

The size of the kmer’s used for the comparison. If two values are given the first
will be used for the CD-HIT algorithm and the second will be used for the cosine
similarity calculations.

A numeric giving the lower bounds of similarity below which it will be set to
ZEero.

The maximum deviation in sequence length to allow during preclustering with
CD-HIT. Below 1 it describes a percentage. Above 1 it describes a fixed length.

The maximum number of genes to pass to the CD-HIT algorithm. If object
contains more genes than this, CD-HIT will be run in chunks and combined
with a second CD-HIT pass before the final cosine similarity grouping.

Additional arguments passed on to CD-HIT. It should be a named list with names
corresponding to the arguments expected in the CD-HIT algorithm (without the
dash). i, n and s/S will be overwritten based on the other parameters given to
this function and all values in cdhitOpts will be converted to character using
as.character

Logical. Should the preclustered groups be grouped by gradually lowering the
threshold in CD-Hit or by directly calculating kmer similarities between all
preclusters and group by that. Defaults to TRUE

If cdhitIter = TRUE, controls how many iterations should be performed at each
threshold level. Defaults to 1.

The start similarity threshold to use for the iterative CD-Hit grouping. Together
with by and nrep it defines the number of times and levels CD-Hit is run. De-
faults to 0.9

The step size to use for the iterative CD-Hit grouping. Defaults to 0.05

An object of the same class as ’object’.

Methods (by class)

* pgVirtual: Grouping using cdhit for all pgVirtual subclasses

collapseParalogues 11

References

Page, A. J., Cummins, C. A., Hunt, M., Wong, V. K., Reuter, S., Holden, M. T. G, et al. (2015).
Roary: rapid large-scale prokaryote pan genome analysis. Bioinformatics, btv421.

Fu, L., Niu, B., Zhu, Z., Wu, S., Li, W. (2012). CD-HIT: accelerated for clustering the next genera-
tion sequencing data. Bioinformatics, 28 (23), 3150-3152.

Li, W. and Godzik, A. (2006) Cd-hit: a fast program for clustering and comparing large sets of
protein or nucleotide sequences. Bioinformatics, 22, 1658-9.

See Also

Other grouping algorithms: gpcGrouping, graphGrouping, manualGrouping

Examples

testPG <- .loadPgExample()

testPG <- cdhitGrouping(testPG)

collapseParalogues Merge paralogue gene groups into new gene groups

Description

This method allows for merging of paralogue gene groups defined using kmerLink into new, bigger,
gene groups.

Usage

collapseParalogues(object, ...)

S4 method for signature 'pgVirtual'

collapseParalogues(object, combineInfo = "merge",
)
Arguments
object A pgVirtual subclass

parameters passed on to metadata collapse function. For combineInfo="merge’
sep specifies the separator - sep="none’ collapses information into list elements
instead of strings. For combinelnfo="largest’ no addition arguments are given.

combineInfo The approach used to combine metadata from the collapsed groups. Either
’merge’ for merging, ’largest’ for picking information from the largest group, or
a function that takes a data.frame of multiple rows and converts it to a data.frame
with one row and the same columns.

12 defaults

Value

An object of the same class as object with the new grouping.

Methods (by class)

* pgVirtual: Merge paralogue gene groups for all pgVirtual subclasses

Examples

testPG <- .loadPgExample(withGroups=TRUE, withParalogues=TRUE)

Number of gene groups before collapse
nGeneGroups (testPG)

Number of gene groups after collapse
testPG <- collapseParalogues(testPG, combineInfo="'largest')
nGeneGroups (testPG)

defaults Access default values for a pgVirtual subclass object

Description

This method lets the user view and set the default values used for the different algorithms in Find-
MyFriends. Many of the parameters are reoccuring and it can become laborious to type them in at
each step. These functionalities makes it easy to set defaults on a per-pangenome basis.

Usage

defaults(object)
defaults(object) <- value

S4 method for signature 'pgVirtual'
defaults(object)

S4 replacement method for signature 'pgVirtual'
defaults(object) <- value

Arguments

object A pgVirtual subclass

value The new values to set

geneLocation 13

Details

Currently the following methods support reading defaults from a pgVirtual object. Note that only
directly named arguments are supported - arguments passed on through the . . .-mechanism are not
supported unless they are passed to a function that support it.

e graphGrouping

* gpcGrouping

* variableRegions
* plotGroup

e kmerLink

e plotSimilarity
* plotTree

e kmerSimilarity

Value

A named list of default values

Methods (by class)

* pgVirtual: Default values for pgVirtual subclass objects
* pgVirtual: Set defaults for pgVirtual subclass objects

Examples

Get all object defaults
testPG <- .loadPgExample()
defaults(testPG)

Set a new default
defaults(testPG)$minFlank <- 2

genelLocation Get gene location for all genes

Description

This method returns the gene location of all genes as a data.frame with each row corresponding to
a gene in the pangenome. The data.frame will have the columns ’start’, ’end’, ’contig’ and ’strand’
(order of columns not ensured) with start and end giving the start and end position of the gene on
the contig/chromosome given in the contig column. Strand gives the direction of translation, 1 is
from start to end and -1 is from end to start (thus start should always be lower than end no matter
the direction of translation)

14 geneNames

Usage
genelLocation(object)

[

S4 method for signature 'pgInMemLoc

geneLocation(object)
Arguments

object A pgVirtual subclass
Value

A data.frame as described above

Methods (by class)

* pgInMemLoc: Get gene location for pginMemlLoc subclasses

Note

Required for subclasses of pgVirtualLoc in order to extend the class system of FindMyFriends

Examples

testPG <- .loadPgExample(geneLoc=TRUE)
head(geneLocation(testPG))

geneNames Get and set the names of the genes in the pangenome

Description

These methods lets you query and change the naming of genes in your pangenome. Take note
that even though sequences are not in memory for pgLM objects, the names are. This means that
changes to the description header in the underlying fasta files have no effect on the naming in your
pangenome

Usage

geneNames(object)
geneNames(object) <- value

S4 method for signature 'pgLM'
geneNames (object)

S4 replacement method for signature 'pglM'

geneNames

geneNames(object) <- value

S4 method for signature 'pgFull'
geneNames (object)

S4 replacement method for signature 'pgFull'
geneNames (object) <- value

S4 method for signature 'pgSlim'

geneNames (object)

S4 replacement method for signature 'pgSlim'
geneNames(object) <- value

Arguments

object A pgVirtual subclass

value A character vector with new names
Value

In case of the getter, a character vector containing the names of each gene.

Methods (by class)

* pglLM: Get genenames for pgl.M and subclasses

* pglLM: Set genenames for pgLLM and subclasses

* pgFull: Get genenames for pgFull and subclasses
* pgFull: Set genenames for pgFull and subclasses
* pgSlim: Throws error for pgSlim

* pgSlim: Throws error for pgSlim

Note

Required for subclasses of pgVirtual in order to extend the class system of FindMyFriends

Examples

testPG <- .loadPgExample()
head(geneNames (testPG))

geneNames (testPG)[10] <- 'Gene number 10'

15

16 genes

genes Extract gene sequences from a pangenome

Description

This method is used to extract the genomic sequences that is the basis for the pangenome. Genes can
be split and subsetted upfront based on other information in the pangenome, such as gene groups
and organisms. For some pgVirtual subclasses the subset parameter is mandatory in order to avoid
reading all genes into memory at once.

Usage

genes(object, split, subset)

S4 method for signature 'pglM,missing'
genes(object, split, subset)

S4 method for signature 'pglLM,character'’
genes(object, split, subset)

S4 method for signature 'pgFull,missing'
genes(object, split, subset)

S4 method for signature 'pgFull,character’
genes(object, split, subset)

S4 method for signature 'pgSlim,missing'’
genes(object, split, subset)

S4 method for signature 'pgSlim,character’
genes(object, split, subset)

Arguments
object A pgVirtual subclass
split A string giving the optional splitting type. Either *organism’, *group’ or ’par-
alogue’.
subset A subsetting of the result equal to using ’[]” on the result. It is generally rec-
ommended to use this instead of subsetting the result, as it avoids unneeded
memory allocation.
Value

An XStringSet if split is missing or an XStringSetList if it is present

geneWidth 17

Methods (by class)

* object = pglM, split = missing: Gene access for pgLM and subclasses

* object = pglM, split = character: Gene access for pgLM and subclasses with group split-
ting

* object = pgFull,split =missing: Gene access for pgFull and subclasses

* object = pgFull,split = character: Gene access for pgFull and subclasses with group
splitting

* object = pgSlim,split = missing: Throws error for pgSlim

* object = pgSlim,split = character: Throws error for pgSlim

Note

Required for subclasses of pgVirtual in order to extend the class system of FindMyFriends

Examples

testPG <- .loadPgExample(withGroups=TRUE, withParalogues=TRUE)
Direct gene access
genes(testPG)

Early subsetting
genes(testPG, subset=1:10)

Split by membership
genes(testPG, split='organism')
genes(testPG, split='group')
genes(testPG, split='paralogue')

Split and subset - get genes from the first organism
genes(testPG, split='organism', subset=1)

geneWidth Get the sequence length of each gene

Description

This method extracts the width (i.e. number of residues) of each gene in the pangenome.
Usage
geneWidth(object)

S4 method for signature 'pgLM'
geneWidth(object)

18 getNeighborhood

S4 method for signature 'pgFull'
geneWidth(object)

S4 method for signature 'pgSlim'

geneWidth(object)
Arguments

object A pgVirtual subclass
Value

An integer vector with the length of each sequence

Methods (by class)

* pglLM: Get gene width for pgLM and subclasses
* pgFull: Get gene widths for pgFull and subclasses
* pgSlim: Throws error for pgSlim

Note

Required for subclasses of pgVirtual in order to extend the class system of FindMyFriends

Examples

testPG <- .loadPgExample()
head(geneWidth(testPG))

getNeighborhood Extract a graph representation of a gene group neighborhood

Description

This method creates a graph representation of the imidiate neighborhood of a gene group. It is
different from creating a subgraph of the panchromosome in that only vertices and edges directly
reachable from the gene group is included. The vertices will be annotated with a centerGroup
property indicating whether or not the node is the queried gene group.

Usage
getNeighborhood(object, ...)

S4 method for signature 'pgVirtualloc'
getNeighborhood(object, group, vicinity = 4)

getRep 19

Arguments
object A pgVirtualLoc subclass
Parameters passed on.
group Either the name or the index of the group whose neighborhood is of interest
vicinity An integer giving the number of gene groups in both directions to collect
Value

An igraph object with gene groups as vertices and positional connections as edges. The edges is
weighted according to the number of genes sharing the connection. All vertices have a centerGroup
attribute, which is FALSE for all but the center group.

Methods (by class)

* pgVirtualloc: Gene group neighborhoods for all pgVirtualLoc subclasses

See Also

plotNeighborhood for nice plotting of the neighborhood

Examples

testPG <- .loadPgExample(geneLoc=TRUE, withNeighborhoodSplit=TRUE)

Look at the surroundings of group 10
neighborhood <- getNeighborhood(testPG, group=10)

getRep Get a representative sequence for each gene group

Description

This method returns a representative sequence for each of the gene groups defined in the pangenome.
Currently the methods defined for selecting sequences are 'random’, ’shortest’, and "longest. In case
of tie for the two latter the first occurence gets returned. Consensus sequence might be added at a
latter stage.

Usage
getRep(object, method)

S4 method for signature 'pgVirtual,character'
getRep(object, method)

20 gpcGrouping

Arguments

object A pgVirtual subclass

method The method to use to get a representative. Either 'random’, *shortest’ or "longest’.
Value

An XStringSet

Methods (by class)

* object = pgVirtual,method = character: Get a representative sequence for each gene group
for pgVirtual subclasses

Examples

testPG <- .loadPgExample(withGroups=TRUE)

Get a random sequence from each group
getRep(testPG, 'random')

gpcGrouping Guided Pairwise Comparison grouping of genes

Description

This algorithm recursively builds up a pangenome by merging subpangenomes. The recursion fol-
lows either a supplied hierarchical clustering or one created using kmer comparison for the full
organism. At each step a representative for each gene group is selected randomly as a represen-
tative and gets compared to all other representatives. Gene groups are then merged based on the
pangenome created for the representatives. Due to the sampling of representatives at each step there
is a certain randomness to the algorithm. Results should be fairly stable though, as gene groups are
compared multiple times.

Usage
gpcGrouping(object, ...)
S4 method for signature 'pgVirtual'

gpcGrouping(object, lowMem, kmerSize, tree,
lowerLimit, pParam, cacheDB, precluster = TRUE, ...)

gpcGrouping

Arguments

object

lowMem

kmerSize

tree

lowerLimit

pParam

cacheDB

precluster

Value

21

A pgVirtual subclass
parameters passed on.
logical. Should low memory footprint be ensured over computation speed

The size of the kmer’s used for the comparison. If two values are given and the
‘tree’ argument is missing, the second value is used for tree generation. If only
one value is given it is recycled.

An optional tree of class dendrogram (or that can be coerced to one) to guide
the recursive algorithm. If none is supplied it will be generated by clustering the
organisms by their total kmer numbers (summing up for each of their genes).

A numeric giving the lower bounds of similarity below which it will be set to
ZEero.

An optional BiocParalle]Param object that defines the workers used for paral-
lelisation.

A filehash object or a path to a directory where cached results should be stored.
If omitted caching will not be done. Highly recommended for long running
instances.

Logical. Should genes be preclustered using CD-Hit. Defaults to TRUE.

An object of the same class as "object’.

Methods (by class)

* pgVirtual: gpc grouping for all pgVirtual subclasses

See Also

Other grouping algorithms: cdhitGrouping, graphGrouping, manualGrouping

Examples

testPG <- .loadPgExample()

Too heavy to include

Not run:

testPG <- gpcGrouping(testPG)

End(Not run)

22 graphGrouping

graphGrouping Use igraph to create gene grouping from a similarity matrix

Description

This method takes a similarity matrix based on all genes in the pangenome, converts it to a graph
representation and uses one of igraphs community detection algorithms to split all genes into
groups. Within the FindMyFriends framework the similarity matrix would usually come from
kmerSimilarity, but it can just as well be defined in other ways e.g. be blast derived.

Usage

graphGrouping(object, ...)

S4 method for signature 'pgVirtual'

graphGrouping(object, similarity, algorithm, ...)
Arguments
object A pgVirtual subclass
parameters to be passed on to the community detection algorithm
similarity A similarity matrix with rows and columns corresponding to the genes in the
pangenome.
algorithm A string naming the algorithm. See communities for an overview. The trailing

’.community’ can be omitted from the name. Default is "infomap’, which is also
the recommended.
Value

An object of the same class as "object’.

Methods (by class)
* pgVirtual: graph grouping for all pgVirtual subclasses

See Also

Other grouping algorithms: cdhitGrouping, gpcGrouping, manualGrouping

Examples

testPG <- .loadPgExample()

Too heavy to include

Not run:

Generate similarity matrix

simMat <- kmerSimilarity(testPG, lowerLimit=0.75)

grouplnfo 23

Group genes
testPG <- graphGrouping(testPG, simMat)

End(Not run)

groupInfo Get and set information about gene group

Description

These methods lets you access the information stored about each gene group and add to it or modify
it. Upfront the following columns are present: ’description’, ’group’, ’paralogue’, *GO’, "EC’,
’nOrg’ and 'nGenes’. All except *group’, 'nOrg’ and 'nGenes’ are filled with NA as default. The
latter are prefilled with information derived from the grouping itself and should not be modified
manually. *description’ is meant to contain a human readable description of the functionality of the
gene group, GO’ should contain GO terms (stored in a list of character vectors) and EC should
contain enzyme numbers (again stored as a list of character vectors). There is no check for the
validity of the content so it is up to the user to ensure that the terms added are valid. Additional
columns can be added at will.

Usage
groupInfo(object)
groupInfo(object) <- value

S4 method for signature 'pgInMem'
groupInfo(object)

S4 replacement method for signature 'pgInMem'
groupInfo(object) <- value

Arguments

object A pgVirtual subclass

value A data.frame with a row for each group
Value

In case of the getter a data.frame with organism information.

Methods (by class)

* pgInMem: Get gene group metadata for pgInMem subclasses

* pgInMem: Set gene group metadata for pgInMem subclasses

24 groupNames

Note

Required for subclasses of pgVirtual in order to extend the class system of FindMyFriends

See Also

Other Metadata: addGroupInfo, addOrgInfo, orgInfo

Examples

testPG <- .loadPgExample(withGroups=TRUE)
head(groupInfo(testPG))

groupInfo(testPG)$description[1] <- 'transposase'

groupNames Get and set the names of gene groups in the pangenome

Description

These methods lets you manipulate the naming of gene groups in the pangenome. By default
organisms are numbered consecutively but this can be changed at will. New gene groups will be
numbered though despite what naming scheme has been introduced before.

Usage

groupNames (object)
groupNames (object) <- value

S4 method for signature 'pgInMem'
groupNames (object)

S4 replacement method for signature 'pgInMem'
groupNames(object) <- value

Arguments

object A pgVirtual subclass

value A vector with new names - will be coerced to characters
Value

In case of the getter a character vector with names

groupStat 25

Methods (by class)

* pgInMem: Get gene group names for pglnMem subclasses

* pgInMem: Set gene group names for pglnMem subclasses

Note

Required for subclasses of pgVirtual in order to extend the class system of FindMyFriends

Examples

testPG <- .loadPgExample(withGroups=TRUE)
head(groupNames(testPG))

groupNames (testPG)[20] <- 'Gene group 20'

groupStat Calculate statistics about each gene group

Description

This method calculates a range of statistics and positional information about each gene group. The
information returned are. Maximum number of genes from the same organism (paralogues), short-
est sequence length, longest sequence length, standard deviation of sequence lengths, index of genes
in group, downstream and upstream gene groups.

Usage

groupStat(object, ...)

S4 method for signature 'pgVirtual'
groupStat(object, vicinity = 1)

Arguments
object A pgVirtual subclass
parameters passed on.
vicinity An integer given the number of flanking gene groups to traverse
Value

A list with an element for each gene group, each with the following elements.

maxOrg The highest number of distinct genes from the same organism present in the group. A
number above 1 indicate the presence of paralogues.

minLength The length of the shortest sequence in the group.

26 hasGeneGroups

maxLength The length of the longest sequence in the group.
sdLength The standard deviation of lengths in the group.
genes The index for the genes present in the group.

backward A character vector with gene groups separated by ’;’ that lies downstream of the gene
group. The number of gene groups for each gene is controlled by the flankSize argument. If
the contig stops before the required number of flanking genes have been reached, NA will be
added. Downstream is defined in relation to the strand of the contig/chromosome, and not the
translational direction of the gene in question.

forward As above in the other direction.

Methods (by class)

* pgVirtual: Group statistics for all pgVirtual subclasses

Examples

testPG <- .loadPgExample(withGroups=TRUE)

grStats <- groupStat(testPG)

hasGeneGroups Check whether gene groups are defined

Description

This method checks whether any grouping of genes has been done on the object and returns TRUE
if that is the case.

Usage

hasGeneGroups (object)

S4 method for signature 'pgVirtual'
hasGeneGroups(object)

Arguments

object A pgVirtual subclass

Value

A boolean indicating whether gene groups have been defined (TRUE) or not (FALSE)

Methods (by class)

* pgVirtual: Gene group check for pgVirtual subclasses

hasGenelnfo 27

Examples

Empty pangenome
testPG <- .loadPgExample()
hasGeneGroups (testPG)

With gene groups
testPG <- .loadPgExample(withGroups=TRUE)
hasGeneGroups (testPG)

hasGeneInfo Checks for existance of gene location information

Description

This method checks whether gene location information is present in the object i.e. if the object
inherits from pgVirtualLoc

Usage

hasGeneInfo(object)

S4 method for signature 'pgVirtual'

hasGeneInfo(object)
Arguments

object A pgVirtual subclass
Value

A boolean indicating whether gene location information is present (TRUE) or not (FALSE)

Methods (by class)

* pgVirtual: Checks whether gene location information is available for pgVirtual subclasses

Examples

Exclusive pgVirtual subclasses
testPG <- .loadPgExample()
hasGeneInfo(testPG)

pgVirtualLoc subclasses
testPG <- .loadPgExample(geneLoc=TRUE)
hasGeneInfo(testPG)

28 kmerLink

hasParaloguelLinks Checks whether linking of paralogues has been done

Description

This method checks for the existance of paralogue links in the object.

Usage

hasParaloguelLinks(object)

S4 method for signature 'pgVirtual'
hasParaloguelLinks(object)
Arguments

object A pgVirtual subclass

Value

A boolean indicating whether paralogue links have been defined (TRUE) or not (FALSE)

Methods (by class)

* pgVirtual: Check for secondary gene grouping in pgVirtual subclasses

Examples

No paralogues
testPG <- .loadPgExample(withGroups=TRUE)
hasParaloguelinks(testPG)

With paralogues
testPG <- .loadPgExample(withGroups=TRUE, withParalogues=TRUE)
hasParaloguelLinks(testPG)

kmerLink Link gene groups by homology

Description

This method allows the user to define a secondary grouping of genes be linking gene groups based
on sequence similarity (paralogues). A representative for each gene group is used for the calcula-
tions and the similarity is assessed using the kmer based cosine similarity.

kmerLink

Usage

29

kmerLink(object, ...)

S4 method for signature 'pgVirtual'
kmerLink(object, lowMem, kmerSize, lowerLimit,

rescale, transform, pParam, algorithm, ...)
Arguments
object A pgVirtual subclass

lowMem
kmerSize
lowerLimit
rescale
transform

pParam

algorithm

Value

parameters passed on to the community detection algorithm.

logical. Should low memory footprint be ensured over computation speed
The size of kmers to use for similarity calculations.

The lower threshold for similarity below which it is set to O

Should Similarities be normalised between lowerLimit and 1
Transformation function to apply to similarities

An optional BiocParalle]Param object that defines the workers used for paral-
lelisation.

The name of the community detection algorithm from igraph to use for gene
grouping. See communities for an overview. The trailing *.community’ can be
omitted from the name. Default is *infomap’, which is also the recommended.

An object with the same class as object with linking between gene groups.

Methods (by class)

* pgVirtual: Linking for pgVirtual subclasses

Examples

testPG <- .loadPgExample(withGroups=TRUE)

No paralogue links
hasParaloguelLinks(testPG)

Create the links
testPG <- kmerLink(testPG)

30 kmerSimilarity

kmerSimilarity Calculate a similarity matrix based on kmers

Description

This method takes a pangenome and calculate a similarity matrix based on cosine similarity of kmer
feature vectors in an all-vs-all fashion. The result can subsequently be used to group genes either
using graphGrouping or homebrewed grouping scheme. In case of the latter manualGrouping
should be used to add the grouping back to the pangenome.

Usage
kmerSimilarity(object, ...)
S4 method for signature 'pgVirtual'

kmerSimilarity(object, lowMem, kmerSize, lowerLimit,
rescale, transform, pParam)

Arguments
object A pgVirtual subclass
parameters passed on.
lowMem logical. Should low memory footprint be ensured over computation speed
kmerSize The size of kmers to use for similarity calculations.
lowerLimit The lower threshold for similarity below which it is set to O
rescale Should Similarities be normalised between lowerLimit and 1
transform Transformation function to apply to similarities
pParam An optional BiocParalle]Param object that defines the workers used for paral-
lelisation.
Value

A matrix (sparse or normal) with cosine similarity for each gene pair

Methods (by class)

* pgVirtual: Kmer based similarities for pgVirtual subclasses

Examples
testPG <- .loadPgExample()
Too heavy to include

Not run:
kmerSim <- kmerSimilarity(testPG, lowerLimit=0.75)

kmerSplit 31

End(Not run)

kmerSplit Split gene groups based on similarity

Description

This function splits up gene groups based on cosine similarity of kmer feature vectors. It uses hard
splitting based on a similarity cutoff where unconnected components constitutes new groups. Unlike
neighborhoodSplit, paralogues cannot be forced into separate groups as information needed for
this is not present.

Usage
kmerSplit(object, ...)

S4 method for signature 'pgVirtual'
kmerSplit(object, kmerSize, lowerLimit, maxLengthDif,

pParam)
Arguments
object A pgVirtual subclass
Arguments passed on
kmerSize The length of kmers used for sequence similarity
lowerLimit The lower limit of sequence similarity below which it will be set to 0

maxLengthDif The maximum deviation in sequence length to allow. Between O and 1 it de-
scribes a percentage. Above 1 it describes a fixed length

pParam An optional BiocParallelParam object that defines the workers used for paral-
lelisation.

Value

A new pgVirtual subclass object of the same class as *object’

Methods (by class)

* pgVirtual: Kmer similarity based group splitting for pgVirtual subclasses

See Also

Other group-splitting: neighborhoodSplit

32 manualGrouping

Examples

Get a grouped pangenome
pg <- .loadPgExample(withGroups = TRUE)

Not run:
Split groups by similarity (Too heavy to include)
pg <- kmerSplit(pg, lowerLimit = 0.8)

End(Not run)

manualGrouping Define gene grouping manually

Description

In cases where results from other algorithms are wished to be imported into the FindMyFriends
framework, this method ensures that the proper formatting is done. The grouping can be defined as
an integer vector with an element for each gene. The value of each element is then used as the gene
group classifier. Alternatively groups can be defined by a list of integer vectors. Each element of
the list defines a group and the content of each element refers to gene indexes.

Usage
manualGrouping(object, groups)

S4 method for signature 'pgVirtual,integer'
manualGrouping(object, groups)

S4 method for signature 'pgVirtual,list'
manualGrouping(object, groups)

Arguments

object A pgVirtual subclass

groups Either a list or integer vector defining the grouping
Value

An object of the same class as "object’.

Methods (by class)

* object = pgVirtual, groups = integer: manual grouping defined by integer vector

* object = pgVirtual,groups = 1list: manual grouping defined by list

neighborhoodSplit 33

See Also

Other grouping algorithms: cdhitGrouping, gpcGrouping, graphGrouping

Examples

testPG <- .loadPgExample()

Load grouping data

groups <- system.file('extdata', 'examplePG', 'groupsWG.txt',
package='FindMyFriends'

)

groups <- scan(groups, what=integer(), quiet=TRUE)

Do the grouping
testPG <- manualGrouping(testPG, groups)

neighborhoodSplit Split gene groups by neighborhood synteny

Description

This function evaluates already created gene groups and splits the members into new groups based
on the synteny of the flanking genes and the similarity of the sequences. In general the splitting is
based on multiple stages that all gene pairs must pass in order to remain in the same group. First
the link between the genes is removed if they are part of the same organism. Then the synteny of
the flanking genes are assessed and if it doesn’t passes the defined threshold the link between the
gene pair is removed. Then the kmer similarity of the two sequences are compared and if below
a certain threshold the link is removed. Lastly the length of the two sequences are compared and
if below a certain threshold the link is removed. Based on this new graph cliques are detected
and sorted based on the lowest within-clique sequence similarity and neighborhood synteny. The
cliques are then added as new groups if the members are not already members of a new group until
all members are part of a new group. This approach ensures that all members of the new groupings
passes certain conditions when compared to all other members of the same group. After the splitting
a refinement step is done where gene groups with high similarity and sharing a neighbor either up-
or downstream are merged together to avoid spurius errors resulting from the initial grouping.

Usage

neighborhoodSplit(object, ...)

S4 method for signature 'pgVirtualloc'
neighborhoodSplit(object, flankSize,
forceParalogues, kmerSize, lowerLimit, maxLengthDif,
guideGroups = NULL, cdhitOpts = list())

34 neighborhoodSplit

Arguments
object A pgVirtualLoc subclass
parameters passed on.
flankSize The number of flanking genes on each side of the gene to use for comparison.
forceParalogues
Force similarity of paralogue genes to 0
kmerSize The length of kmers used for sequence similarity
lowerLimit The lower limit of sequence similarity below which it will be set to 0

maxLengthDif The maximum deviation in sequence length to allow. Between O and 1 it de-
scribes a percentage. Above 1 it describes a fixed length

guideGroups An integer vector with prior grouping that, all else being equal, should be prior-
itized. Used internally.

cdhitOpts A list of options to pass on to CD-Hit during the merging step. "l", "n" and
"s"/"S" will be overridden.

Value

An object with the same class as object containing the new grouping.

Methods (by class)

* pgVirtualloc: Neighborhood-based gene group splitting for pgVirtualLoc subclasses

See Also

Other group-splitting: kmerSplit

Examples
testPG <- .loadPgExample(geneLoc=TRUE, withGroups=TRUE)
Too heavy to run
Not run:
testPG <- neighborhoodSplit(testPG, lowerLimit=0.75)

End(Not run)

nGeneGroups 35

nGeneGroups Get the number of gene groups in a pangenome

Description

This method gives the number of different gene groups in the object.

Usage

nGeneGroups(object)

S4 method for signature 'pgVirtual'

nGeneGroups(object)
Arguments

object A pgVirtual subclass
Value

An integer giving the number of gene groups

Methods (by class)

* pgVirtual: The number of gene groups in the pangenome for pgVirtual subclasses

Examples

testPG <- .loadPgExample(withGroups=TRUE)
nGeneGroups (testPG)

nGenes Get the total number of genes in a pangenome

Description
This method returns the total number of genes in a pangenome (i.e. the sum of genes in each
organism in the pangenome)

Usage

nGenes(object)

S4 method for signature 'pgVirtual'
nGenes(object)

36 nOrganisms

Arguments

object A pgVirtual subclass

Value

An integer giving the number of genes in the object

Methods (by class)

* pgVirtual: The number of genes in the pangenome for pgVirtual subclasses.

Examples

testPG <- .loadPgExample()
nGenes(testPG)

nOrganisms Get the number of organisms represented in a pangenome

Description

This method returns the current number of organisms in a pgVirtual subclass. This is also the result
of calling length() on the object.

Usage

nOrganisms(object)

S4 method for signature 'pgVirtual'

nOrganisms(object)
Arguments

object A pgVirtual subclass
Value

An integer giving the number of organisms

Methods (by class)

* pgVirtual: The number of organisms in the pangenome for pgVirtual subclasses.

Examples

testPG <- .loadPgExample()
nOrganisms(testPG)

orglnfo 37

orgInfo Get and set information about organisms

Description
These methods lets you access the information stored about each organism and add to it or modify
it. The only information present up front is the number of genes present in each organism. While
possible, this information should not be changed manually but through the removeGene functions.
Usage
orgInfo(object)

orgInfo(object) <- value

S4 method for signature 'pgInMem'
orgInfo(object)

S4 replacement method for signature 'pgInMem'
orgInfo(object) <- value

Arguments

object A pgVirtual subclass

value A data.frame with a row for each organism
Value

In case of the getter a data.frame with organism information.

Methods (by class)

* pgInMem: Get organism metadata for pgInMem subclasses

* pgInMem: Set organism metadata for pgInMem subclasses

Note

Required for subclasses of pgVirtual in order to extend the class system of FindMyFriends

See Also

Other Metadata: addGroupInfo, addOrgInfo, groupInfo

38 orgNames

Examples

testPG <- .loadPgExample()
orgInfo(testPG)

orgInfo(testPG)$Genus <- 'Mycoplasma’

orgNames Get and set the names of organisms in the pangenome

Description

These methods lets you manipulate the naming of organisms in the pangenome. By default organ-
isms are named after the fasta file they are defined by, but this can be changed at will.

Usage
orgNames(object)
orgNames(object) <- value

S4 method for signature 'pgInMem'
orgNames(object)

S4 replacement method for signature 'pgInMem'
orgNames(object) <- value

Arguments

object A pgVirtual subclass

value A vector with new names - will be coerced to characters
Value

In case of the getter a character vector with names

Methods (by class)

* pgInMem: Get organism names for pgInMem subclasses

* pgInMem: Set organism names for pglnMem subclasses

Note

Required for subclasses of pgVirtual in order to extend the class system of FindMyFriends

orgStat 39

Examples

testPG <- .loadPgExample()
orgNames (testPG)

orgNames(testPG)[3] <- 'Organism 3'

orgStat Calculate statistics about each organism

Description

This method, much like codegroupStat calculates different statistics for each organism in the pangenome.
Depending on the parameters the statistics are: number of genes, minimum length of gene, maxi-
mum length of gene standard deviation of gene lengths, residue frequency, number of gene groups

and number of paralogues.

Usage
orgStat(object, ...)

S4 method for signature 'pgVirtual'
orgStat(object, subset, getFrequency = FALSE)

Arguments
object A pgVirtual subclass
parameters passed on.
subset Name or indexes of organisms to include

getFrequency logical. Should amino/nucleic acid frequency be calculated

Value

A data.frame with a row per organism, with each statistic in a column

Methods (by class)

* pgVirtual: Organism statistics for all pgVirtual subclasses

Examples

testPG <- .loadPgExample(withGroups=TRUE)

orgStats <- orgStat(testPG)

40 pangenome

pangenome Construct a pangenome from fasta files

Description

This function constructs an initial pangenome object from a set of fasta files. Note that the actual
pangenome is not calculated here. As such this function mainly sets everything up before beginning
the more lengthly pangenome calculation.

Usage

pangenome(paths, translated, genelLocation = NULL, lowMem = FALSE, ...)
Arguments

paths A character vector with location of fasta files

translated A boolean indicating if the fasta files contain amino acid sequences

genelocation A function, string or dataframe. If it is a data.frame it should contain the columns
"contig’, ’start’, ’end’ and ’strand’ with a row for each gene. If it is a function it
should take the name (fasta description) for each gene and output a data.frame
similar to described above. If it is a string it should specify the format of the
gene names. Currently only ’prodigal’ is supported.

lowMem Boolean. Should FindMyFriends avoid storing sequences in memory.

Additional defaults to set on the object

Value

A pgVirtual subclass object depending on geneLocation and lowMem.

geneLocation lowMem Resulting class

NULL FALSE pgFull
NULL TRUE pgLM
INULL FALSE pgFulllLoc
INULL TRUE pgLMLoc

Examples

location <- tempdir()

unzip(system.file('extdata', 'Mycoplasma.zip', package='FindMyFriends'),
exdir=location)

genomeFiles <- list.files(location, full.names=TRUE, pattern='x.fasta')

Create pgFull
pangenome (genomeFiles, TRUE)

Create pgFullloc

pcGraph 41

pangenome (genomeFiles, TRUE, genelLocation='prodigal')

Create pgLM
pangenome (genomeFiles, TRUE, lowMem=TRUE)

Create pglLMLoc
pangenome (genomeFiles, TRUE, genelLocation='prodigal', lowMem=TRUE)

pcGraph Calculate the panchromosome graph

Description

This method creates a graph representation of the panchromosome - The complete set of gene
groups linked together by chromosomal position. Each vertice in the graph represent a gene group
and each edge represent a positional relation between two gene groups (neighboring each other).
Vertices are annotated with number of genes, organism names and strand while edges are annotated
with numer of genes (as weight), and organism names.

Usage
pcGraph(object, ...)

S4 method for signature 'pgVirtualloc'
pcGraph(object, slim = FALSE)

Arguments
object A pgVirtualLoc subclass
parameters passed on
slim Should the returned graph be stripped of all metadata and only capture gene
group connectivity. Defaults to FALSE
Value
An igraph object
Methods (by class)

* pgVirtualloc: Panchromosome creation for all pgVirtualLoc subclasses

Examples

testPG <- .loadPgExample(geneLoc=TRUE, withNeighborhoodSplit=TRUE)

panchromosome <- pcGraph(testPG)

42 pgInMem-class

pgFull-class Class for in memory pangenome data

Description

This class handles pangenome data without gene location information and with all sequences stored
in memory. This makes sequence lookup much faster but also increases the memory footprint of
the object thus making it a bad choice for very large pangenome with millions of genes.

Slots

sequences FEither an AAStringSet or DNAStringSet containing all sequences in the pangenome.

See Also

Other Pangenome_classes: pgFulllLoc-class, pgInMem-class, pgInMemLoc-class, pgLM-class,
pgLMLoc-class, pgSlim-class, pgSlimLoc-class, pgVirtual-class, pgVirtuallLoc-class

pgFullloc-class Class for in memory pangenome data with location information

Description

This class extends pgFull by subclassing pgInMemLoc and thus adding gene location information
to each gene. See the respective superclasses for more information.

See Also

Other Pangenome_classes: pgFull-class, pgInMem-class, pgInMemLoc-class, pglM-class,
pgLMLoc-class, pgSlim-class, pgSlimLoc-class, pgVirtual-class, pgVirtuallLoc-class

pgInMem-class FindMyFriends standard base class for pangenomic data

Description

This virtual class is the superclass of the standard pangenome classes in FindMyFriends. It defines
storage for everything except gene information, which is delegated to its subclasses.

pgInMemlLoc-class 43

Details

As gene storage is not defined in this class the following methods must be defined by subclasses:

genes(object, split, subset) Return the underlying sequences. If split is missing return an XStringSet,
otherwise return an XStringSetList. split can be either "group’, ’organism’ or ’paralogue’ and
should group the sequences accordingly. Subset should behave as if it was added as ’[]’ to the
results but allow you to avoid reading everything into memory if not needed.

geneNames(object) Return a character vector with the name of each gene.
geneNames<-(object, value) Set the name of each gene.
geneWidth(object) Return an integer vector with the length (in residues) of each gene.

removeGene(object, name, organism, group, ind) Should only be implemented for signature:
c(yourClass, *missing’, missing’, missing’, ’integer’) Remove the genes at the given in-
dexes and return the object.

Slots

seqToOrg An integer vector that reference all genes to a specific organism.
seqToGeneGroup An integer vector that references all genes to a specific gene group.
groupInfo A data.frame storing metadata information about gene groups.

orgInfo A data.frame storing metadata information about organisms

See Also

Other Pangenome_classes: pgFull-class, pgFullLoc-class, pgInMemLoc-class, pgLM-class,
pgLMLoc-class, pgSlim-class, pgSlimLoc-class, pgVirtual-class, pgVirtuallLoc-class

pgInMemLoc-class Superclass for gene location aware pangenome

Description
This virtual class is the superclass for all standard, location aware, pangenome classes in Find-
MyFriends. It stores all chromosomal information in a data.frame.
Slots
genelLocation A data.frame containing the columns ’contig’, ’start’, ’end’ and ’strand’ and a row
for each gene in the pangenome.
See Also

Other Pangenome_classes: pgFull-class, pgFulllLoc-class, pgInMem-class, pglLM-class, pgLMLoc-class,
pgSlim-class, pgSlimLoc-class, pgVirtual-class, pgVirtuallLoc-class

44 pgLMLoc-class

pgLM-class Class for reference based pangenome data

Description

This class handles pangenome information where gene sequences are kept on disc instead of stored
in memory. As long as the original fasta files are not modified, this class will take care of indexing
the genes correctly. This class has a substantially lower memory footprint than the pgFull class at
the expense of longer sequence lookup times. For massive pangenomes containing Gb of sequence
data there is no alternative though.

Slots

seqIndex A data.frame as produced by fasta.index with random access information for each
gene.

See Also

Other Pangenome_classes: pgFull-class, pgFulllLoc-class, pgInMem-class, pgInMemLoc-class,
pglMLoc-class, pgSlim-class, pgSlimLoc-class, pgVirtual-class, pgVirtuallLoc-class

pgLMLoc-class Class for reference based pangenome data with location information

Description

This class extends pgLM by subclassing pgInMemLoc and thus adding gene location information to
each gene. See the respective superclasses for more information.

See Also

Other Pangenome_classes: pgFull-class, pgFullLoc-class, pgInMem-class, pgInMemLoc-class,
pglLM-class, pgSlim-class, pgSlimLoc-class, pgVirtual-class, pgVirtualLoc-class

pgMatrix 45

pgMatrix Get the pangenome matrix

Description

This method lets you extract the pangenome matrix of the pangenome. It is not possible to directly
change the pangenome matrix as it not necessary stored in the object but might be calculated on
request. Either way the pangenome matrix is a function of the gene grouping and should be changed
by changing the gene grouping instead of being manipulated downstream.

Usage

pgMatrix(object)

S4 method for signature 'pgVirtual'

pgMatrix(object)
Arguments

object A pgVirtual subclass
Value

A matrix with organisms as columns and gene groups as rows

Methods (by class)

* pgVirtual: Get pangenome matrix for pgVirtual subclasses

Examples

testPG <- .loadPgExample(withGroups=TRUE)

head(pgMatrix(testPG))

pgSlim-class Class for pangenome data with no reference to genes

Description

This class is a slim version of pgLM and pgFull that does not store any information pertaining to
the actual genes. This means that this class cannot be the basis for the creation of a pangenome but
that pgLM or pgFull objects can be coerced down to this representation after the pangenome has
been created to make it less burdensome to work with, while still keeping a lot of the functionality
of the FindMyFriends framework.

46 pgVirtual-class

See Also

Other Pangenome_classes: pgFull-class, pgFulllLoc-class, pgInMem-class, pgInMemLoc-class,
pglLM-class, pgLMLoc-class, pgSlimLoc-class, pgVirtual-class, pgVirtualLoc-class

pgSlimLoc-class Class for pangenome data with no reference to genes

Description
This class extends pgSlim by subclassing pgInMemLoc and thus adding gene location information
to each gene. See the respective superclasses for more information.

See Also

Other Pangenome_classes: pgFull-class, pgFullLoc-class, pgInMem-class, pgInMemLoc-class,
pgLM-class, pgLMLoc-class, pgSlim-class, pgVirtual-class, pgVirtuallLoc-class

pgVirtual-class Base class for pangenomic data

Description

This virtual class is the superclass of all other pangenome classes in FindMyFriends. It is an empty
shell that is mainly used for dispatch and checking that the promises of subclasses are held.

Usage
S4 method for signature 'pgVirtual'
length(x)

S4 method for signature 'pgVirtual'
show(object)

S4 method for signature 'pgVirtual,integer,ANY,ANY'
x[i]

S4 method for signature 'pgVirtual,numeric,ANY,ANY'
x[i]

S4 method for signature 'pgVirtual,character,ANY,ANY'
x[i]

S4 method for signature 'pgVirtual,logical,ANY,ANY'
x[i]

pg Virtual-class 47

S4 method for signature 'pgVirtual,ANY,ANY'
x[[i]]

as(object, Class='ExpressionSet')

as(object, Class='matrix"')

Arguments
X A pgVirtual subclass object
object A pgVirtual subclass object
i indices specifying genomes, either integer, numeric, character or logical, fol-
lowing the normal rules for indexing objects in R
Class The class to coerce pgVirtual subclasses to. Outside of the FindMyFriends class
tree only "ExpressionSet’ and *matrix’ is implemented.
Details

Subclasses of pgVirtual must implement the following methods in order for them to plug into Find-
MyFriends algorithms:

seqToOrg(object) Returns the mapping from genes to organisms as an integer vector with position
mapped to gene and integer mapped to organism.

seqToGeneGroup(object) As seqToOrg but mapped to gene group instead of organism. If gene
groups are yet to be defined return an empty vector.

genes(object, split, subset) Return the underlying sequences. If split is missing return an XStringSet,
otherwise return an XStringSetList. split can be either ’group’, ’organism’ or *paralogue’ and
should group the sequences accordingly. Subset should behave as if it was added as ’[]’ to the
results but allow you to avoid reading everything into memory if not needed.

geneNames(object) Return a character vector with the name of each gene.
geneNames<-(object, value) Set the name of each gene.
geneWidth(object) Return an integer vector with the length (in residues) of each gene.

removeGene(object, name, organism, group, ind) Should only be implemented for signature:
c(yourClass, *missing’, missing’, missing’, ’integer’) Remove the genes at the given in-
dexes and return the object.

orgNames(object) Return a character vector of organism names.

orgNames<-(object, value) Set the name of the organisms.

groupNames(object) Return a character vector of gene group names.

groupNames<-(object, value) Set the name of gene groups.

orgInfo(object) Return a data.frame with metadata about each organim.

orgInfo<-(object, value) Set a data.frame to be metadata about each organism.

setOrgInfo(object, name, info, key) Set the metadata *name’, for the organisms corresponding to
"key’ to ’info’

groupInfo(object) Return a data.frame with metadata about each gene group.

48 pgVirtual-class

groupInfo<-(object, value) Set a data.frame to be metadata about each gene group.

setGrouplnfo(object, name, info, key) Set the metadata *name’, for the gene groups correspond-
ing to ’key’ to ’info’

groupGenes(object, seqToGeneGroup) Sets the gene grouping of the pangenome. ’seqToGene-
Group’ should correspond to the output of the seqToGeneGroup method (i.e. an integer vector
with each element giving the group of the corresponding gene). This method must include a
callNextMethod(object) as the last line.

mergePangenomes(pgl, pg2, geneGrouping, groupInfo) Merge pg2 into pgl preserving the in-
dexing in pgl and appending and modifying the indexing of pg2. The geneGrouping argument
is the new grouping of genes and grouplnfo the new group info for the groups.

Additionally subclasses can override the following methods for performance gains. Otherwise they
will be derived from the above methods.

length(object) Return the number of organisms in the object.
nOrganisms(object) As length.

nGenes(object) Return the number of genes in the object.
nGeneGroups(object) Return the number of gene groups
hasGeneGroups Returns TRUE if gene groups have been defined

pgMatrix Returns an integer matrix with organisms as columns and gene groups as rows and the
corresponding number of genes in each element.

Developers are encourages to consult the implementation of FindMyFriends own classes when try-
ing to implement new ones
Value

Length returns an integer giving the number of organisms

Methods (by generic)

* length: Length of a Pangenome, defined as the number of organisms it contain
* show: Basic information about the pangenome

* [: Create subsets of pangenomes based on index

* [: Create subsets of pangenomes based on index

* [: Create subsets of pangenomes based on organism name

* [: Create subsets of pangenomes based on logical vector

» [[: Extract sequences from a single organism

Slots

.settings A list containing settings pertaining to the object

See Also

Other Pangenome_classes: pgFull-class, pgFulllLoc-class, pgInMem-class, pgInMemLoc-class,
pglM-class, pglMLoc-class, pgSlim-class, pgSlimLoc-class, pgVirtualLoc-class

pg VirtualLoc-class 49

pgVirtuallLoc-class Superclass for gene location aware pangenome

Description

This virtual class should be subclassed by all classes that include chromosomal position of the
genes (along with subclassing pgVirtual). The class itself is an empty shell that only takes care of
dispatching and checking the promises of subclasses are held.

Details

Subclasses of pgVirtualLoc must implement the following methods:

genelLocation(object) Return a data.frame with a row for each gene, describing the chromosomal
position of the gene. The data.frame must contain the columns ’contig’, ’start’, end’ and
’strand’. Contig is self-explanatory, start and end is the respective start and end positions on
the contig (start must be lower than end) and strand defines the coding direction as -1 or 1.

See Also

Other Pangenome_classes: pgFull-class, pgFulllLoc-class, pgInMem-class, pgInMemLoc-class,
pglLM-class, pgLMLoc-class, pgSlim-class, pgSlimLoc-class, pgVirtual-class

plotEvolution Plot the evolution in gene groups

Description

This method constructs a plot showing how the number of singleton, accessory and core gene
groups evolve as the size of the pangenome increases. Different ways of increasing the size of
the pangenome is available.

Usage

plotEvolution(object, ...)

S4 method for signature 'pgVirtual'
plotEvolution(object, ordering = "bootstrap”,

times = 10)
Arguments
object A pgVirtual subclass
Parameters to be passed on
ordering An ordering of the organisms by name or index, or alternative one of *bootstrap’,

‘random’ or ‘none’.

times The number of sampling for ordering="bootstrap’

50 plotGroup

Value

This function is called for its side effects

Methods (by class)

* pgVirtual: Evolution plots for pgVirtual subclasses

Examples

testPG <- .loadPgExample(withGroups=TRUE)

Standard type - organisms ordered by their index in the pangenome
plotEvolution(testPG, ordering='none')

Bootstrapped with confidence intervals
plotEvolution(testPG, ordering='bootstrap')

plotGroup Plot the similarities of genes within a group

Description
This method plots a gene group with genes as vertices and cosine similarities as weighted edges.
Mildly informative at best :-)

Usage

plotGroup(object, ...)

S4 method for signature 'pgVirtual'
plotGroup(object, group, kmerSize, lowerLimit,

rescale, transform, ...)
Arguments
object A pgVirtual subclass
Parameters to be passed on to igraphs plotting method
group Name or index of the gene group to plot
kmerSize The kmer size to use for similarity calculations
lowerLimit The lower threshold for similarity below which it will be set to O
rescale logical. Should the similarity be rescaled between lowerLimit and 1

transform A transformation function to apply to the similarities

plotNeighborhood 51

Value

Called for the side effect of creating a plot. Invisibly returns an igraph object with all visual param-
eters set as node and edge attributes.

Methods (by class)

* pgVirtual: Gene group similiarity plotting for all pgVirtual subclasses

Examples

testPG <- .loadPgExample(withGroups=TRUE)

plotGroup(testPG, 10, lowerLimit=0.25)

plotNeighborhood Plot the neighborhood of a gene group

Description
This method plots the neighborhood extracted using getNeighborhood in a visually pleasing way.
It is mainly a wrapper around plot.igraph to ensure the proper information is visualised.

Usage
plotNeighborhood(object, ...)

S4 method for signature 'pgVirtualloc'
plotNeighborhood(object, group, vicinity = 4,

.
Arguments
object A pgVirtualLoc subclass
Parameter passed on to igraph’s plot method.
group The name or index of a group.
vicinity An integer giving the number of gene groups in both directions to collect.

Value

Called for the side effect of creating a plot. Invisibly returns an igraph object with all visual param-
eters set as node and edge attributes.

Methods (by class)

* pgVirtuallLoc: Gene group neighborhood plotting for all pgVirtualLoc subclasses

52 plotSimilarity
Examples
testPG <- .loadPgExample(geneLoc=TRUE, withNeighborhoodSplit=TRUE)

Nice little overview of the neighborhood of gene group 30
plotNeighborhood(testPG, 30)

plotSimilarity Create a heatplot with similarities between all organisms

Description

This method creates a heatplot showing the similarity between all organisms in the pangenome. The
similarity can either be derived from the pangenome matrix or from kmer calculations of the genes
themselves.

Usage
plotSimilarity(object, ...)

S4 method for signature 'pgVirtual'
plotSimilarity(object, type = "pangenome”,

ordering = "auto”, kmerSize, pParam, chunkSize = 100)
Arguments
object A pgVirtual subclass
Parameters to be passed on.
type The type of similarity calculation. Either ’pangenome’ or "kmer’
ordering The ordering of rows and column in the heatmap. Either integer og character

vector with organism names or one of the following: ’auto’ or "none’. For "auto’
The ordering will be based on a hierarchical clustering of the organisms based
on Ward’s distance.

kmerSize The size of the kmers to use for comparison

pParam An object of class BiocParalle]lParam

chunkSize Number of organisms to process at a time
Value

This function is called for its side effects

Methods (by class)

* pgVirtual: Similarity heatmaps for pgVirtual subclasses

plotStat 53

See Also

plotTree for a dendrogram plot of the same data.

Examples

testPG <- .loadPgExample(withGroups=TRUE)

Use kmers
plotSimilarity(testPG, type='kmer')

Use pangenome matrix
plotSimilarity(testPG, type='pangenome')

plotStat Plot (very) basic statistics on the pangenome

Description

This method plots the number of genes in each organism and, if gene groups have been defined, the
number of singleton, accessory and core gene groups.

Usage

plotStat(object, ...)

S4 method for signature 'pgVirtual'

plotStat(object, sort = TRUE, color, ...)
Arguments
object A pgVirtual subclass

Parameters passed on to color scale.

sort logical. Should Genomes be sorted based on their number of genes
color A metadata name to color the organisms by
Value

This function is called for its side effects

Methods (by class)

* pgVirtual: Plot basic statistics for pgVirtual subclasses

54 plotTree

Examples

testPG <- .loadPgExample(withGroups=TRUE)

Should make a nice little plot
plotStat(testPG)

plotTree Plot a dendrogram of the organisms in a pangenome

Description

This method plots a dendrogram of the relationship between the organisms in the pangenome. It
does not tries to by phylogenetic in any way but merely shows the relationship in data. As with
plotSimilarity it can be based on either the pangenome matrix or kmer feature vectors.

Usage

plotTree(object, ...)

S4 method for signature 'pgVirtual'

plotTree(object, type = "pangenome”,
circular = FALSE, info, kmerSize, dist, clust, pParam,
chunkSize = 100)

Arguments
object A pgVirtual subclass
Parameters to be passed on.
type The type of distance meassure. Either "pangenome’ or "kmer’
circular logical. Should the dendrogram be plotted in a circular fashion.
info Metadata to plot at the leafs of the dendrogram. Either the name of an orglnfo
column or a vector with information for each organism.
kmerSize The size of the kmers to use for comparison
dist The distance function to use. All possible values of method in dist() are allowed
as well as ’cosine’ for type="kmer’
clust The clustering function to use. Passed on to method in hclust()
pParam An object of class BiocParalle]lParam
chunkSize Number of organisms to process at a time
Value

This function is called for its side effects

readAnnot 55

Methods (by class)

* pgVirtual: Dendrogram plotting for pgVirtual subclasses

See Also

plotSimilarity for a heatmap plot of the same data.

Examples

testPG <- .loadPgExample(withGroups=TRUE)
plotTree(testPG, type='pangenome', dist='binary', clust='ward.D2')

And now in a circle (type defaults to 'pangenome')
plotTree(testPG, circular=TRUE, dist='binary', clust='ward.D2')

readAnnot Import annotation from an .annot file

Description
This function makes it easy to import annotation create in Blast2GO or other programs supporting
.annot exporting of results.

Usage

readAnnot(file)

Arguments

file The .annot file to import

Value
A data.frame ready to merge with a pangenome object using addGroupInfo with the key argument
set to *name’.

Examples

Get path to file
annot <- system.file('extdata', 'examplePG', 'example.annot', package='FindMyFriends')

Parse the file
readAnnot (annot)

56 removeGene

removeGene Remove genes from a pangenome

Description

This method makes it possible to safely remove genes from a pangenome using a variaty of selection
mechanisms depending on the supplied parameters. The name parameter refers to the gene name,
organism refers to either organism name or index, group refers to either gene group name or index
and ind refers to the gene index. See examples for details of the different possibilities.

Usage

removeGene(object, name, organism, group, ind, ...)

S4 method for signature 'pgInMem,missing,missing,missing,numeric'’
removeGene(object,
name, organism, group, ind)

S4 method for signature 'pgVirtual,character,missing,missing,missing’
removeGene(object,
name, organism, group, ind)

S4 method for signature 'pgVirtual,character,character,missing,missing’
removeGene(object,
name, organism, group, ind)

S4 method for signature 'pgVirtual,character,numeric,missing,missing’
removeGene(object,
name, organism, group, ind)

S4 method for signature 'pgVirtual,missing,character,missing,missing’
removeGene(object,
name, organism, group, ind)

S4 method for signature 'pgVirtual,missing,numeric,missing,missing’
removeGene(object,
name, organism, group, ind)

S4 method for signature 'pgVirtual,missing,character,missing,numeric’
removeGene(object,
name, organism, group, ind)

S4 method for signature 'pgVirtual,missing,numeric,missing,numeric'
removeGene (object,
name, organism, group, ind)

removeGene 57

S4 method for signature 'pgVirtual,missing,missing,character,missing’
removeGene(object,
name, organism, group, ind)

S4 method for signature 'pgVirtual,missing,missing,numeric,missing’
removeGene(object,
name, organism, group, ind)

S4 method for signature 'pgVirtual,missing,missing,character,numeric’
removeGene(object,
name, organism, group, ind)

S4 method for signature 'pgVirtual,missing,missing,numeric,numeric’
removeGene(object,
name, organism, group, ind)

Arguments
object A pgVirtual subclass
name A character vector of names of genes to remove
organism Either an integer or character vector of orgnanisms to remove genes from. If
neither name nor ind is given all genes in the organisms are removed.
group Either an integer or character vector of gene groups to remove genes from. If
ind is not given all genes in the groups are removed.
ind Indexes of the selections to remove. If both name, organism and group is not
given, it indexes into the raw gene index, otherwise it indexes into the element
defined by organism or group.
parameters passed on (currently ignored).
Value

An object of the same class as object without the genes that should be removed.

Methods (by class)

e object = pgInMem,name = missing,organism=missing,group =missing,ind = numeric:
Gene removal base function for pglnMem subclasses

* object = pgVirtual,name = character,organism=missing,group =missing,ind =missing:
Remove gene based on gene name

e object = pgVirtual,name = character,organism = character,group =missing,ind = missing:
Remove gene based on gene and organism name

* object = pgVirtual,name = character,organism=numeric,group =missing,ind =missing:
Remove gene based on gene name and organism index

* object = pgVirtual,name = missing,organism = character,group =missing,ind = missing:
Remove gene based on organism name

e object =pgVirtual,name =missing,organism=numeric,group =missing,ind =missing:
Remove gene based on organism index

58 reportGroupChanges

* object = pgVirtual,name = missing,organism = character,group =missing,ind = numeric:
Remove gene based on organism name and gene index

* object = pgVirtual,name = missing,organism = numeric,group =missing,ind = numeric:
Remove gene based on organism and gene index

* object = pgVirtual,name =missing,organism =missing,group = character,ind = missing:
Remove gene based on gene group name

* object =pgVirtual,name =missing,organism=missing,group = numeric,ind =missing:
Remove gene based on gene group index

* object = pgVirtual,name = missing,organism=missing,group = character,ind = numeric:
Remove gene based on gene group name and gene index

* object =pgVirtual,name =missing,organism=missing,group = numeric,ind = numeric:
Remove gene based on gene group and gene index

Note

Required for subclasses of pgVirtual in order to extend the class system of FindMyFriends

Examples

testPG <- .loadPgExample(withGroups=TRUE)
nGenes (testPG)

Remove gene number 6
removeGene(testPG, ind=5)

Remove all genes from organism 'AEQ17244'
removeGene(testPG, organism='AEQ17244")

Remove first gene in gene group 10
removeGene(testPG, group=10, ind=1)

reportGroupChanges Reports the change in grouping

Description
This function inspects gene grouping before and after a change and reports on the changes. If
newGrouping is missing it reports on the last performed comparison; optionally writing it to a file
if ’file’ is specified.

Usage

reportGroupChanges(newGrouping, oldGrouping, file)

seqToGeneGroup 59

Arguments
newGrouping An integer vector as produced by seqToGeneGroup with the grouping after the
change
0ldGrouping An integer vector as produced by seqToGeneGroup with the grouping before the
change
file A file to write
Value

This function is called for its side effects

Examples

Show latest changes in grouping
reportGroupChanges()

Alternatively write it to a file
reportGroupChanges(file = tempfile())

seqToGeneGroup Get gene-to-genegroup relationship

Description

This method returns the group membership for each gene in the pangenome as a vector of indices.
Element 1 corresponds to gene 1 and the value is the index of the corresponding gene group. If gene
groups have yet to be defined it returns a vector of length 0.

Usage

seqToGeneGroup(object)

S4 method for signature 'pgInMem'
seqToGeneGroup(object)

Arguments

object A pgVirtual subclass

Value

An integer vector with an element for each gene in the pangenome.

Methods (by class)

* pgInMem: Gene to genegroup indexing for pginMem subclasses

60 seqToOrg

Note

Required for extending the class system of FindMyFriends

See Also

seqToOrg for gene-to-organism relationship
Examples
testPG <- .loadPgExample(withGroups=TRUE)

Have a look at what the first six genes belongs to
head(seqToGeneGroup(testPG))

seqToOrg Get gene-to-organism relationship

Description

This method returns the organism membership for each gene in the pangenome as a vector of in-
dices. Element 1 corresponds to gene 1 and the value is the index of the corresponding organism.

Usage

seqToOrg(object)

S4 method for signature 'pgInMem'

seqToOrg(object)
Arguments

object A pgVirtual subclass
Value

An integer vector with an element for each gene in the pangenome.

Methods (by class)

* pgInMem: Gene to organism indexing for pglnMem subclasses

Note

Required for extending the class system of FindMyFriends

See Also

seqToGeneGroup for gene-to-genegroup relationship

translated 61
Examples
testPG <- .loadPgExample(withGroups=TRUE)

Stored sequentially so the first will belong to organism 1
head(seqToOrg(testPG))

translated Check the sequence type of the pangenome

Description

This method checks whether the genes in the pangenome are on translated form (amino acid se-
quences) or not. A return value of FALSE only indicates that the storage mode for the genes is not
an AAStringSet. While this leaves room for both RNA-, DNA- and BStringSet, only DNAStringSet
makes much sense and is therefore assumed

Usage

translated(object)

S4 method for signature 'pgVirtual'

translated(object)
Arguments

object A pgVirtual subclass
Value

A boolean indicating whether genes are translated (TRUE) or not (FALSE)

Methods (by class)

* pgVirtual: Sequence type check for pgVirtual subclasses
Examples
testPG <- .loadPgExample()

Genes are translated
translated(testPG)

... and therefore returned as AAStringSet instead of DNAStringSet
class(genes(testPG, subset=1))

62 variableRegions

variableRegions Detect regions of high variability in the panchromosome

Description

This method analyses the panchromosome and detects regions of local non-linearity. These regions
often corresponds to areas with insertion/deletions, frameshifts or general high plasticity. It works
by examining each vertice of the panchromosome with an out degree above 2 and detect cycles
within the neighborhood of these vertices. Adjacent cycles are then joined together to form bigger
groups of high variability.

Usage
variableRegions(object, ...)

S4 method for signature 'pgVirtualloc'
variableRegions(object, flankSize)

Arguments
object A pgVirtualLoc subclass
parameters to pass on
flankSize The size of the neighborhood around vertices with outdegree above 2 in where
to search for cycles
Value

A list of variable regions. Each element contains the following elements:

type Either ’ins/den’, ’frameshift’, "hub’, ’plastic’ or ’end’. ins/del are regions where the two
outgoing vertices are directly connected. frameshift are regions where the two outgoing ver-
tices are connected through two different routes, but not directly. hub are regions with more
than two outgoing vertices. plastic are regions where the two outgoing vertices are connected
through multiple different paths. end are regions with only one outgoing vertice.

members The gene groups being part of the region.
flank The outgoing vertices connecting the region to the rest of the panchromosome.
connectsTo The gene group(s) each flank connects to outside of the region

graph The subgraph of the panchromosome representing the region

Methods (by class)

* pgVirtualloc: Variable region detection for all pgVirtualLoc subclasses

variableRegions

Examples

testPG <- .loadPgExample(geneLoc=TRUE, withNeighborhoodSplit=TRUE)
Too heavy to include
Not run:

regions <- variableRegions(testPG)

Have a look at the first region
regions[[1]]

End(Not run)

63

Index

+ Metadata
addGroupInfo, 7
addOrgInfo, 8
groupInfo, 23
orgInfo, 37
+ Pangenome_classes
pgFull-class, 42
pgFulllLoc-class, 42
pgInMem-class, 42
pgInMemLoc-class, 43
pgLM-class, 44
pglLMLoc-class, 44
pgSlim-class, 45
pgSlimLoc-class, 46
pgVirtual-class, 46
pgVirtuallLoc-class, 49
* group-splitting
kmerSplit, 31
neighborhoodSplit, 33
* grouping algorithms
cdhitGrouping, 9
gpcGrouping, 20
graphGrouping, 22
manualGrouping, 32
.fillDefaults, 4
.loadPgExample, 5
[,pgVirtual, character,ANY, ANY-method
(pgVirtual-class), 46
[,pgVirtual,integer,ANY, ANY-method
(pgVirtual-class), 46
[,pgVirtual,logical, ANY,ANY-method
(pgVirtual-class), 46
[,pgVirtual,numeric,ANY,ANY-method
(pgVirtual-class), 46
[[,pgVirtual, ANY,ANY-method
(pgVirtual-class), 46

addGenomes, 6
addGenomes,pgVirtual,pgVirtual-method
(addGenomes), 6

64

addGroupInfo, 7, 9, 24, 37, 55

addGroupInfo,pgVirtual-method
(addGroupInfo), 7

addOrglInfo, 8, 8, 24, 37

addOrgInfo,pgVirtual-method
(addOrgInfo), 8

as (pgVirtual-class), 46

cdhitGrouping, 9, 21, 22, 33
cdhitGrouping,pgVirtual-method
(cdhitGrouping), 9
collapseParalogues, 11
collapseParalogues,pgVirtual-method
(collapseParalogues), 11
communities, 22, 29

defaults, 4, 12

defaults,pgVirtual-method (defaults), 12

defaults<- (defaults), 12

defaults<-,pgVirtual-method (defaults),
12

fasta.index, 44
filehash, 21
FindMyFriends-package, 3

genelLocation, 13

genelLocation, pgInMemLoc-method
(genelLocation), 13

geneNames, 14

geneNames, pgFull-method (geneNames), 14

geneNames, pgLM-method (geneNames), 14

geneNames, pgSlim-method (geneNames), 14

geneNames<- (geneNames), 14

geneNames<-,pgFull-method (geneNames),
14

geneNames<-, pgLM-method (geneNames), 14

geneNames<-,pgSlim-method (geneNames),
14

genes, 16

INDEX

genes,pgFull, character-method (genes),
16
genes,pgFull,missing-method (genes), 16
genes, pglM, character-method (genes), 16
genes,pglM, missing-method (genes), 16
genes,pgSlim,character-method (genes),
16
genes,pgSlim,missing-method (genes), 16
geneWidth, 17
geneWidth, pgFull-method (geneWidth), 17
geneWidth, pglLM-method (geneWidth), 17
geneWidth,pgSlim-method (geneWidth), 17
getNeighborhood, 18, 51
getNeighborhood, pgVirtuallLoc-method
(getNeighborhood), 18
getRep, 19
getRep,pgVirtual,character-method
(getRep), 19
gpcGrouping, 11, 13,20, 22, 33
gpcGrouping,pgVirtual-method
(gpcGrouping), 20
graphGrouping, 11, 13,21, 22, 30, 33
graphGrouping,pgVirtual-method
(graphGrouping), 22
groupInfo, 8, 9,23, 37
groupInfo, pgInMem-method (groupInfo), 23
groupInfo<- (groupInfo), 23
groupInfo<-,pgInMem-method (groupInfo),
23
groupNames, 24
groupNames , pgInMem-method (groupNames),
24
groupNames<- (groupNames), 24
groupNames<-, pgInMem-method
(groupNames), 24
groupStat, 25, 39
groupStat,pgVirtual-method (groupStat),
25

hasGeneGroups, 26
hasGeneGroups,pgVirtual-method
(hasGeneGroups), 26
hasGeneInfo, 27
hasGeneInfo,pgVirtual-method
(hasGenelInfo), 27
hasParaloguelinks, 28
hasParaloguelLinks,pgVirtual-method
(hasParaloguelinks), 28

65

kmerLink, 7, 11, 13,28

kmerLink,pgVirtual-method (kmerLink), 28

kmerSimilarity, 13, 22, 30

kmerSimilarity,pgVirtual-method
(kmerSimilarity), 30

kmerSplit, 31, 34

kmerSplit,pgVirtual-method (kmerSplit),
31

length,pgVirtual-method
(pgVirtual-class), 46

manualGrouping, 11,21, 22, 30, 32

manualGrouping,pgVirtual, integer-method
(manualGrouping), 32

manualGrouping,pgVirtual,list-method
(manualGrouping), 32

neighborhoodSplit, 7, 31, 33

neighborhoodSplit,pgVirtualLoc-method
(neighborhoodSplit), 33

nGeneGroups, 35

nGeneGroups, pgVirtual-method
(nGeneGroups), 35

nGenes, 35

nGenes, pgVirtual-method (nGenes), 35

nOrganisms, 36

nOrganisms,pgVirtual-method
(nOrganisms), 36

orglnfo, 8, 9, 24, 37
orgInfo,pgInMem-method (orgInfo), 37
orgInfo<- (orglnfo), 37
orgInfo<-,pgInMem-method (orglnfo), 37
orgNames, 38

orgNames, pgInMem-method (orgNames), 38
orgNames<- (orgNames), 38
orgNames<-,pgInMem-method (orgNames), 38
orgStat, 39
orgStat,pgVirtual-method (orgStat), 39

pangenome, 40

pcGraph, 41

pcGraph, pgVirtualLoc-method (pcGraph),
41

pgFull, 40, 42, 44

pgFull-class, 42

pgFullloc, 40

pgFulllLoc-class, 42

66

pgInMem-class, 42

pgInMemLoc, 42, 44, 46

pgInMemLoc-class, 43

pgLM, 40, 44

pgLM-class, 44

pglLMLoc, 40

pgLMLoc-class, 44

pgMatrix, 45

pgMatrix,pgVirtual-method (pgMatrix), 45

pgSlim, 46

pgSlim-class, 45

pgSlimLoc-class, 46

pgVirtual-class, 46

pgVirtuallLoc-class, 49

plot.igraph, 51

plotEvolution, 49

plotEvolution,pgVirtual-method
(plotEvolution), 49

plotGroup, 13, 50

plotGroup,pgVirtual-method (plotGroup),
50

plotNeighborhood, 19, 51

plotNeighborhood, pgVirtualLoc-method
(plotNeighborhood), 51

plotSimilarity, 13,52, 54, 55

plotSimilarity,pgVirtual-method
(plotSimilarity), 52

plotStat, 53

plotStat,pgVirtual-method (plotStat), 53

plotTree, 13, 53, 54

plotTree,pgVirtual-method (plotTree), 54

readAnnot, 55
removeGene, 37, 56

INDEX

removeGene,pgVirtual,missing,missing,character,numeric-met
(removeGene), 56

removeGene,pgVirtual,missing,missing,numeric,missing-metho
(removeGene), 56

removeGene,pgVirtual,missing,missing,numeric,numeric-metho
(removeGene), 56

removeGene,pgVirtual ,missing,numeric,missing,missing-metho
(removeGene), 56

removeGene,pgVirtual,missing,numeric,missing,numeric-metho
(removeGene), 56

reportGroupChanges, 58

seqToGeneGroup, 59, 59, 60

seqToGeneGroup, pgInMem-method
(seqToGeneGroup), 59

seqToOrg, 60, 60

seqToOrg, pgInMem-method (seqToOrg), 60

show, pgVirtual-method
(pgVirtual-class), 46

translated, 61
translated, pgVirtual-method
(translated), 61

variableRegions, 13, 62
variableRegions,pgVirtualLoc-method
(variableRegions), 62

removeGene,pgInMem,missing,missing,missing,numeric-method

(removeGene), 56

removeGene,pgVirtual,character,character,missing,missing-method

(removeGene), 56

removeGene, pgVirtual,character,missing,missing,missing-method

(removeGene), 56

removeGene,pgVirtual,character,numeric,missing,missing-method

(removeGene), 56

removeGene, pgVirtual ,missing,character,missing,missing-method

(removeGene), 56

removeGene,pgVirtual,missing,character,missing,numeric-method

(removeGene), 56

removeGene,pgVirtual ,missing,missing,character,missing-method

(removeGene), 56

	FindMyFriends-package
	.fillDefaults
	.loadPgExample
	addGenomes
	addGroupInfo
	addOrgInfo
	cdhitGrouping
	collapseParalogues
	defaults
	geneLocation
	geneNames
	genes
	geneWidth
	getNeighborhood
	getRep
	gpcGrouping
	graphGrouping
	groupInfo
	groupNames
	groupStat
	hasGeneGroups
	hasGeneInfo
	hasParalogueLinks
	kmerLink
	kmerSimilarity
	kmerSplit
	manualGrouping
	neighborhoodSplit
	nGeneGroups
	nGenes
	nOrganisms
	orgInfo
	orgNames
	orgStat
	pangenome
	pcGraph
	pgFull-class
	pgFullLoc-class
	pgInMem-class
	pgInMemLoc-class
	pgLM-class
	pgLMLoc-class
	pgMatrix
	pgSlim-class
	pgSlimLoc-class
	pgVirtual-class
	pgVirtualLoc-class
	plotEvolution
	plotGroup
	plotNeighborhood
	plotSimilarity
	plotStat
	plotTree
	readAnnot
	removeGene
	reportGroupChanges
	seqToGeneGroup
	seqToOrg
	translated
	variableRegions
	Index

