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0.1 Package overview
This package allows users to estimate the science-wise false discovery rate from Jager and
Leek (2013), using an EM approach due to the presence of rounding and censoring. It also
allows users to estimate the proportion of true null hypotheses in the presence of covariates,
using a regression framework, as per Boca and Leek (2018).
The package is loaded using:
library(swfdr)

0.2 Estimating the science-wise false discovery rate
The science-wise false discovery rate (swfdr) is defined in Jager and Leek (2013) as the rate that
published research results are false positives. It is based on using reported p-values reported
in biomedical journals and assuming that, for the p-values below 0.05, those corresponding to
false positives are distributed as U(0, 0.05), while those corresponding to true positives are
distributed as tBeta(α, β; 0.05), where α and β are unknown and tBeta is a Beta distribution
truncated at 0.05. The estimation of the swfdr is complicated by truncation (e.g. reporting
p < 0.01) and rounding (e.g. p-values are often rounded to two significant digits). An EM
algorithm is used to estimate α, β, as well as the swfdr.

0.2.1 Example: Estimate the swfdr based on p-values from biomedical journals

We include a dataset containing 15,653 p-values from articles in 5 biomedical journals
(American Journal of Epidemiology, BMJ, Jama, Lancet, New England Journal of Medicine),
over 11 years (2000-2010). This is obtained from web-scraping, using the code at https:
//github.com/jtleek/swfdr/blob/master/getPvalues.R and is already loaded in the package.
colnames(journals_pVals)

## [1] "pvalue" "pvalueTruncated" "pubmedID" "year"

## [5] "journal"

A description of the variables in journals_pValscan be found on its help page. In particular,
pvalue gives the p-value, pvalueTruncated is a flag for whether it is truncated, year is the
year of publication, and journal the journal.
table(journals_pVals$year)

##

## 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010

## 1481 1215 1487 1504 1564 1455 1207 1339 1485 1414 1502

table(journals_pVals$journal)

##

## American Journal of Epidemiology BMJ

## 1199 1740

## JAMA Lancet

## 4960 3532

## New England Journal of Medicine

## 4222
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0.2.2 The calculateSwfdr function

This function estimates the swfdr. It inputs the following parameters:
• pValues Numerical vector of p-values
• truncated Vector of 0s and 1s with indices corresponding to those in pValues; 1 indicates

that the p-values is truncated, 0 that it is not truncated
• rounded Vector of 0s and 1s with indices corresponding to those in pValues; 1 indicates

that the p-values is rounded, 0 that it is not rounded
• pi0 Initial prior probability that a hypothesis is null (default is 0.5)
• alpha Initial value of parameter alpha from Beta(alpha, beta) true positive distribution

(default is 1)
• beta Initial value of parameter beta from Beta(alpha, beta) true positive distribution

(default is 50)
• numEmIterations The number of EM iterations (default is 100)

Given that it runs an EM algorithm, it is somewhat computationally intensive. We show
an example of applying it to all the p-values from the abstracts for articles published in the
American Journal of Epidemiology in 2015. First, we subset the journals_pVals and only
consider the p-values below 0.05, as in Jager and Leek (2013):
journals_pVals1 <- dplyr::filter(journals_pVals,

year == 2005,

journal == "American Journal of Epidemiology",

pvalue < 0.05)

dim(journals_pVals1)

## [1] 75 5

Next, we define vectors corresponding to the truncation status and the rouding status (defined
as rounding to 2 significant digits) and use these vectors, along with the vector of p-values,
and the number of EM iterations, as inputs to the calculateSwfdr function:
tt <- data.frame(journals_pVals1)[,2]

rr <- rep(0,length(tt))

rr[tt == 0] <- (data.frame(journals_pVals1)[tt==0,1] ==

round(data.frame(journals_pVals1)[tt==0,1],2))

pVals <- data.frame(journals_pVals1)[,1]

resSwfdr <- calculateSwfdr(pValues = pVals,

truncated = tt,

rounded = rr, numEmIterations=100)

names(resSwfdr)

## [1] "pi0" "alpha" "beta" "z" "n0" "n"

The following values are returned:
• pi0 Final value of prior probability - estimated from EM - that a hypothesis is null,

i.e. estimated swfdr
• alpha Final value of parameter alpha - estimated from EM - from Beta(alpha, beta)

true positive distribution
• beta Final value of parameter beta - estimated from EM - from Beta(alpha, beta) true

positive distribution
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• z Vector of expected values of the indicator of whether the p-value is null or not -
estimated from EM - for the non-rounded p-values (values of NA represent the rounded
p-values)

• n0 Expected number of rounded null p-values - estimated from EM - between certain
cutpoints (0.005, 0.015, 0.025, 0.035, 0.045, 0.05)

• n Number of rounded p-values between certain cutpoints (0.005, 0.015, 0.025, 0.035,
0.045, 0.05)

0.2.3 Results from example dataset

For the example dataset we considered, the results are as follows:
resSwfdr

## $pi0

## [1] 0.07610693

##

## $alpha

## a

## 0.1807012

##

## $beta

## b

## 11.18062

##

## $z

## [1] 3.118214e-03 4.732945e-04 2.049212e-02 3.118214e-03 3.118214e-03

## [6] 7.176788e-05 3.118214e-03 3.118214e-03 1.162918e-02 5.497717e-03

## [11] 3.118214e-03 3.118214e-03 3.118214e-03 3.118214e-03 3.118214e-03

## [16] 3.118214e-03 4.732945e-04 4.732945e-04 3.118214e-03 2.049212e-02

## [21] 3.118214e-03 4.732945e-04 3.118214e-03 3.118214e-03 3.118214e-03

## [26] 3.118214e-03 3.118214e-03 3.118214e-03 3.118214e-03 3.118214e-03

## [31] 3.118214e-03 3.118214e-03 3.118214e-03 8.349885e-04 3.118214e-03

## [36] NA 1.302704e-01 5.309371e-02 NA 1.029126e-01

## [41] NA NA NA 3.019088e-02 5.309371e-02

## [46] 8.380055e-02 5.309371e-02 1.574980e-02 NA 1.478516e-01

## [51] 1.029126e-01 1.818178e-01 2.461681e-01 7.187633e-02 3.214741e-01

## [56] NA 3.019088e-02 NA NA 8.125611e-03

## [61] 4.200295e-02 4.611744e-03 1.430726e-02 NA NA

## [66] NA 1.212971e-01 NA 3.986236e-01 1.212971e-01

## [71] 5.309371e-02 7.389211e-02 1.302704e-01 7.389211e-02 1.716269e-02

##

## $n0

##

## (0,0.005] (0.005,0.015] (0.015,0.025] (0.025,0.035] (0.035,0.045]

## 0.0000000 0.3140295 0.9757525 0.5499023 1.0463961

## (0.045,0.05]

## 0.0000000

##

## $n

##

## (0,0.005] (0.005,0.015] (0.015,0.025] (0.025,0.035] (0.035,0.045]

## 0 3 5 2 3
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## (0.045,0.05]

## 0

Thus, the estimated swfdr for papers published in American Journal of Epidemiology in 2005
is 0.076 i.e. 7.6% of the discoveries - defined as associations with p < 0.05 - are expected to
be false discoveries.

0.3 Estimating the proportion of true null hypothesis in the pres-
ence of covariates
As in Boca and Leek (2018), we denote by π0(x) the proportion of true null hypotheses
as a function of a covariate x. This is estimated based on a list of p-values p1, . . . , pm

corresponding to a set of null hypotheses, H01, . . . ,H0m, and a design matrix X. The design
matrix considers relevant meta-data, which could be valuable for improving estimatong of the
prior probability that a hypothesis is true or false.

0.3.1 Example: Adjust for sample size and allele frequency in BMI GWAS
meta-analysis

We consider an example from the meta-analysis of data from a genome-wide association
study (GWAS) for body mass index (BMI) from Locke et al. (2015). A subset of this data,
corresponding to 50,000 single nucleotide polymorphisms (SNPs) is already loaded with the
package.
head(BMI_GIANT_GWAS_sample)

## # A tibble: 6 x 9

## SNP A1 A2 Freq_MAF_Hapmap b se p N Freq_MAF_Int_Ha~

## <chr> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <fct>

## 1 rs10~ T C 0.025 0.0147 0.0152 0.334 212965 [0.000,0.127)

## 2 rs91~ A G 0.342 -0.0034 0.0037 0.358 236084 [0.302,0.500]

## 3 rs48~ A C 0.00830 0.0163 0.0131 0.213 221771 [0.000,0.127)

## 4 rs17~ A G 0.167 0.0004 0.0048 0.934 236177 [0.127,0.302)

## 5 rs46~ C G 0.25 0.0011 0.0042 0.793 236028 [0.127,0.302)

## 6 rs11~ G A 0.233 -0.0006 0.0042 0.886 235634 [0.127,0.302)

dim(BMI_GIANT_GWAS_sample)

## [1] 50000 9

A description of the variables in BMI_GIANT_GWAS_sample can be found on its help page. In
particular, p gives the p-values for the association between the SNPs and BMI; N gives the
total sample size considered in the study of a particular SNP; and Freq_MAF_Hapmap gives the
frequency of the minor (less frequent allele) for a particular SNP in Hapmap. The column
Freq_MAF_Int_Hapmap provides 3 approximately equal intervals for the Hapmap MAFs:
table(BMI_GIANT_GWAS_sample$Freq_MAF_Int_Hapmap)

##

## [0.000,0.127) [0.127,0.302) [0.302,0.500]

## 16813 16887 16300

0.3.2 The lm_pi0 function

This function estimates π0(x). It inputs the following parameters:
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• pValues Numerical vector of p-values
• lambda Numerical vector of thresholds in [0, 1) at which π0(x) is estimated. Default

thresholds are (0.05, 0.10, . . . , 0.95).
• X Design matrix (one test per row, one variable per column). Do not include the

intercept.
• type Type of regression, “logistic” or “linear.” Default is logistic.
• smooth.df Number of degrees of freedom when estimating π0(x) by smoothing. Default

is 3.
• threshold If TRUE (default), all estimates are thresholded at 0 and 1, if FALSE, none of

them are.
To apply it to the BMI GWAS dataset, we first create the design matrix, using natural cubic
splines with 5 degrees of freedom to model N and 3 discrete categories for the MAFs:
X <- model.matrix(~ splines::ns(N,5) + Freq_MAF_Int_Hapmap, data = BMI_GIANT_GWAS_sample)[,-1]

head(X)

## splines::ns(N, 5)1 splines::ns(N, 5)2 splines::ns(N, 5)3 splines::ns(N, 5)4

## 1 7.242962e-01 0.0000000 -0.096623916 0.193411872

## 2 6.214473e-05 0.9873057 0.010529926 0.004207151

## 3 8.482281e-01 0.0000000 -0.054593655 0.109279996

## 4 0.000000e+00 0.9847066 0.012746260 0.005093468

## 5 4.971578e-04 0.9884279 0.009232155 0.003688505

## 6 3.080761e-02 0.9658228 0.002791946 0.001127918

## splines::ns(N, 5)5 Freq_MAF_Int_Hapmap[0.127,0.302)

## 1 -0.0967879566 0

## 2 -0.0021049077 0

## 3 -0.0546863405 0

## 4 -0.0025463522 1

## 5 -0.0018457495 1

## 6 -0.0005644374 1

## Freq_MAF_Int_Hapmap[0.302,0.500]

## 1 0

## 2 1

## 3 0

## 4 0

## 5 0

## 6 0

We then run the lm_pi0 function:
pi0x <- lm_pi0(BMI_GIANT_GWAS_sample$p, X=X)

names(pi0x)

## [1] "call" "lambda" "X.names" "pi0.lambda" "pi0"

The following values are returned:
• pi0 Numerical vector of smoothed estimate of π0(x). The length is the number of rows

in X.
• pi0.lambda Numerical matrix of estimated π0(x) for each value of lambda. The number

of columns is the number of tests, the number of rows is the length of lambda.
• lambda Vector of the values of lambda used in calculating pi0.lambda.
• pi0.smooth Matrix of fitted values from the smoother fit to the π0(x) estimates at

each value of lambda (same number of rows and columns as pi0.lambda).
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0.3.3 Results from BMI GWAS meta-analysis example

We first add the estimates of π0(x) for λ = 0.8, λ = 0.9, and the final smoothed value to the
BMI_GIANT_GWAS_sample object:
BMI_GIANT_GWAS_sample$fitted0.8 <- pi0x$pi0.lambda[,round(pi0x$lambda,2)==0.8]

BMI_GIANT_GWAS_sample$fitted0.9 <- pi0x$pi0.lambda[,round(pi0x$lambda,2)==0.9]

BMI_GIANT_GWAS_sample$fitted.final.smooth <- pi0x$pi0

We next create a long data frame so that we can use the plotting tools in ggplot2:
library(reshape2)

ldf <- reshape2::melt(BMI_GIANT_GWAS_sample,

id.vars=colnames(BMI_GIANT_GWAS_sample)[-grep("fitted",

colnames(BMI_GIANT_GWAS_sample))],

value.name = "pi0",variable.name = "lambda")

ldf$lambda <- as.character(ldf$lambda)

ldf$lambda[ldf$lambda=="fitted0.8"] <- "lambda=0.8"

ldf$lambda[ldf$lambda=="fitted0.9"] <- "lambda=0.9"

ldf$lambda[ldf$lambda=="fitted.final.smooth"] <- "final smoothed pi0(x)"

head(ldf)

## SNP A1 A2 Freq_MAF_Hapmap b se p N

## 1 rs10510371 T C 0.0250 0.0147 0.0152 0.3335 212965

## 2 rs918232 A G 0.3417 -0.0034 0.0037 0.3581 236084

## 3 rs4816764 A C 0.0083 0.0163 0.0131 0.2134 221771

## 4 rs17630047 A G 0.1667 0.0004 0.0048 0.9336 236177

## 5 rs4609437 C G 0.2500 0.0011 0.0042 0.7934 236028

## 6 rs11130746 G A 0.2333 -0.0006 0.0042 0.8864 235634

## Freq_MAF_Int_Hapmap lambda pi0

## 1 [0.000,0.127) lambda=0.8 1.0000000

## 2 [0.302,0.500] lambda=0.8 0.8780571

## 3 [0.000,0.127) lambda=0.8 1.0000000

## 4 [0.127,0.302) lambda=0.8 0.9299679

## 5 [0.127,0.302) lambda=0.8 0.9295851

## 6 [0.127,0.302) lambda=0.8 0.9310687

The plot of the estimates of π0(x) against the sample size N , stratified by the MAF categories
can thus be obtained:
library(ggplot2)

ggplot(ldf, aes(x=N, y=pi0))+

geom_line(aes(col=Freq_MAF_Int_Hapmap, linetype=lambda)) +

ylab("Estimated proportion of nulls") +

guides(color=guide_legend(title="MAF in HapMap CEU population"),

linetype=guide_legend(title="Estimate"))
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