Package ‘FastqCleaner’

April 12, 2022
Type Package

Title A Shiny Application for Quality Control, Filtering and Trimming
of FASTQ Files

Version 1.12.0
Date 2020-02-15

Description An interactive web application for quality control, filtering and trim-
ming of FASTQ files. This user-friendly tool combines a pipeline for data process-
ing based on Biostrings and ShortRead infrastructure, with a cutting-edge visual environment.
Single-Read and Paired-
End files can be locally processed. Diagnostic interactive plots (CG content, per-
base sequence quality, etc.) are provided for both the input and output files.

License MIT + file LICENSE
LazyData TRUE

Imports methods, shiny, stats, IRanges, Biostrings, ShortRead, DT,
S4Vectors, graphics, htmltools, shinyBS, Rcpp (>=0.12.12)

Suggests BiocStyle, testthat, knitr, rmarkdown
LinkingTo Rcpp

Collate 'roxygen.auxiliar.R' 'auxiliar.R' 'matching.R'
'server_functions.R' 'n_filter.R' 'seq_filter.R’'
'complex_filter.R' 'adapter_filter.R' 'launch_fqc.R'
'length_filter.R' 'fixed_filter.R' 'trim3q_filter.R’'
'unique_filter.R' 'plotObjects.R' 'qmean_filter.R' 'simulate.R’
'"ReppExports.R'

biocViews QualityControl,Sequencing,Software,SangerSeq,SequenceMatching
VignetteBuilder knitr

Encoding UTF-8

RoxygenNote 6.1.1

git_url https://git.bioconductor.org/packages/FastqCleaner

git_branch RELEASE_3_14

git_last_commit 8368d47



2 adapter_filter

git_last_commit_date 2021-10-26
Date/Publication 2022-04-12

Author Leandro Roser [aut, cre],
Fernan Agiiero [aut],
Daniel Sanchez [aut]

Maintainer Leandro Roser <learoser@gmail.com>

R topics documented:

adapter_filter . . . . . ... e e 2
check_encoding . . . . . . . . .. 4
complex_filter . . . . . . . . L. e e e 5
fixed_filter . . . . . . . e e 7
inject_letter_random . . . . ... L. 8
launch_fqc. . . . . . . . o 9
length_filter . . . . . . . . . . 10
n_filter . . . . L s 11
gmean_filter . . . . .. L. oL 12
random_length . . . . . . ... L 13
random_qual . . . ... 15
TandoOmM_Seq . . . .« « v v e e e e e e e e e e e e e e e 16
seq_filter . . . .. e e 17
SEQ_MAMES « « v v v v v e e e e e e e e e e e e e e e e e e e e e 18
trim3q_filter . . . . . . . e e 19
unique_filter . . . . ... L 20
Index 22
adapter_filter Remove full and partial adapters from a ShortReadQ object
Description

This program can remove adapters and partial adapters from 3” and 5°, using the functions trimLRPatterns
The program extends the methodology of the trimLRPatterns function of Biostrings, being also
capable of removing adapters present within reads and with other additional otpions (e.g., threshold

of minimum number of bases for trimming). For a given position in the read, the two Biostrings
functions return TRUE when a match is present between a substring of the read and the adapter.

As trimLRPatterns , adapter_filter also selects region and goes up to the end of the sequence in

the corresponding flank as the best match. The default error rate is 0.2. If several valid matches

are found, the function removes the largest subsequence. Adapters can be anchored or not. When

indels are allowed, the second method uses the ’edit distance’ between the subsequences and the
adapter



adapter_filter 3

Usage
adapter_filter(input, Lpattern = "", Rpattern = "", rc.L = FALSE,
rc.R = FALSE, first = c("R", "L"), with_indels = FALSE,
error_rate = 0.2, anchored = TRUE, fixed = "subject”,
remove_zero = TRUE, checks = TRUE, min_match_flank = 3L, ...)
Arguments
input ShortReadQ object
Lpattern 5’ pattern (character or DNAString object)
Rpattern 3’ pattern (character or DNAString object)
rc.L Reverse complement Lpattern? default FALSE
rc.R Reverse complement Rpatter? default FALSE
first trim first right("R”) or left ("L’) side of sequences when both Lpattern and Rpat-
tern are passed
with_indels Allow indels? This feature is available only when the error_rate is not null
error_rate Error rate (value in the range [0, 1] The error rate is the proportion of mismatches
allowed between the adapter and the aligned portion of the subject. For a given
adapter A, the number of allowed mismatches between each subsequence s of A
and the subject is computed as: error_rate * L_s, where L_s is the length of the
subsequence s
anchored Adapter or partial adapter within sequence (anchored = FALSE, default) or only
in 3’ and 5’ terminals? (anchored = TRUE)
fixed Parameter passed to trimLRPatterns Default ’subject’, ambiguities in the pat-
tern only are interpreted as wildcard. See the argument fixed in trimLRPatterns
remove_zero Remove zero-length sequences? Default TRUE
checks Perform checks? Default TRUE

min_match_flank
Do not trim in flanks of the subject, if a match has min_match_flank of less
length. Default 1L (only trim with >=2 coincidences in a flank match)

additional parameters passed to trimLRPatterns

Value

Edited DNAString or DNAStringSet object
Filtered ShortReadQ object

Author(s)

Leandro Roser <learoser@gmail.com>



4 check_encoding

Examples

require('Biostrings')
require('ShortRead")

# create 6 sequences of width 43
set.seed(10)
input <- random_seq(6, 43)

# add adapter in 3'
adapter <- "ATCGACT"

input <- paste@(input, as.character(DNAString(adapter)))
input <- DNAStringSet(input)

# create qualities of width 50

set.seed(10)

input_g <- random_qual(c(30,40), slength = 6, swidth = 50,
encod = 'Sanger')

# create names
input_names <- seq_names(length(input))

# create ShortReadQ object
my_read <- ShortReadQ(sread = input, quality

input_g, id = input_names)

# trim adapter
filtered <- adapter_filter(my_read, Rpattern = adapter)

# look at the filtered sequences
sread(filtered)

check_encoding Check quality encoding

Description

Check quality encoding

Usage

check_encoding(x = NULL, custom = NULL)

Arguments

X Quality values



complex_filter

custom custom encoding from the following:
’Sanger’

> expected range: [0, 40]
> expected range: [0, 41]
> expected range: [0, 40]
> expected range: [3, 40]
> expected range: [-5, 40]

’Illuminal.8’
’Illuminal.5’

’Illuminal.3’

’Solexa’

Value

List with encoding information

Author(s)

Leandro Roser <learoser@gmail.com>

Examples

require(Biostrings)

x <- list(PhredQuality(@:40), SolexaQuality(-5:40), IlluminaQuality(3:40))
x <- lapply(x, function(i)utf8ToInt(as.character(i)[1]))
lapply(x, check_encoding)

SolexaQuality(0:40)
I1luminaQuality(0:40)

complex_filter Remove sequences with low complexity

Description

The program removes low complexity sequences, computing the entropy with the observed fre-
quency of dinucleotides.

Usage

complex_filter(input, threshold = 0.5, referenceEntropy = 3.908135)

Arguments
input ShortReadQ object
threshold A threshold value computed as the relation of the H of the sequences and the
reference H. Default is 0.5
referenceEntropy

Reference entropy. By default, the program uses a value of 3.908, that corre-
sponds to the entropy of the human genome in bits



6 complex_filter

Value

Filtered ShortReadQ object

Author(s)

Leandro Roser <learoser@gmail.com>

Examples

require('Biostrings')
require('ShortRead")

# create sequences of different width

set.seed(10)

input <- lapply(c(o, 6, 10, 16, 20, 26, 30, 36, 40),
function(x) random_seq(1, x))

# create repetitive 'CG' sequences with length adequante
# for a total length:
# input + CG = 40

set.seed(10)
CG <- lapply(c(20, 17, 15, 12, 10, 7, 5, 2, @),
function(x) paste(rep('CG', x), collapse = ''))

# concatenate input and CG
input <- mapply('paste', input, CG, sep = '')
input <- DNAStringSet(input)

# plot relative entropy (E, Shannon 1948)

freq <- dinucleotideFrequency(input)

freq <- freq /rowSums(freq)

H <- -rowSums(freq * log2(freq), na.rm = TRUE)

H_max <- 3.908135 # max entropy

plot(H/H_max, type='b', xlab = 'Sequence', ylab= 'E')

# create qualities of width 40
set.seed(10)
input_qg <- random_qual(c(30,40), slength = 9, swidth = 40,

encod = 'Sanger')

# create names
input_names <- seq_names(9)

# create ShortReadQ object
my_read <- ShortReadQ(sread = input, quality = input_qg, id = input_names)



fixed_filter 7

# apply the filter
filtered <- complex_filter(my_read)

# look at the filtered sequences
sread(filtered)

fixed_filter Remove a fixed number of bases of a ShortReadQ object from 3’ or 5’

Description

The program removes a given number of bases from the 3’ or 5’ regions of the sequences contained
in a ShortReadQ object

Usage
fixed_filter(input, trim3 = NA, trim5 = NA)

Arguments
input ShortReadQ object
trim3 Number of bases to remove from 3’
trim5 Number of bases to remove from 5’
Value

Filtered ShortReadQ object

Author(s)

Leandro Roser <learoser@gmail.com>

Examples

require('Biostrings')
require('ShortRead")

# create 6 sequences of width 20

set.seed(10)
input <- random_seq(6, 20)

# create qualities of width 20
set.seed(10)

input_qg <- random_qual(c(30,40), slength = 6, swidth = 20,
encod = 'Sanger')



8 inject_letter_random

# create names
input_names <- seq_names(6)

# create ShortReadQ object
my_read <- ShortReadQ(sread = input, quality = input_qg, id = input_names)

# apply the filter
filtered3 <- fixed_filter(my_read, trim5

5)

filtered5 <- fixed_filter(my_read, trim3 = 5)

filtered3and5 <- fixed_filter(my_read, trim3 = 10, trim5 = 5)

# look at the trimmed sequences
sread(filtered3)
sread(filtered5)
sread(filtered3and5)

inject_letter_random Inject a letter in a set of sequences at random positions

Description

Inject a letter in a set of sequences at random positions

Usage

inject_letter_random(my_seq, how_many_seqs = NULL,
how_many_letters = NULL, letter = "N")

Arguments

my_seq character vector with sequences to inject

how_many_seqs How many sequences pick to inject Ns. An interval [min_s, max_s] with min_s
minimum and max_s maximum sequences can be passed. In this case, a value
is picked from the interval. If NULL, a random value within the interval [1,
length(my_seq)] is picked.

how_many_letters
How many times inject the letter in the i sequences that are going to be injected.
An interval [min_i max_i] can be passed. In this case, a value is randomly
picked for each sequence i. This value represents the number of times that the
letter will be injected in the sequence i. If NULL, a random value within the
interval [1, width(my_seq[i])] is picked for each sequence i.

letter Letter to inject. Default: "N’



launch_fqc

Value

character vector

Author(s)

Leandro Roser <learoser@gmail.com>

Examples

# For reproducible examples, make a call to set.seed before
# running each random function

set.seed(10)
s <- random_seq(slength = 10, swidth = 20)

set.seed(10)
s <- inject_letter_random(s, how_many_seqs = 1:30, how_many= 2:10)

launch_fqc Launch FastqCleaner application

Description

Launch FastqCleaner application

Usage

launch_fqgc(launch.browser = TRUE, ...)

Arguments
launch.browser Launch in browser? Default TRUE
Additional parameters passed to runApp
Value

Launch the application, without return value

Author(s)

Leandro Roser <learoser@gmail.com>

Examples

# Uncomment and paste in te console to launch the application:
# launch_fqc()

NULL



10 length_filter

length_filter Filter sequences of a FASTQ file by length

Description

The program removes from a ShortReadQ object those sequences with a length lower than rm.min
or/and higher than rm.max

Usage

length_filter(input, rm.min = NA, rm.max = NA)

Arguments
input ShortReadQ object
rm.min Threshold value for the minimun number of bases
rm.max Threshold value for the maximum number of bases
Value

Filtered ShortReadQ object

Author(s)

Leandro Roser <learoser@gmail.com>

Examples

require('Biostrings')
require('ShortRead")

# create ShortReadQ object width widths between 1 and 100

set.seed(10)
input <- random_length(100, widths = 1:100)

# apply the filter, removing sequences length < 10 or length > 80
filtered <- length_filter(input, rm.min = 10, rm.max = 80)

# look at the filtered sequences
sread(filtered)



n_filter 11

n_filter Remove sequences with non-identified bases (Ns) from a ShortReadQ
object

Description

This program is a wrapper to nFilter. It removes the sequences with a number of N’s above a
threshold value 'rm.N’. All the sequences with a number of N > rm.N (N >=rm.N) will be removed

Usage

n_filter(input, rm.N)

Arguments
input ShortReadQ object
rm.N Threshold value of N’s to remove a sequence from the output (sequences with
number of Ns > threshold are removed) For example, if rm.N is 3, all the se-
quences with a number of Ns > 3 (Ns >= 4) will be removed
Value

Filtered ShortReadQ object

Author(s)

Leandro Roser <learoser@gmail.com>

Examples

require('Biostrings"')
require('ShortRead")

# create 6 sequences of width 20
set.seed(10)
input <- random_seq(50, 20)

# inject N's

set.seed(10)

input <- inject_letter_random(input, how_many_seqs = 1:30,
how_many = 1:10)

input <- DNAStringSet(input)
# watch the N's frequency

hist(letterFrequency(input, 'N'), breaks = 0:10,
main = 'Ns Frequency', xlab = '# Ns')



12

gmean_filter

# create qualities of width 20

set.seed(10)

input_g <- random_qual(50, 20)

# create names

input_names <- seq_names(50)

# create ShortReadQ object
my_read <- ShortReadQ(sread = input, quality = input_qg, id = input_names)

# apply the filter
filtered <- n_filter(my_read, rm.N = 3)

# watch the filtered sequences

sread(filtered)

# watch the N's frequency
hist(letterFrequency(sread(filtered), 'N'),
main = 'Ns distribution', xlab = '")

gmean_filter

Filter sequences by their average quality

Description

The program removes the sequences with a quality lower the 'minq’ threshold

Usage

gmean_filter(input, ming, g_format = NULL, check.encod = TRUE)

Arguments
input
ming
g_format

check.encod

Value

ShortReadQ object
Quality threshold
Quality format used for the file, as returned by check.encoding

Check the encoding of the sequence? This argument is incompatible with q_format

Filtered ShortReadQ object

Author(s)

Leandro Roser <learoser@gmail.com>



random_length

Examples
require(ShortRead)

set.seed(10)
# create 30 sequences of width 20
input <- random_seq(30, 20)

# create qualities of width 20

## high quality (15 sequences)

set.seed(10)

my_qual <- random_qual(c(30,40), slength = 15, swidth = 20,
encod = 'Sanger')

## low quality (15 sequences)

set.seed(10)

my_qual_2 <-  random_qual(c(5,30), slength = 15, swidth = 20,

encod = 'Sanger')

# concatenate vectors
input_g<- c(my_qual, my_qual_2)

# create names
input_names <- seq_names(30)

# create ShortReadQ object
my_read <- ShortReadQ(sread = input, quality = input_g, id = input_names)

# watch the average qualities
alphabetScore(my_read) / width(my_read)

# apply the filter
filtered <- gmean_filter(my_read, ming = 30)

# watch the average qualities

alphabetScore(my_read) / width(my_read)

# watch the filtered sequences
sread(filtered)

random_length Create a named object with random sequences and qualities

Description

Create a ShortReadQ object with random sequences and qualities



14

Usage

random_length

random_length(n, widths, random_widths = TRUE, replace = TRUE,
len_prob = NULL, seq_prob = c(0.25, 0.25, 0.25, 0.25),
g_prob = NULL, nuc = c("DNA", "RNA"), qual = NULL,
encod = c("Sanger”, "Illuminal.8", "Illuminal.5"”, "Illuminal.3",

"Solexa"), base_name = "s", sep = "_"
Arguments
n number of sequences
widths width of the sequences

random_widths

replace
len_prob

seq_prob

g_prob

nuc

qual

encod
base_name

sep

Value

ShortReadQ object

width must be picked at random from the passed parameter *widths’, consider-
ing the value as an interval where any integer can be picked. Default TRUE.
Otherwise, widths are picked only from the vector passed.

sample widths with replacement? Default TRUE.

vector with probabilities for each width value. Default NULL (equiprobability)
a vector of four probabilities values to set the frequency of the nucleotides *A’,
'C’,’G’, T, for DNA, or "A’, ’C’, ’G’, "U’, for RNA. For example = c(0.25,
0.25, 0.5, 0). Default is = ¢(0.25, 0.25, 0.25, 0.25) (equiprobability for the 4

bases). If the sum of the probabilities is > 1, the values will be nomalized to the
range [0, 1].

a vector of range = range(qual), with probabilities to set the frequency of each
quality value. Default is equiprobability. If the sum of the probabilities is > 1,
the values will be nomalized to the range [0, 1].

create sequences of DNA (nucleotides = c(CA’, ’C’, ’G’, "T’)) or RNA (nu-
cleotides = c(CA, ’C’, ’G’, ’U’))?. Default: 'DNA’

quality range for the sequences. It must be a range included in the selected
encoding:

’Sanger’ = [0, 40]

Illuminal.8’ = [0, 41]

’Illuminal.5’ = [0, 40]

'Illuminal.3’ = [3, 40]

’Solexa’ = [-5, 40]

example: for a range from 20 to 30 in Sanger encoding, pass the argument =
¢(20, 30)

sequence encoding

Base name for strings

s

Character separing base names and the read number. Default:



random_qual

Author(s)

15

Leandro Roser <learoser@gmail.com>

Examples

# For reproducible examples, make a call to set.seed before
# running each random function

set.seed(10)

s1 <- random_seq(slength = 10, swidth = 20)

s

set.seed(10)

s2 <- random_seq(slength = 10, swidth

20,

prob = c(0.6, 0.1, 0.3, 0))

s2

random_qual

Create random qualities for a given encoding

Description

Create a BStringSet object with random qualities

Usage

random_qual(slength, swidth, qual = NULL, encod = c("Sanger”,
"I1luminal.8"”, "Illuminal.5", "Illuminal.3", "Solexa"), prob = NULL)

Arguments

slength
swidth
qual

encod

prob

number of sequences

width of the sequences

quality range for the sequences. It must be a range included in the selected
encoding:

’Sanger’ = [0, 40]

"Illuminal.8” = [0, 41]

"IMuminal.5’ = [0, 40]

’Tlluminal.3’ = [3, 40]

’Solexa’ = [-5, 40]

example: for a range from 20 to 30 in Sanger encoding, pass the argument =
c(20, 30)

sequence encoding

a vector of range = range(qual), with probabilities to set the frequency of each

quality value. Default is equiprobability. If the sum of the probabilities is > 1,
the values will be nomalized to the range [0, 1].



16

Value

BStringSet object

Author(s)

Leandro Roser <learoser@gmail.com>

Examples

g <- random_qual(30, 20)
q

random_seq

random_seq Create random sequences

Description

Create a DNAStringSet object with random sequences

Usage
random_seq(slength, swidth, nuc = c("DNA", "RNA"), prob = c(@.25, 0.25,
9.25, 0.25))
Arguments
slength Number of sequences
swidth Width of the sequences
nuc Create sequences of DNA (nucleotides = cCA’, °C’, °’G’, ’T’)) or RNA (nu-
cleotides = c(C A, ’C’, ’G’, ’U’))?. Default: 'DNA’
prob A vector of four probability values used to set the frequency of the nucleotides

A, °C’, °G, T, for DNA, or A, ’C’, ’G’, U, for RNA. For example =
c(0.25, 0.25, 0.5, 0). Default is = c(0.25, 0.25, 0.25, 0.25) (equiprobability for
the 4 bases). If the sum of the probabilities is > 1, the values will be nomalized

to the range [0, 1].

Value

DNAStringSet object

Author(s)

Leandro Roser <learoser@gmail.com>



seq_filter

Examples

# For reproducible examples, make a call to set.seed before
# running each random function

set.seed(10)
s1 <- random_seq(slength = 10, swidth = 20)
s1

set.seed(10)

s2 <- random_seq(slength = 10, swidth = 20,
prob = c(0.6, 0.1, 0.3, 0))

s2

seq_filter Remove a set of sequences

Description

Removes a set of sequences

Usage

seq_filter(input, rm.seq)

Arguments

input ShortReadQ object

rm.seq Ccharacter vector with sequences to remove
Value

Filtered ShortReadQ object

Author(s)

Leandro Roser <learoser@gmail.com>

Examples

require(ShortRead)

set.seed(10)
input <- random_length(30, 3:7)
rm.seq = c('TGGTC', 'CGGT', 'GTTCT', 'ATA')

# verify that some sequences match
match_before <- unlist(lapply(rm.seq,
function(x) grep(x, as.character(sread(input)))))



18 seq_names

filtered <- seq_filter(input,rm.seq = rm.seq)

# verify that matching sequences were removed
match_after <- unlist(lapply(rm.seq,
function(x) grep(x, as.character(sread(filtered)))))

seg_names Create sequences names

Description

Create BStringSet object with names

Usage

seq_names(n, base_name = "s", sep = "_")
Arguments

n Number of reads

base_name Base name for strings

sep Character separing base names and the read number. Default: ’°_
Value

BStringSet object

Examples

snames <- seqg_names(10)

shames

snames2 <- seqg_names(10, base_name = 's', sep = '.')
snames?2



trim3q_filter 19

trim3q_filter Filter sequences with low quality in 3’ tails

Description

The program removes from the 3’ tails of the sequences a set of nucleotides showing a quality < a
threshold value in a ShortReadQ object

Usage

trim3g_filter(input, rm.3qual, gq_format = NULL, check.encod = TRUE,
remove_zero = TRUE)

Arguments
input ShortReadQ object
rm.3qual Quality threshold for 3’ tails
g_format Quality format used for the file, as returned by check_encoding
check.encod Check the encoding of the sequence? This argument is incompatible with q_format.
Default TRUE
remove_zero Remove zero-length sequences?
Value

Filtered ShortReadQ object

Author(s)

Leandro Roser <learoser@gmail.com>

Examples

require('Biostrings')
require('ShortRead")

# create 6 sequences of width 20
set.seed(10)
input <- random_seq(6, 20)

# create qualities of width 15 and paste to qualities
# of length 5 used for the tails.
# for two of the sequences, put low qualities in tails

set.seed(10)
my_qual <- random_qual(c(30,40), slength = 6, swidth = 15,

encod = 'Sanger')

set.seed(10)



20

tails <- random_qual(c(30,40), slength = 6, swidth = 5,

encod = 'Sanger')

set.seed(10)

tails[2:3] <- random_qual(c(3, 20), slength = 2,

swidth = 5, encod = 'Sanger')
my_qual <- paste@(my_qual, tails)
input_qg <- BStringSet(my_qual)

# create names

input_names <- seq_names(6)

# create ShortReadQ object
my_read <- ShortReadQ(sread = input,

quality = input_g, id = input_names)

# apply the filter

filtered <- trim3g_filter(my_read, rm.3qual = 28)

# look at the trimmed sequences
sread(filtered)

unique_filter

unique_filter Remove duplicated sequences in a FASTQ file

Description

This program is a wrapper to occurrenceFilter. It removes the duplicated sequences of a FASTQ

file.

Usage

unique_filter(input)

Arguments

input ShortReadQ object

Value

Filtered ShortReadQ object

Author(s)

Leandro Roser <learoser@gmail.com>



unique_filter

Examples

require('Biostrings')
require('ShortRead")

set.seed(10)

s <- random_seq(10, 10)

s <- sample(s, 30, replace = TRUE)
g <- random_qual(30, 10)

n <- seg_names(30)

my_read <- ShortReadQ(sread = s, quality = q, id = n)

# check presence of duplicates
isUnique(as.character(sread(my_read)))

# apply the filter
filtered <- unique_filter(my_read)

isUnique(as.character(sread(filtered)))



Index

adapter_filter, 2
BStringSet, 15, 16, 18

check_encoding, 4
complex_filter, 5

DNAString, 3
DNAStringSet, 3, 16

fixed_filter,7
inject_letter_random, 8

launch_fqc, 9
length_filter, 10

n_filter, 11
nFilter, 11

occurrenceFilter, 20
gmean_filter, 12

random_length, 13
random_qual, 15
random_seq, 16
runApp, 9

seq_filter, 17
seq_names, 18
ShortReadQ, 3, 5-7, 10-14, 17, 19, 20

trim3qg_filter, 19
trimLRPatterns, 2, 3

unique_filter, 20

22



	adapter_filter
	check_encoding
	complex_filter
	fixed_filter
	inject_letter_random
	launch_fqc
	length_filter
	n_filter
	qmean_filter
	random_length
	random_qual
	random_seq
	seq_filter
	seq_names
	trim3q_filter
	unique_filter
	Index

