Package ‘BindingSiteFinder’

April 12, 2022

Type Package
Title Binding site defintion based on iCLIP data
Version 1.0.0

Description Precise knowledge on the binding sites of an RNA-binding
protein (RBP) is key to understand (post-) transcriptional regulatory
processes. Here we present a workflow that describes how exact
binding sites can be defined from iCLIP data. The package provides functions
for binding site definition and result visualization. For details please
see the vignette.

License Artistic-2.0
Encoding UTF-8
VignetteBuilder knitr

Imports tidyr, matrixStats, stats, ggplot2, methods, rtracklayer,
S4Vectors, ggforce

Depends GenomicRanges, R (>=4.1)

Suggests testthat, BiocStyle, knitr, rmarkdown, dplyr,
GenomicAlignments, ComplexHeatmap, GenomeIlnfoDb, forcats,
scales

RoxygenNote 7.1.1

Collate 'AllClasses.R' 'AllGenerics.R' 'Functions.R' 'methods.R’
'bindingsites.R' 'helper.R' 'PlotFunction.R’
'CoverageFunctions.R'

biocViews Sequencing, GeneExpression, GeneRegulation,
FunctionalGenomics, Coverage, Datalmport
BugReports https://github.com/ZarnackGroup/BindingSiteFinder/issues
git_url https://git.bioconductor.org/packages/BindingSiteFinder
git_branch RELEASE_3_14
git_last_commit be6256¢
git_last commit_date 2021-10-26
Date/Publication 2022-04-12


https://github.com/ZarnackGroup/BindingSiteFinder/issues

2 annotate WithScore

Author Mirko Briiggemann [aut, cre] (<https://orcid.org/0000-0002-1778-0248>),
Kathi Zarnack [aut] (<https://orcid.org/0000-0003-3527-3378>)

Maintainer Mirko Briiggemann <mirko.brueggemann@mail.de>

R topics documented:

annotateWithScore . . . . . . . ... L 2
BSFDataSet . . . . . . . . e 3
coverageOverRanges . . . . . . . . . . . . . . e 5
getMeta . . . .. e e e e 6
getRanges . . . . . . L e 7
getSignal . . .. L e e 7
GELSUMMATY . . . . . . o o it e e e e e e e e e e e e 8
makeBindingSites . . . . . ... L. 9
mergeSummaryPlot . . . . . ..o o L 11
rangeCoveragePlot . . . . . . . . . Lo 12
reproducibilityFilter . . . . . . . . . ... 13
reproducibiliyCutoffPlot . . . . . . . . ... 15
setRanges . . . . . . L L 16
setSignal . . . .. L L 17
SEESUMMATY . . . . . . ot it e e e e e e e e e 18
ShOW . . o 19
supportRatio . . . . . . ... 19
supportRatioPlot . . . . . . . . .. e 20
Index 22
annotateWithScore Annotation function for BSFDataSet object
Description

This function can be used to annotate a BSFDataSet object with merged binding sites with scores
from the initial ranges (eg. PureCLIP scores).

Usage

annotateWithScore(object, scoreRanges)

Arguments

object a BSFDataSet object

scoreRanges a GRanges object, with numeric column named ’score’
Value

an object of class BSFDataSet with updated meta columns of the ranges


https://orcid.org/0000-0002-1778-0248
https://orcid.org/0000-0003-3527-3378

BSFDataSet 3

Examples
if (.Platform$0S.type != "windows") {
# load data
csFile <- system.file("extdata”, "PureCLIP_crosslink_sites_example.bed"”,
package="BindingSiteFinder")
cs = rtracklayer::import(con = csFile, format = "BED")

clipFiles <- system.file("extdata"”, package="BindingSiteFinder")
# two experimental conditions
meta = data.frame(
id = ¢(1,2,3,4),
condition = factor(c("WT", "WT", "KD", "KD"),
levels = c("KD", "WT")),
clPlus = list.files(clipFiles, pattern = "plus.bw$”, full.names = TRUE),
clMinus = list.files(clipFiles, pattern = "minus.bw$",
full.names = TRUE))
bds = BSFDataSetFromBigWig(ranges = cs, meta = meta, silent = TRUE)

# merge binding sites
bds <- makeBindingSites(object = bds, bsSize = 9, minWidth = 2,
minCrosslinks = 2, minClSites = 1)

# annotate with original pureCLIP score
bdsRe = annotateWithScore(bds, cs)

BSFDataSet BSFDataSet object and constructors

Description

BSFDataSet contains the class GenomicRanges, which is used to store input ranges. Alongside with
the iCLIP signal in 1ist structure and additional meta data as data. frame.

Usage
BSFDataSet(ranges, meta, signal, forceEqualNames = TRUE)
BSFDataSet(ranges, meta, signal, forceEqualNames = TRUE)
BSFDataSetFromBigWig(ranges, meta, silent = FALSE)
Arguments
ranges a GenomicRanges with the desired ranges to process. The strand slot must be
either + or -.
meta a data. frame with at least two columns. The first column should be a unique

numeric id. The second column holds sample type information, such as the
condition.



4 BSFDataSet

signal a list with the two entries ’signalPlus’ and ’signalMinus’, following a special
representation of SimpleRlelList for counts per replicates (see details for more
information).

forceEqualNames

to maintain the integrity of chromosome names (TRUE/ FALSE). The option
ensures that chromosome names present in the GRanges are also all present in
the signal list and vice versa. Chromosomes names present in only the signal
list or the ranges are removed.

silent suppress loading message (TRUE/ FALSE)

Details

non

The ranges are enforced to have to have a "+" or "-" strand annotation,"*" is not allowed. They are
expected to be of the same width and a warning is thrown otherwise.

The meta information is stored as data.frame with at least two required columns, ’id’ and ’con-
dition’. They are used to build the unique identifier for each replicate split by ’_’ (eg. id = 1 and
condition = WT will resultin 1_WT).

The meta data needs to have the additional columns ’clPlus’ and *clMinus’ to be present if BSFDataSetFromBigWig
is called. It is used to provide the location to the iCLIP coverage files to the import function. On

object initialization these files are loaded and internally represented in the signal slot of the object

(see BSFDataSet).

The iCLIP signal is stored in a special list structure. At the lowest level crosslink counts per nu-
cleotide are stored as Rle per chromosome summarized as a SimpleRlelList. Such a list exits for
each replicate and must be named by the replicate identifier (eg. 1_WT). Therefore this list contains
always exactly the same number of entries as the number of replicates in the dataset. Since we
handle strands initially seperated from each other this list must be given twice, once for each strand.
The strand specific entries must be named ’signalPlus’ and ’signalMinus’.

Value

A BSFDataSet object.

Examples

# load data

files <- system.file("extdata”, package="BindingSiteFinder")
load(list.files(files, pattern = ".rda$", full.names = TRUE))
rng = getRanges(bds)

sgn = getSignal (bds)

mta = getMeta(bds)

bdsNew = BSFDataSet(ranges = rng, signal = sgn, meta = mta)



coverageOverRanges 5

coverageOverRanges Coverage function for BSFDataSet objects

Description

The crosslink coverage is computed for all ranges in the the given BSFDataSet object (see BSFDataSet
for details). Depending on the returnOptions the resulting coverage information is summarized,
suitable for diverse computation and plotting tasks. The coverage can only be compute for objects
with identical ranges.

Usage
coverageOverRanges(
object,
returnOptions = c("merge_ranges_keep_positions”, "merge_replicates_per_condition”,
"merge_all_replicates”, "merge_positions_keep_replicates”),
method = "sum”,
silent = FALSE
)
Arguments
object a BSFDataSet object

returnOptions one of merge_ranges_keep_positions, merge_replicates_per_condition, merge_all_replicates,
merge_positions_keep_replicates

method sum/ mean, select how replicates/ ranges should be summarized
silent TRUE/ FALSE, suppress warning messages
Details

If returnOptions is set to merge_ranges_keep_positions: Returns a matrix with ncol being the
nucleotides of the ranges (equal to the width of the input ranges) and nrow being the number of
replicates in the meta information.

If returnOptions is set to merge_replicates_per_condition: Returns a list of matrices. Each list
corresponds to one condition set in the meta information. The matrix in each entry has ncols equal
to the ranges width and nrow equal to the number of ranges. Counts per ranges and position are
summed.

If returnOptions is set to merge_all_replicates: Returns a matrix with ncols equal to the range
width and nrow equal to the number of ranges. Counts per range and position are summed.

If returnOptions is set to merge_positions_keep_replicates: Returns a GRanges object where the
counts are summed for each replicate and added to the original granges object.

Value

an object of class specified in returnOptions



6 getMeta

Examples
# load data
files <- system.file("extdata”, package="BindingSiteFinder")
load(list.files(files, pattern = ".rda$", full.names = TRUE))

rng = coverageOverRanges(

bds, returnOptions = "merge_ranges_keep_positions”, silent = TRUE)
rng = coverageOverRanges(
bds, returnOptions = "merge_replicates_per_condition”, silent = TRUE)

rng = coverageOverRanges(
bds, returnOptions = "merge_all_replicates”, silent = TRUE)
rng = coverageOverRanges(

bds, returnOptions = "merge_positions_keep_replicates”, silent = TRUE)
getMeta Accessor method for the meta data of the BSFDataSet object
Description

Meta data is stored as a data. frame and must contain the columns "condition", "cIPlus" and "cIMi-

"

nus .

Usage
getMeta(object)

## S4 method for signature 'BSFDataSet'
getMeta(object)
Arguments

object a BSFDataSet object

Value

non

returns the meta data data. frame with the columns "condition", "cIPlus" and "cIMinus".

See Also

BSFDataSet

Examples

# load data
files <- system.file("extdata”, package="BindingSiteFinder")
load(list.files(files, pattern = ".rda$", full.names = TRUE))

getMeta(bds)



getRanges 7

getRanges Accessor method for the ranges of the BSFDataSet object

Description

The ranges slot holds the genomic ranges information of the sites currently in the object. They are
encoded as a GRanges object with each binding site having a single ranges entry.

Usage

getRanges(object)

## S4 method for signature 'BSFDataSet'

getRanges(object)
Arguments

object a BSFDataSet object
Value

returns the genomic ranges (GRanges) of the associated ranges

See Also

BSFDataSet
Examples

# load data

files <- system.file("extdata”, package="BindingSiteFinder")

load(list.files(files, pattern = ".rda$", full.names = TRUE))

getRanges(bds)

getSignal Accessor method for the signal data of the BSFDataSet object

Description

Signal data is loaded from the path specified in getMeta columns "cIPlus" and "clMinus" and stored
as a list of RLE lists.



8 getSummary

Usage

getSignal (object)

## S4 method for signature 'BSFDataSet'

getSignal (object)
Arguments

object a BSFDataSet object
Value

returns the signal data, as list of RLE list for each strand, named after the meta data columns "cIPlus"
and "cIMinus"
See Also

getMeta BSFDataSet

Examples

# load data
files <- system.file("extdata”, package="BindingSiteFinder")
load(list.files(files, pattern = ".rda$", full.names = TRUE))

getSignal (bds)

getSummary Accessor method for the summary slot of the BSFDataSet object

Description

The summary slot is used to track information of the filtering steps applied in the makeBindingSites
function

Usage

getSummary(object, ...)

## S4 method for signature 'BSFDataSet'

getSummary (object)
Arguments
object a BSFDataSet object

additional arguments



makeBindingSites 9

Value

returns the summary information storted in the summary slot after makeBindingSites was run

See Also

BSFDataSet makeBindingSites

Examples
# load data
files <- system.file("extdata”, package="BindingSiteFinder")
load(list.files(files, pattern = ".rda$", full.names = TRUE))

bds <- makeBindingSites(object = bds, bsSize = 9, minWidth = 2,
minCrosslinks = 2, minClSites = 1)

getSummary (bds)
makeBindingSites Define equally sized binding sites from peak calling results and iCLIP
crosslink events.
Description

This function performs the merging of single nucleotide crosslink sites into binding sites of a user
defined width (bsSize). Depending on the desired output width crosslink sites with a distance closer
than bsSize -1 are concatenated. Initially all input regions are concatenated and then imperatively
merged and extended. Concatenated regions smaller than minWidth are removed prior to the merge
and extension routine. This prevents outlier crosslink pileup, eg. mapping artifacts to be integrated
into the final binding sites. All remaining regions are further processed and regions larger than
the desired output width are interactively split up by setting always the position with the highest
number of crosslinks as center. Regions smaller than the desired width are symmetrically extended.
Resulting binding sites are then filtered by the defined constraints.

Usage
makeBindingSites(
object,
bsSize,
minWidth = 3,

minCrosslinks = 2,
minClSites = 1,
centerIsClSite = TRUE,
centerIsSummit = TRUE,
sub.chr = NA



10 makeBindingSites

Arguments
object a BSFDataSet object (see BSFDataSet)
bsSize an odd integer value specifying the size of the output binding sites
minWidth the minimum size of regions that are subjected to the iterative merging routine,

after the initial region concatenation.

minCrosslinks the minimal number of positions to overlap with at least one crosslink event in
the final binding sites

minClSites the minimal number of crosslink sites that have to overlap a final binding site

centerIsClSite logical, whether the center of a final binding site must be covered by an initial
crosslink site

centerIsSummit logical, whether the center of a final binding site must exhibit the highest number
of crosslink events

sub.chr chromosome identifier (eg, chrl, chr2) used for subsetting the BSFDataSet ob-
ject. This option can be used for testing different parameter options

Details

The bsSize argument defines the final output width of the merged binding sites. It has to be an odd
number, to ensure that a binding site has a distinct center.

The minWidth parameter is used to describe the minimum width a ranges has to be after the initial
concatenation step. For example: Consider bsSize = 9 and minWidth = 3. Then all initial crosslink
sites that are closer to each other than 8 nucleotides (bsSize -1) will be concatenated. Any of these
ranges with less than 3 nucleotides of width will be removed, which reflects about 1/3 of the desired
binding site width.

The argument minCrosslinks defines how many positions of the binding sites are covered with
at least one crosslink event. This threshold has to be defined in conjunction with the binding site
width. A default value of 3 with a binding site width of 9 means that 1/3 of all positions in the final
binding site must be covered by a crosslink event. Setting this filter to 1 deactivates it.

The minC1Sites argument defines how many positions of the binding site must have been covered
by the original crosslink site input. If the input was based on the single nucleotide crosslink posi-
tions computed by PureCLIP than this filter checks for the number of positions originally identified
by PureCLIP in the computed binding sites. The default of minC1Sites = 1 essentially deactivates
this filter. Setting this filter to 1 deactivates it.

The options centerIsClSite and centerIsSummit ensure that the center of each binding site is
covered by an initial crosslink site and represents the summit of crosslink events in the binding site,
respectively.

The option sub.chr allows to run the binding site merging on a smaller subset (eg. "chrl") for
improoved computational speed when testing the effect of various binding site width and filtering
options.

Value

an object of type BSFDataSet with modified ranges



mergeSummaryPlot 11

Examples
# load data
files <- system.file("extdata”, package="BindingSiteFinder")
load(list.files(files, pattern = ".rda$", full.names = TRUE))

# standard options, no subsetting
bds <- makeBindingSites(object = bds, bsSize = 9, minWidth = 2,
minCrosslinks = 2, minClSites = 1)

# standard options, with subsetting

bds <- makeBindingSites(object = bds, bsSize = 9, minWidth = 2,
minCrosslinks = 2, minClSites = 1, sub.chr = "chr22")
mergeSummaryPlot Plot summarized results of the different binding site merging and fil-

tering steps

Description

Bar charts produced for the different filter steps in the binding site merging routine. Depending on
the selected option (select) all or only a user defined filter can be shown.

Usage
mergeSummaryPlot (
object,
select = c("all”, "filter"”, "inputRanges”, "minClSites”, "mergeCrosslinkSites”,
"minCrosslinks"”, "centerIsClSite", "centerIsSummit"),
)
Arguments
object a BSFDataObject, with the makeBindingSites function already run
select one of "all", "filter", "inputRanges", "minCLSites", "mergeCrosslinkSites", "min-
Crosslinks", "centerIsCISite" or "centerlsSummit". Defines which parameter is
selected for plotting.
further arguments passed to ggplot
Details

If object is a single BSFDataObject a single coverage plot will be drawn, whereas if it is a list of
BSFDataObjects, then faceting is used to make a plot for each list element.

Value

a plot of type ggplot after the makeBindingSites function was run



12 rangeCoveragePlot

See Also

makeBindingSites

Examples

# load data
files <- system.file("extdata”, package="BindingSiteFinder")
load(list.files(files, pattern = ".rda$", full.names = TRUE))

# plotting a single object

bds@ <- makeBindingSites(object = bds, bsSize = 9, minWidth
minCrosslinks = 2, minClSites = 1)

mergeSummaryPlot (bds@)

1
N

# plotting mulitple obejcts

bds1 <- makeBindingSites(object = bds, bsSize = 9, minWidth = 2,
minCrosslinks = 2, minClSites = 1, sub.chr = "chr22")

bds2 <- makeBindingSites(object = bds, bsSize = 9, minWidth = 2,
minCrosslinks = 2, minClSites = 3, sub.chr = "chr22")

1 = list("1. bsSize = 3 = bdsl1, ~2. bsSize = 9° = bds2)
rangeCoveragePlot(l, width = 20)

rangeCoveragePlot Plot crosslink events coverage over range

Description

A diagnostic plot function that allows to check the coverage of crosslink events over different
merged regions. The coverage is shown as mean over all replicates and conditions, with a stan-
dard deviation corridor.

Usage

rangeCoveragePlot(object, width, name = "Coverage Plot”, ...)
Arguments

object a BSFDataSet, or a list of BSFDataSet

width a numeric value that defines the plotting ranges

name plot title

further arguments passed to ggplot

Details

If object is a single BSFDataObject a single coverage plot will be drawn, whereas if it is a list of
BSFDataObjects, then faceting is used to make a plot for each list element.



reproducibilityFilter 13

Value

a plot of type ggplot2 displaying the crosslink coverage over the ranges of the given BSFDataSet

See Also

BSFDataSet

Examples

# load data
files <- system.file("extdata”, package="BindingSiteFinder")
load(list.files(files, pattern = ".rda$"”, full.names = TRUE))

# plotting a single object

bds <- makeBindingSites(object = bds, bsSize = 9, minWidth = 2,
minCrosslinks = 2, minClSites = 1)

rangeCoveragePlot(bds, width = 20)

# plotting multiple objects

bds1 <- makeBindingSites(object = bds, bsSize = 3, minWidth = 2,
minCrosslinks = 2, minClSites = 1, sub.chr = "chr22")
bds2 <- makeBindingSites(object = bds, bsSize = 9, minWidth = 2,

minCrosslinks = 2, minClSites = 1, sub.chr = "chr22")
1 = list("1. bsSize = 3~ = bds1, “2. bsSize = 9~ = bds2)
rangeCoveragePlot(l, width = 20)

reproducibilityFilter Replicate reproducibility filter function

Description

For each replicate the number of binding sites with a certain number of crosslinks is calculated.
A quantile based threshold (cutoff) is applied to each replicate. This indicates how many of
the merged binding sites are supported by crosslinks from the respective replicate. Next, one can
specify how many replicates need to pass the defined threshold for a binding site to be considered
reproducible.

Usage

reproducibilityFilter(
object,
cutoff = 0.05,
n.reps = 1,
min.crosslinks = 1,
returnType = c("BSFDataSet"”, "data.frame")



14

Arguments

object
cutoff

n.reps

min.crosslinks

returnType

Details

reproducibilityFilter

a BSFDataSet object

a vector of length = 1, or of length = levels(getMeta(object)$conditions) with a
single number (between 0-1) indicating the quantile cutoff

a vector of length = 1, or of length =1 evels(getMeta(object)$conditions) indi-
cating how many replicates need to meet their threshold for a binding site to be
called reproducible.

numeric of length = 1, defines the lower boundary for the minimum number of
crosslinks a binding site has to be supported by all replicates, regardless of the
replicate specific quantile threshold

one of "BSFDataSet" or "data.frame". "BSFDataSet" is the default and "matrix"
can be used for easy plotting.

If cutoff is a single number then the indicated cutoff will be applied to all replicates. If it is a vector
then each element in the vector is applied to all replicates of the respective condition. The order is
hereby given by the levels of the condition column of the meta data (see BSFDataSet,getMeta). If
the condition specific filter is applied, a meta column is added to the GRanges of the BSFDataSet
object, indicating the support for each condition.

If n.reps is a single number then this number is used as treshold for all binding sites. If it is a
vector then it is applied to the replicates of the respective condition (like in cutoff). This allows
the application of different thresholds for experiments of different experimental conditions. If the
condition specific filter is applied, a meta column is added to the GRanges of the BSFDataSet
object, indicating the support for each condition.

Value

an object of type BSFDataSet

Examples

# load data

files <- system.file("extdata”, package="BindingSiteFinder")
load(list.files(files, pattern = ".rda$", full.names = TRUE))

# merge binding sites
bds <- makeBindingSites(object = bds, bsSize = 9, minWidth = 2,
minCrosslinks = 2, minClSites = 1)

# use default return with single threshold
s = reproducibilityFilter(bds, cutoff = c(0.05), n.reps = c(3))

# use default return with condition specific threshold

s = reproducibilityFilter(bds, cutoff = c(0.1, ©.05), n.reps

c(1, 2))

# use data.frame return type for plotting
s = reproducibilityFilter(bds, cutoff = c(0.1, 0.05), n.reps = c(1, 2),



reproducibiliyCutoffPlot 15

returnType = "data.frame")
library(ComplexHeatmap)

m = make_comb_mat(s)
UpSet(m)

reproducibiliyCutoffPlot
Plot to that shows how many replicates support each binding site

Description

Plotting function for settings specified in reproducibilityFilter.

Usage
reproducibiliyCutoffPlot(
object,
cutoff = 0.05,

min.crosslinks = 1,
max.range = 20,

Arguments
object a BSFDataSet object
cutoff a vector of length = 1, or of length = levels(meta$conditions) with a single num-

ber (between 0-1) indicating the quantile cutoff

min.crosslinks numeric of length = 1, defines the lower boundary for the minimum number of
crosslinks a binding site has to be supported by all replicates, regardless of the
replicate specific quantile threshold

max.range maximum number of crosslinks per sites that should be shown

further arguments passed to ggplot

Value
a plot of type ggplot2 showing the per replicate reproducibility cutoffs based on a given quantile
threshold

See Also

reproducibilityFilter



16 setRanges

Examples
# load data
files <- system.file("extdata”, package="BindingSiteFinder")
load(list.files(files, pattern = ".rda$", full.names = TRUE))

# merge binding sites
bds <- makeBindingSites(object = bds, bsSize = 9, minWidth = 2,
minCrosslinks = 2, minClSites = 1)

# use a single quantile cutoff
reproducibiliyCutoffPlot(bds, max.range = 20, cutoff = c(0.05))

# use condition specific quantile cutoffs
reproducibiliyCutoffPlot(bds, max.range = 20, cutoff = c(0.1, 0.05))

setRanges Setter method for the ranges of the BSFDataSet object The GRanges
object that holds the genomic ranges information can be replaced.

Description

Setter method for the ranges of the BSFDataSet object The GRanges object that holds the genomic
ranges information can be replaced.

Usage
setRanges(object, ...)

## S4 method for signature 'BSFDataSet'
setRanges(object, newRanges)

Arguments
object a BSFDataSet object
additional arguments
newRanges an object of type GRanges
Value

object of type BSFDataSet with updated ranges

See Also

BSFDataSet



setSignal 17

Examples
# load data
files <- system.file("extdata”, package="BindingSiteFinder")
load(list.files(files, pattern = ".rda$", full.names = TRUE))

rng = getRanges(bds)
rng = rng + 10
bdsNew = setRanges(bds, rng)

setSignal Setter method for the signal data of the BSFDataSet object

Description
Signal data is loaded from the path specified in getMeta columns "clPlus" and "clMinus" and stored
as a list of RLE lists.

Usage

setSignal(object, ...)

## S4 method for signature 'BSFDataSet'
setSignal(object, newSignal)

Arguments
object a BSFDataSet object
additional arguments
newSignal list of RLE lists
Value

an object of type BSFDataSet with updated signal

See Also
BSFDataSet

Examples
# load data
files <- system.file("extdata”, package="BindingSiteFinder")
load(list.files(files, pattern = ".rda$", full.names = TRUE))
sgn = getSignal (bds)
sgn = lapply(sgn, function(selStrand){

lapply(selStrand, function(chrList){



18 setSummary

chrList[names(chrList) == "chr22"]
1))

»
bdsNew = setSignal(bds, sgn)

setSummary Setter method for the summary slot of the BSFDataSet object

Description
The summary slot is used to track information of the filtering steps applied in the makeBindingSites
function

Usage

setSummary(object, ...)

## S4 method for signature 'BSFDataSet'
setSummary(object, summary)

Arguments
object a BSFDataSet object
additional arguments
summary a data.frame with the summary information to be stored in BSFDataSet
Value

an object of type BSFDataSet with updated summary info

See Also

BSFDataSet

Examples

# load data
files <- system.file("extdata”, package="BindingSiteFinder")
load(list.files(files, pattern = ".rda$", full.names = TRUE))

df = data.frame(processingStep = c(1,2),
parameter = c(3,4))
bds = setSummary(bds, df)



show 19

show Show method to for the BSFDataSet

Description
Prints the information for each of the slots in the BSFDataSet object. Ranges of the getRanges
slot are shown, as well as the number of crosslinks per strand getSignal and the levels of the
experimental conditions (getMeta).

Usage
## S4 method for signature 'BSFDataSet'
show(object)

Arguments

object a BSFDataSet object

Value

shows the current object state

See Also

BSFDataSet

Examples

# load data
files <- system.file("extdata”, package="BindingSiteFinder")
load(list.files(files, pattern = ".rda$", full.names = TRUE))

show(bds)

supportRatio Support ratio function for BSFDataSet objects

Description

Functions that computes a ratio to determine how well a given binding site with is supported by
the crosslink coverage of the data. For a given BSFDataSet object binding sites are computed for
each width indicated in the bsWidths vector (using the coverageOverRanges function). These
coverages are compared to the coverage of regions flanking the binding sites. If not indicated in
bsFlank these regions are of the same width as the binding sites.



20 supportRatioPlot

Usage
supportRatio(object, bsWidths, bsFlank = NA, ...)
Arguments
object a BSFDataSet object
bsWidths a numeric vector indicating the different binding site width to compute the ratio
for
bsFlank optional; a numeric vector of the same length as bsWidth used to specify the
width of the flanking regions
further arguments passed to makeBindingSites
Details

Testing the width of 3nt for example, would result in a coverage within all 3nt wide binding sites
(cl) and a coverage computed on the adjacent 3nt flanking the binding sites up- and downstream
(f1, £2). Based on these numbers the ratio is computed by: c1/(1/2(f1+£2)).

The median over all ratios is reported as representative value.

Value

an object of class data. frame

Examples
# load data
files <- system.file("extdata”, package="BindingSiteFinder")
load(list.files(files, pattern = ".rda$", full.names = TRUE))

supportRatio(bds, bsWidths = c(3,7))

supportRatioPlot Plot that shows the binding site support ratio

Description
Function that shows a ratio to determine how well a given binding site with is supported by the
crosslink coverage of the data. Ratios are computed using the supportRatio function.

Usage

supportRatioPlot(object, bsWidths, bsFlank = NA, ...)



supportRatioPlot

Arguments

object
bsWidths

bsFlank

Details

21

a BSFDataSet object

a numeric vector indicating the different binding site width to compute the ratio
for

optional; a numeric vector of the same length as bsWidth used to specify the
width of the flanking regions

further arguments passed to makeBindingSites

The higher the ratio, the more does the given binding site width captures the enrichment of crosslinks
compared the the local surrounding. A ratio equal to 1 would mean no enrichemnt at all.

Value

an object of class ggplot2

Examples

# load data

files <- system.file("extdata”, package="BindingSiteFinder")
load(list.files(files, pattern = ".rda$"”, full.names = TRUE))

supportRatioPlot(bds, bsWidths = c(3,7),
minWidth = 1, minClSites = 1, minCrosslinks = 2)



Index

annotateWithScore, 2

BSFDataSet, 3, 4-10, 13, 14, 16—19
BSFDataSet, (BSFDataSet), 3
BSFDataSet-class, (BSFDataSet), 3
BSFDataSetFromBigWig (BSFDataSet), 3

coverageOverRanges, 5, 19

getMeta, 6,7, 8, 14,17, 19
getMeta,BSFDataSet-method (getMeta), 6
getRanges, 7, 19
getRanges,BSFDataSet-method
(getRanges), 7
getSignal, 7, 19
getSignal,BSFDataSet-method
(getSignal), 7
getSummary, 8
getSummary,BSFDataSet-method
(getSummary), 8

makeBindingSites, 8, 9,9, 11, 12, 18
mergeSummaryPlot, 11

rangeCoveragePlot, 12
reproducibilityFilter, 13, 15
reproducibiliyCutoffPlot, 15

setRanges, 16
setRanges,BSFDataSet-method
(setRanges), 16
setSignal, 17
setSignal,BSFDataSet-method
(setSignal), 17
setSummary, 18
setSummary,BSFDataSet-method
(setSummary), 18
show, 19
show,BSFDataSet-method (show), 19
supportRatio, 19, 20
supportRatioPlot, 20

22



	annotateWithScore
	BSFDataSet
	coverageOverRanges
	getMeta
	getRanges
	getSignal
	getSummary
	makeBindingSites
	mergeSummaryPlot
	rangeCoveragePlot
	reproducibilityFilter
	reproducibiliyCutoffPlot
	setRanges
	setSignal
	setSummary
	show
	supportRatio
	supportRatioPlot
	Index

