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Abstract

Cell differentiation processes are achieved through a continuum of hierarchical
intermediate cell-states that might be captured by single-cell RNA seq. Exist-
ing computational approaches for the assessment of cell-state hierarchies from
single-cell data might be formalized under a general framework composed of i)
a metric to assess cell-to-cell similarities (combined or not with a dimensionality
reduction step), and ii) a graph-building algorithm (optionally making use of a
cells-clustering step). Sincell R package implements a methodological toolbox
allowing flexible workflows under such framework. Furthermore, Sincell con-
tributes new algorithms to provide cell-state hierarchies with statistical support
while accounting for stochastic factors in single-cell RNA seq. Graphical repre-
sentations and functional association tests are provided to interpret hierarchies.
Some functionalities are illustrated in a real case study where their ability to
discriminate noisy from stable cell-state hierarchies is demonstrated.
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1 Introduction
Unbiased transcriptome profiling of individual cells through RNA-seq allows
capturing the continuum of cell states transited through a differentiation or
activation process. Such continuum can be represented by a sequential ordering
of cell-states ultimately leading to heterogeneous cell types within a sample. The
assessment of cell-state hierarchies from single RNA-seq is challenging due to
the intrinsic stochasticity of gene expression and technical noise. Statistical
support is further needed in experimental settings where the number of cells is
several orders of magnitude lower than the number of genes profiled.

A number of computational methods have been developed to assess cell-state
hierarchies from single-cell data generated with different technologies (see Juliá
et al Bioarxiv 2014, Supplementary Table 1). The different methods can be
dissected into prototypical steps: a) the assessment of a cell-to-cell similarity
matrix by a given metric (preceded or not with a dimensionality reduction step),
and b) a graph-building algorithm that can optionally make use of a cells-
clustering step.

Sincell integrates the various components of that general workflow in a way
that they can be combined in a user-defined manner (see Juliá et al Bioarxiv
2014, Figure 1). Different alternatives are provided for each step of the analysis
and new algorithms are contributed. Notably, Sincell implements algorithms
to assess the statistical support of cell-state hierarchies derived from single-cell
RNAseq. Different graphical representations and functional association tests
are proposed to help the user interpreting the results. A complete description
of the package and algorithms herein can be found in Juliá et al (Bioarxiv, 2014)

2 Installing Sincell package
Sincell depends on following CRAN-R packages: entropy; fastICA; fields; gg-
plot2; igraph; MASS; proxy; reshape2; Rtsne; scatterplot3d, TSP.

Installing Sincell package from Bioconductor will also install all its dependencies:

if (!requireNamespace("BiocManager", quietly=TRUE))

install.packages("BiocManager")

BiocManager::install("sincell")
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In this vignette we will further make use of libraries "biomaRt" and "monocle"
from Bioconductor:

packages.bioconductor<-c("biomaRt","monocle")

packages.bioconductor.2install <- packages [!(packages.bioconductor

%in% installed.packages()[, "Package"])]

if(length(packages.bioconductor.2install)>0){

for (i in 1:length(packages.bioconductor.2install)){

BiocManager::install(packages.bioconductor.2install[i])

}

}

We may now load package Sincell

library(sincell)

3 Loading an expression matrix into a Sin-
cell object
Sincell workflow starts from an expression matrix comprising the expression
levels of each single-cell in the experiment (displayed by columns) for each
detected gene (displayed by rows). Before starting using Sincell , quality controls
to filter out individual cells from the analysis have to be performed by the user.
Expression levels need also to be previously normalized to account for library
size or technical variability (e.g. through the use of spike-in molecules).

Some Sincell functions are computationally intensive. Implementation of some
Sincell ’s algorithms in C++ as well as parallelization of Sincell ’s functions per-
mit to decrease running times. However, working with a gene expression matrix
of several thousands of genes can lead to long computing times depending on
the available hardware. If time or computation capacity is an issue, we rec-
ommend the user to restrict the analysis to the most variable protein coding
genes in the dataset. These genes drive most of the signal to assess cell-state
hierarchies and restricting the analyses to them should not bias the final results.
Typically, the ensemble of Sincell routines on an expression matrix with 2000
genes and 180 individual cells takes less than one hour in a laptop with 8GB
RAM. Nevertheless, selecting the most variable genes is not straightforward due
to the mean-variance relationship. To select the most variable genes we refer
the user to the two following excellent tutorials:
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i) the HSC Harvard Catalyst Single-Cell Workshop 2014: RNA-seq (http://
pklab.med.harvard.edu/scw2014/subpop_tutorial.html; Section "Identifying highly
variable genes")

and ii) Bioconductor RNA-Seq workflow (http://master.bioconductor.org/help/
workflows/rnaseqGene/#de; Section "The rlog transformation").

Quoting from this last document by Love M, Anders S and Huber W:

"Many common statistical methods for exploratory analysis of multidimen-
sional data, especially methods for clustering and ordination (e.g., principal-
component analysis and the like), work best for (at least approximately) ho-
moskedastic data; this means that the variance of an observed quantity (here,
the expression strength of a gene) does not depend on the mean. In RNA-Seq
data, however, variance grows with the mean. For example, if one performs
PCA (principal components analysis) directly on a matrix of normalized read
counts, the result typically depends only on the few most strongly expressed
genes because they show the largest absolute differences between samples"

To avoid this bias, we recommend the user performing a variance stabilizing
transformation. The simplest way is taking the logarithm of the normalized
count values plus 10 (or 100) pseudocounts. More sophisticated strategies are
provided by the function rlog and other variance stabilizing transformations
discussed in the Bioconductor package DESeq2 .

To restrict the analysis to protein coding genes, a list of them can be down-
loaded from Ensembl BioMart (http://www.ensembl.org/biomart/) for different
organisms and in different types of gene id’s (e.g. Entrez, Ensembl, HGNC).
Bioconductor package biomaRt provides access to that information from the R
environment (see below).

Once quality control, normalization and variance stabilization (e.g. log trans-
formation with 100 pseudocounts) have been performed and the most variable
genes identified (e.g. the 2000 most variable protein coding genes), we are
ready to start working with Sincell .

Function sc_InitializingSincellObject() initializes a Sincell object from the gene
expression matrix

# Do not run

SincellObject<-sc_InitializingSincellObject(ExpressionMatrix)

In this vignette we will illustrate Sincell usage on a publicly available single-
cell RNA-seq dataset taken from Trapnell et al 2014. In this work, authors
generated single-cell RNA-seq libraries for differentiating myoblasts at 0, 24, 48
and 72 hours. Original data can be accessed at GEO database accession number
GSE52529 (ftp://ftp.ncbi.nlm.nih.gov/geo/series/GSE52nnn/GSE52529/suppl/
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GSE52529_fpkm_matrix.txt.gz). Following Trapnell et al 2014 and the vignette
of its associated Bioconductor package monocle , the expression matrix is re-
stricted to genes differentially expressed between cells from times 0 and the
ensemble of cells of times 24, 28 and 72 hours of differentiation. Steps to
achieve this are reported below quoting monocle’s vignette, though we recom-
mend not to run them here due to the long computing time needed to complete
them.

# Within R console we load monocle package:

library(monocle)

# WARNING: do not run

HSMM <- detectGenes(HSMM, min_expr = 0.1)

expressed_genes <- row.names(subset(fData(HSMM), num_cells_expressed >= 50))

# The vector expressed_genes now holds the identifiers for genes expressed in

# at least 50 cells of the data set.

# Keeping expressed genes with q-value < 0.01

diff_test_res <- differentialGeneTest(HSMM[expressed_genes,],

fullModelFormulaStr = "expression~Media")

ordering_genes <- row.names(subset(diff_test_res, qval < 0.01))

HSMM <- HSMM[ordering_genes,]

In order to keep the running time of this vignette short, we provide the expression
matrix produced by previous steps:

data(ExpressionMatrix)

From the expression matrix we get the log-transformed expression matrix

EMlog <- unique(

log(ExpressionMatrix[which(apply(ExpressionMatrix,1,var)>0),]+1)

)

EMlog <- as.matrix( EMlog[as.logical(apply(!is.nan(EMlog),1,sum)),])

Optionally, we can change gene Ensembl identifiers to HGCN symbols using
biomaRt

GeneEnsemblID<-rownames(EMlog)

head(GeneEnsemblID)

## [1] "ENSG00000000460.12" "ENSG00000001630.11" "ENSG00000003989.12"

## [4] "ENSG00000005448.12" "ENSG00000010292.8" "ENSG00000011426.6"
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GeneEnsemblID <- sapply( strsplit(GeneEnsemblID, split=".",fixed=TRUE),"[",1)

head(GeneEnsemblID)

## [1] "ENSG00000000460" "ENSG00000001630" "ENSG00000003989" "ENSG00000005448"

## [5] "ENSG00000010292" "ENSG00000011426"

library("biomaRt")

ensembl = useMart( "ensembl", dataset = "hsapiens_gene_ensembl" )

genemap <- getBM( attributes = c("ensembl_gene_id", "entrezgene_id", "hgnc_symbol"),

filters = "ensembl_gene_id", values = GeneEnsemblID, mart = ensembl )

idx <- match(GeneEnsemblID, genemap$ensembl_gene_id )

GeneEntrez <- genemap$entrezgene_id[ idx ]

GeneHGCN <- genemap$hgnc_symbol[ idx ]

rownames(EMlog)[!is.na(GeneHGCN)&(GeneHGCN!="")]<-

GeneHGCN[!is.na(GeneHGCN)&(GeneHGCN!="")]

head(rownames(EMlog))

## [1] "C1orf112" "CYP51A1" "SLC7A2" "WDR54" "NCAPD2" "ANLN"

Finally, we can initialize a Sincell object from the gene expression matrix. This
done with the function sc_InitializingSincellObject(). At this stage, genes with
a variance equal to zero are filtered out from the gene expression matrix.

SO<-sc_InitializingSincellObject(EMlog)

Within a Sincell object, the loaded gene expression matrix can be accessed as
a named list member "expressionmatrix"

expressionmatrix<-SO[["expressionmatrix"]]

4 Assessment of a cell-to-cell distance ma-
trix

4.1 Assessment of a cell-to-cell distance matrix with a
metric of choice
The first requirement to obtain a cell-state hierarchy is to assess a cell-to-cell
distance matrix. Sincell ’s function sc_distanceObj() provides both linear and
non-linear distances: Euclidean distance, Pearson and Spearman correlation, L1
distance, Cosine distance and Mutual Information.
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## Assessment of a cell-to-cell distance matrix

# help(sc_distanceObj())

# Euclidean distance

SO<-sc_distanceObj(SO, method="euclidean")

cell2celldist_Euclidean<-SO[["cell2celldist"]]

# Cosine distance

SO<-sc_distanceObj(SO, method="cosine")

cell2celldist_Cosine<-SO[["cell2celldist"]]

# Distance based on 1-Pearson correlation

SO<-sc_distanceObj(SO, method="pearson")

cell2celldist_Pearson<-SO[["cell2celldist"]]

# Distance based on 1-Spearman correlation

SO<- sc_distanceObj(SO, method="spearman")

cell2celldist_Spearman<-SO[["cell2celldist"]]

# L1 distance

SO<- sc_distanceObj(SO, method="L1")

cell2celldist_L1<-SO[["cell2celldist"]]

# Mutual information distance is assessed by making bins of expression levels

# as defined by the "bines" parameter. This function internally calls function

# mi.empirical from package "entropy" using unit="log2".

SO<-sc_distanceObj(SO, method="MI", bins=c(-Inf,0,1,2,Inf))

cell2celldist_MI<-SO[["cell2celldist"]]

4.2 Assessment of a cell-to-cell distance matrix with an
intermediate dimensionality reduction step
The cell-to-cell distance matrix can be assessed on the new dimensions obtained
from a dimensionality reduction algorithm. Sincell ’s function sc_DimensionalityReduction()
provides access to the main types of dimensionality reduction techniques ei-
ther linear or non-linear, from which cell-to-cell distances can be assessed. The
methods provided are: Principal Component Analysis (PCA), Independent Com-
ponent Analysis (ICA), t-Distributed Stochastic Neighbor Embedding (tSNE),
classical Multidimensional Scaling and non-metric Multidimensional Scaling.

For instance, to perform a PCA with 3 dimensions:
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# help(sc_DimensionalityReductionObj)

# Principal Component Analysis (PCA)

SO <- sc_DimensionalityReductionObj(SO, method="PCA", dim=3)

cellsLowDimensionalSpace_PCA<-SO[["cellsLowDimensionalSpace"]]

When choosing PCA, the proportion of variance explained by each of the princi-
pal axes can be plotted to allow the user judge whether more dimensions should
be considered:

plot(SO[["EigenValuesPCA"]],las=1,

main="Proportion of variance explained by\neach PCA principal axis",

ylab="Proportion of variance",xlab="Principal axes",

pch=16,ylim=c(0,0.25))

Figure 1: Proportion of variance explained by each principal axis obtained by a Principal
Component Analysis (PCA) of the expression matrix

ICA and t-SNE are other two types of dimensionality reduction techniques that
can be used:

# Independent Component Analysis (ICA)

SO <- sc_DimensionalityReductionObj(SO, method="ICA", dim=3)
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cellsLowDimensionalSpace_ICA<-SO[["cellsLowDimensionalSpace"]]

# t-Distributed Stochastic Neighbor Embedding (t-SNE)

SO <- sc_DimensionalityReductionObj(SO, method="tSNE", dim=3)

cellsLowDimensionalSpace_tSNE<-SO[["cellsLowDimensionalSpace"]]

The reader should be aware that ICA and tSNE are optimization algorithms,
therefore different runs can lead to different solutions on the same input. Those
stochastic differences are expected to be small though in certain cases two runs
could lead to very different results.

We note also that Sincell makes use of the Rtsne implementation of the Barnes-
Hut algorithm, which approximates the likelihood. The user should be aware
that this is a less accurate version of t-SNE than e.g. the one used as basis of
viSNE (Amir,E.D. et al. 2013, Nat Biotechnol 31, 545?552).

To run Multidimensional Scaling:

# Classic Multidimensional Scaling (classical-MDS).

SO <- sc_DimensionalityReductionObj(SO, method="classical-MDS", dim=3)

cellsLowDimensionalSpace_classicalMDS<-SO[["cellsLowDimensionalSpace"]]

# Non-metric Multidimensional Scaling (nonmetric-MDS).

SO <- sc_DimensionalityReductionObj(SO, method="nonmetric-MDS", dim=3)

cellsLowDimensionalSpace_nonmetricMDS<-SO[["cellsLowDimensionalSpace"]]

Once the dimensionality reduction has been performed, the cell-to-cell distance
matrix that has been calculated on the new low dimensional space can be
accessed as:

# Cell-to-cell distance matrix from coordinates in low dimensional space

cell2celldist <- SO[["cell2celldist"]]

4.3 Graphical representation of individual cells in low
dimensional space
At this stage, the graphical representation of the individual cells into a low
dimensional space can help identifying patterns of relative similarities as well as
groups of cell-states:

To represent the first two dimensions of the low-dimensional space:

plot(t(cellsLowDimensionalSpace_ICA),col= "black",

xlab="First axis after dimensionality reduction",
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ylab="Second axis after dimensionality reduction")

# We can add to the plot the individual cell identifiers

# as indicated by the column's name of the matrix

text(t(cellsLowDimensionalSpace_ICA),colnames(cellsLowDimensionalSpace_ICA),

pos=3,cex=0.4,col="black")

If additional information about the individual cells is available, it can be used
to further define coloring schemes that would help interpreting the observed
variability. For instance, in the data from Trapnell et al 2014, we can use time
points of differentiating myoblasts (0, 24, 48 and 72 hours) as the color scheme
to interpret the relative position of cells in low dimensional space (Figure ??,
left)

First, we build a color vector for the single-cell RNA-seq libraries according
to their time of differentiation at 0, 24, 48 and 72 hours, as indicated in the
column’s name of the matrix:

ColorT0<-"blue"

ColorT24<-"green"

ColorT48<-"orange"

ColorT72<-"red"

colorSCsByTime<- character(dim(SO[["expressionmatrix"]])[2])

colorSCsByTime[grep("T0_", colnames(SO[["expressionmatrix"]]))]<- ColorT0

colorSCsByTime[grep("T24_",colnames(SO[["expressionmatrix"]]))]<- ColorT24

colorSCsByTime[grep("T48_",colnames(SO[["expressionmatrix"]]))]<- ColorT48

colorSCsByTime[grep("T72_",colnames(SO[["expressionmatrix"]]))]<- ColorT72

mycex<-1.2

mylwd<-4

myps<-1.2

par(bty="o",xaxs="i",yaxs="i",cex.axis=mycex-0.2,cex.main=mycex,cex.lab=mycex,

las=1,mar=c(5.3,5.3,2.9,1.6),oma=c(1,1,2,6))

plot(t(cellsLowDimensionalSpace_ICA),col= colorSCsByTime, xlab="First axis",

ylab="Second axis",main="ICA")

par(fig = c(0, 1, 0, 1), oma = c(0, 0, 0, 0), mar = c(0, 0, 0, 0), new = TRUE,

xpd = TRUE)

plot(0, 0, type = "n", bty = "n", xaxt = "n", yaxt = "n")

legend("right",title="Time\npoint", c("0h","24h","48h","72h"),

fill= c(ColorT0,ColorT24,ColorT48,ColorT72), inset=c(0.03,0), bty="n")

11



Sincell: R package for statistical assessment of cell state hierarchies from single-cell RNA-
seq

To further interpret the relative position in the low dimensional space, individual
cells can be colored according to the intensity of expression of a user-defined
marker gene. Sincell implements function sc_marker2color() to help creating
color scales (Figure ??, right):

myMarker<-"CDK1"

colorSCsByMarker<-sc_marker2color(SO, marker=myMarker, color.minimum="yellow3",

color.maximum="blue", relative.to.marker=TRUE)

mycex<-1.2

mylwd<-4

myps<-1.2

par(bty="o",xaxs="i",yaxs="i",cex.axis=mycex-0.2,cex.main=mycex,cex.lab=mycex,

las=1,mar=c(5.3,5.3,2.9,1.6),oma=c(1,1,2,6))

plot(t(cellsLowDimensionalSpace_ICA[1:2,]),col= colorSCsByMarker,

xlab="First axis", ylab="Second axis",

main=paste("ICA - Marker:",myMarker),pch=10)

Figure 2:

We may now produce a panel with the results for different dimensionality re-
duction algorithms exploring up to 3 dimensions:

mycex<-1.5

mylwd<-4

myps<-1.2

par(bty="o",xaxs="i",yaxs="i",cex.axis=mycex-0.2,cex.main=mycex,cex.lab=mycex,
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Figure 3: Representation of individual cells in the low dimensional space obtained by
performing an Independent Component Analysis on the initial expression matrix
Color code on the left represents the time point of the differentiating myoblast library, while on the
right it represents the relative expression levels of the marker from minimum (yellow) to maximum
(blue).

las=1,mar=c(5.3,5.3,2.9,1.6),oma=c(1,1,2,10))

zones=matrix(c(1:8),ncol=2,byrow=FALSE)

layout(zones)

myxlab="First axis"

myylab="Second axis"

plot(t(cellsLowDimensionalSpace_PCA[1:2,]),col= colorSCsByTime,

xlab=myxlab, ylab= myylab, main="PCA")

plot(t(cellsLowDimensionalSpace_ICA[1:2,]),col= colorSCsByTime,

xlab=myxlab, ylab= myylab, main="ICA")

plot(t(cellsLowDimensionalSpace_tSNE[1:2,]),col= colorSCsByTime,

xlab=myxlab, ylab= myylab, main="tSNE")

plot(t(cellsLowDimensionalSpace_nonmetricMDS[1:2,]),col= colorSCsByTime,

xlab=myxlab, ylab= myylab, main="nonmetricMDS")

myxlab="Third axis"

myylab="Second axis"
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plot(t(cellsLowDimensionalSpace_PCA[c(3,2),]),col= colorSCsByTime,

xlab=myxlab, ylab= myylab, main="PCA")

plot(t(cellsLowDimensionalSpace_ICA[c(3,2),]),col= colorSCsByTime,

xlab=myxlab, ylab= myylab, main="ICA")

plot(t(cellsLowDimensionalSpace_tSNE[c(3,2),]),col= colorSCsByTime,

xlab=myxlab, ylab= myylab, main="tSNE")

plot(t(cellsLowDimensionalSpace_nonmetricMDS[c(3,2),]),col= colorSCsByTime,

xlab=myxlab, ylab= myylab, main="nonmetricMDS")

par(fig = c(0, 1, 0, 1), oma = c(0, 0, 0, 0), mar = c(0, 0, 0, 0),

new = TRUE, xpd = TRUE)

plot(0, 0, type = "n", bty = "n", xaxt = "n", yaxt = "n")

legend("right",title="Time\npoint", c("0h","24h","48h","72h"),

fill= c(ColorT0,ColorT24,ColorT48,ColorT72), inset=c(0.01,0),bty="n")

Figure 4 represents individual cells in several low dimensional spaces as calcu-
lated by different algorithms: PCA, ICA, tSNE and non-metric MDS. Panels
on the left represent axis 1 and 2, and panels on the right axis 3 and 2 of the
corresponding algorithm. Color code corresponds to the time of differentiation
as indicated in the legend. It can be observed that the non-metric Multidi-
mensional Scaling is able to separate in its 1st and 3rd dimension the samples
according to their time of differentiation. This example shows that exploring dif-
ferent algorithms as well as different dimensions can help capturing the internal
structure of the data.

Further inspection of low dimensional spaces can be done with a 3D visualization
as provided by the rgl package:

library(rgl)

# Coloring by time point

plot3d(t(cellsLowDimensionalSpace_nonmetricMDS),

cex=1, size=2, type="s", col= colorSCsByTime)

plot3d(t(cellsLowDimensionalSpace_ICA),

cex=1, size=2, type="s", col= colorSCsByTime)

plot3d(t(cellsLowDimensionalSpace_PCA),

cex=1, size=2, type="s", col= colorSCsByTime)

plot3d(t(cellsLowDimensionalSpace_tSNE),

cex=1, size=2, type="s", col= colorSCsByTime)

# Coloring by marker

plot3d(t(cellsLowDimensionalSpace_nonmetricMDS), cex=1, size=2, type="s", col= colorSCsByMarker)
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Figure 4: Representation of individual cells in low dimensional space (see text)

For the following steps in the vignette we will use an ICA dimensionality reduc-
tion in two dimensions:

# Independent Component Analysis (ICA)

SO <- sc_DimensionalityReductionObj(SO, method="ICA", dim=2)
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5 Assessment of a cell-state hierarchy
In Sincell, a cell-state hierarchy is obtained by applying a graph-building algo-
rithm on the previously calculated cell-to-cell distance matrix. Graph-building
algorithms may be applied on the cells taken individually or in groups of highly
similar cells, as determined by an intermediate clustering step.

5.1 Optional clustering of individual cells
Identifying groups of cells particularly homogeneous among them by using a
clustering step is recommended to avoid misleading representations produced
by a graph-building algorithm: i.e. when two cells, despite being very similar,
fall far apart in the graph not because they are different but because they are
connected through intermediate cells that are even more similar to either two.

Sincell ’s function sc_clusterObj() calculates a disconnected graph where the
connected components are the clusters generated by a clustering method. This
function provides access to the different clustering methods reported below, and
the cells grouped in each cluster can be easily accessed through the function
clusters() from igraph package:

# help(sc_clusterObj)

# Clusters defined as subgraphs generated by a maximum pair-wise distance cut-off:

# From a totally connected graph where all cells are connected to each other,

# the algorithm keeps only pairs of cells connected by a distance lower than

# a given threshold

SO<- sc_clusterObj(SO, clust.method="max.distance", max.distance=0.5)

cellsClustering_SubgraphDist <-SO[["cellsClustering"]]

clusters(SO[["cellsClustering"]])

# Clusters defined as subgraphs generated by a given rank-percentile of the

# shortest pair-wise distances:

# From a totally connected graph where all cells are connected to each other,

# the algorithm keeps only the top "x" percent of shortest pairwise distances.

# In the example, only the shortest 10\% of all pairwise distances are retained

# to define subgraphs.

SO<- sc_clusterObj(SO, clust.method="percent", shortest.rank.percent=10)

cellsClustering_SubgraphPercent <-SO[["cellsClustering"]]

clusters(SO[["cellsClustering"]])

# K-Nearest Neighbours (K-NN) clustering.

# In the example k is set up to 3
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SO <- sc_clusterObj (SO, clust.method="knn", mutual=FALSE, k=3)

cellsClustering_KNN <-SO[["cellsClustering"]]

clusters(SO[["cellsClustering"]])

# K-Mutual Nearest Neighbours clustering.

# We present here a variant from K-NN clustering in which only k reciprocal

# nearest neighbours are clustered together.

SO <- sc_clusterObj (SO, clust.method="knn", mutual=TRUE, k=3)

cellsClustering_KMNN <-SO[["cellsClustering"]]

clusters(SO[["cellsClustering"]])

For single-cell data we recommend using K-NN. Other methods available in the
sc_clusterObj() function are:

# K-medoids, as calculated by function pam() in package "cluster" on

# the distance matrix SO[["cell2celldist"]] with a predefined number of groups k

SO <- sc_clusterObj (SO, clust.method="k-medoids", mutual=TRUE, k=3)

cellsClustering_kmedoids <-SO[["cellsClustering"]]

clusters(SO[["cellsClustering"]])

# Agglomerative clustering as calculated by function hclust with different

# methods and "cutting" the tree in a given number of groups k with

# function cutree()

SO <- sc_clusterObj (SO, clust.method="complete", mutual=TRUE, k=3)

cellsClustering_hclustcomplete <-SO[["cellsClustering"]]

clusters(SO[["cellsClustering"]])

When applying hierarchical agglomerative clustering or k-medoids clustering, we
recommend the user no to create clusters of large sizes that, later in the work-
flow, might risk masking meaningful gradients in the graphs/hierarchies. We
refer the reader to common clustering and plotting R functions to further explore
the optimal number of clusters to be used as a parameter in the previous hierar-
chical and k-means clustering: http://www.statmethods.net/advstats/cluster.
html

5.2 Graph-building step
Sincell ’s function sc_GraphBuilderObj() provides access to three different al-
gorithms to assess a graph from a cell-to-cell distance matrix: the Minimum
Spanning Tree (MST), the Maximum Similarity Spanning Tree (SST) and the

17

http://www.statmethods.net/advstats/cluster.html
http://www.statmethods.net/advstats/cluster.html


Sincell: R package for statistical assessment of cell state hierarchies from single-cell RNA-
seq

Iterative Mutual Clustering Graph (IMC). SST and IMC are two new graph-
building algorithms implemented in Sincell for the first time and are described
in Juliá et al (Bioarxiv, 2014).

For example, to assess MST, SST or IMC graphs on the cell-to-cell distance
matrix previously assessed for the Sincell Object "SO" we may run:

# help(sc_GraphBuilderObj)

# Minimum Spanning Tree (MST)

SO<- sc_GraphBuilderObj(SO, graph.algorithm="MST",

graph.using.cells.clustering=FALSE)

cellstateHierarchy_MST<-SO[["cellstateHierarchy"]]

# Maximum Similarity Spanning Tree (SST)

SO<- sc_GraphBuilderObj(SO, graph.algorithm="SST",

graph.using.cells.clustering=FALSE)

cellstateHierarchy_SST<-SO[["cellstateHierarchy"]]

# Iterative Mutual Clustering Graph (IMC)

SO<- sc_GraphBuilderObj(SO, graph.algorithm="IMC")

cellstateHierarchy_IMC<-SO[["cellstateHierarchy"]]

Optionally, algorithms in sc_GraphBuilderObj() can use clusters of cells to i)
overlay connections between pairs of cells belonging to the same cluster (in the
case of MST):

# Minimum Spanning Tree (MST) with previous clustering of cells

# MST with K-Mutual Nearest Neighbours clustering

SO <- sc_clusterObj (SO, clust.method="knn", mutual=TRUE, k=5)

SO<- sc_GraphBuilderObj(SO, graph.algorithm="MST",

graph.using.cells.clustering=TRUE)

cellstateHierarchy_MST_clustKNN<-SO[["cellstateHierarchy"]]

# MST with K-medoids

SO <- sc_clusterObj (SO, clust.method="k-medoids", k=15)

SO<- sc_GraphBuilderObj(SO, graph.algorithm="MST",

graph.using.cells.clustering=TRUE)

cellstateHierarchy_MST_clustKmedoids<-SO[["cellstateHierarchy"]]

or ii) treat those clusters as atomic elements in the graph-building process
together with non-clustered cells (in the case of SST):
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# SST with previous clustering of cells

# SST with K-Mutual Nearest Neighbours clustering

SO <- sc_clusterObj (SO, clust.method="knn", mutual=TRUE, k=5)

SO<- sc_GraphBuilderObj(SO, graph.algorithm="SST",

graph.using.cells.clustering=TRUE)

cellstateHierarchy_SST_clustKNN<-SO[["cellstateHierarchy"]]

# SST with K-medoids

SO <- sc_clusterObj (SO, , clust.method="k-medoids", k=15)

SO<- sc_GraphBuilderObj(SO, graph.algorithm="SST",

graph.using.cells.clustering=TRUE)

cellstateHierarchy_SST_clustKmedoids<-SO[["cellstateHierarchy"]]

By definition, IMC builds a connected graph through iterations on the clustering
results produced by the K-Mutual Nearest Neighbour (K-MNN) algorithm, so
there is no need to indicate a value for parameter "graph.using.cells.clustering".

5.3 Graphical representation of cell-state hierarchies
In this section, we illustrate how to obtain graphical representations of the
graphs generated with Sincell ’s function sc_GraphBuilderObj(). These hier-
archies are "igraph" graph objects (see "igraph" R package documentation at
http://igraph.org/r/) representing a totally connected graph. A number of vi-
sual displays can help interpreting the cell-state hierarchy. Figure 5 is generated
with the following code:

# Plotting parameters

vertex.size=5;

edge.color="black";

edge.width=2;

vertex.label.cex=0.2;

vertex.label.dist=1

vertex.color=colorSCsByTime

vertex.label="";

layout.graph=layout.kamada.kawai;

par(bty="o",xaxs="i",yaxs="i",cex.axis=mycex-0.2,cex.main=mycex,cex.lab=mycex,

las=1,mar=c(5.3,5.3,2.9,1.6),oma=c(1,1,2,10))

zones=matrix(c(1:4),ncol=2,byrow=FALSE)

graphics::layout(zones)
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plot.igraph(cellstateHierarchy_MST ,main="MST",

vertex.color=vertex.color,vertex.label=vertex.label,

vertex.size=vertex.size,edge.color=edge.color,

edge.width=edge.width,vertex.color=vertex.color,

vertex.label.cex=vertex.label.cex,layout=layout.graph)

plot.igraph(cellstateHierarchy_SST_clustKNN ,main="SST - KNN cluster",

vertex.color=vertex.color,vertex.label=vertex.label,

vertex.size=vertex.size,edge.color=edge.color,

edge.width=edge.width,vertex.color=vertex.color,

vertex.label.cex=vertex.label.cex,layout=layout.graph)

plot.igraph(cellstateHierarchy_SST_clustKmedoids ,main="SST - K-medoids",

vertex.color=vertex.color,vertex.label=vertex.label,

vertex.size=vertex.size,edge.color=edge.color,

edge.width=edge.width,vertex.color=vertex.color,

vertex.label.cex=vertex.label.cex,layout=layout.graph)

plot.igraph(cellstateHierarchy_IMC ,main="IMC",

vertex.color=vertex.color,vertex.label=vertex.label,

vertex.size=vertex.size,edge.color=edge.color,

edge.width=edge.width,vertex.color=vertex.color,

vertex.label.cex=vertex.label.cex,layout=layout.graph)

Figure 5 represents four of the cell-state hierarchies calculated in Section 5.2.
The color code corresponds to the time of differentiation of myoblast samples,
as indicated in the legend. It can be observed that cells from time point 0h
are highly homogeneous, clustering together in the hierarchy. However, Cells
from time points 24, 48 and 72 hours are intertwined in the hierarchy. Indeed,
some cells from different time points are more similar among them than among
other cells from the same timepoint, suggesting a heterogeneity of cell-states
(i.e. pseudotimes) within sample.

As previously described for the graphical representation of individual cells in low
dimensional space (see Section 4.3), different color schemes can be used:

i) a continuous color scale reflecting the expression levels of a maker of choice:

# To color by marker, set following parameter to:

vertex.color=colorSCsByMarker
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Figure 5: Representation of cell-state hierarchies assessed with different methods (see
text)

and ii) a color code representing qualitative information about the samples (e.g.
time points of differentiating myoblasts in Trapnell et al 2014: 0, 24, 48 and
72 hours)

# To color by time point:

vertex.color=colorSCsByTime

To represent individual cell identifiers in the graphs, set:

vertex.label=colnames(SO[["expressionmatrix"]]);

Different layout options can also be explored to better represent the graph:

a) Using the layout of cells provided by the low dimensional spaced used (if any)
to assess the cell-to-cell distance matrix. For example:

layout=t(cellsLowDimensionalSpace_ICA[1:2,])
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b) or using other igraph layouts, for instance:

layout=layout.fruchterman.reingold

layout=layout.reingold.tilford

layout=layout.graphopt

layout=layout.svd

layout=layout.lgl

5.4 Comparisson of hierarchies assessed by different
algorithms on the same data
Sincell ’s function sc_ComparissonOfGraphs() provides a way to compare the
graphs resulting from the different algorithms. The distance between two graphs
is assessed as 1 minus their similarity, which is calculated as the Spearman rank
correlation between the two graphs of the shortest distance for all pairs of
cells. The function prints the distance matrix comparing the graphs and plots
a hierarchical clustering of the hierarchies:

sc_ComparissonOfGraphs(

cellstateHierarchy_MST,

cellstateHierarchy_SST_clustKNN,

cellstateHierarchy_SST_clustKmedoids,

# graph.names=c("MST","SST-KNNcluster","SST-K-medoids"),

cellstateHierarchy_IMC,

graph.names=c("MST","SST-KNNcluster","SST-K-medoids","IMC")

)

## MST SST-KNNcluster SST-K-medoids

## SST-KNNcluster 0.0950

## SST-K-medoids 0.7597 0.7292

## IMC 0.0972 0.0409 0.6923

6 Algorithmic strategies to provide statistical
support to cell-state hierarchies from single-
cell RNAseq
The fact that a cell-state hierarchy is obtained by using previous algorithms
does not necessarily imply that it reflects a true biological scenario of cell ac-
tivation/differentiation. It might well be that the hierarchy obtained is mainly
driven by noise due to either biological or technical factors. Furthermore, the
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relative contribution of stochastic factors to the observed differences across
cells is expected to be higher if cells within a sample are in a homogeneous
steady-state. In that case, a low cell-to-cell heterogeneity will lead to cell-state
hierarchies very sensitive to small variations in the initial gene expression data.
On the other extreme, high levels of cell-to-cell heterogeneity driven by a real
granularity in an activation/differentiation process will translate into robust hi-
erarchies that can be reproduced despite stochastic perturbations of the data.

To help discriminating reliable cell-state hierarchies from noisy rearrangements,
Sincell implements two algorithms: i) a strategy relying on a gene resampling
procedure and ii) an algorithm based on random cell substitution with in silico-
generated cell replicates.

As in previous sections, we illustrate the use of these algorithms on the four
single-cell RNA-seq libraries for differentiating myoblasts at 0, 24, 48 and 72
hours generated by Trapnell et al 2014. However, this time we will analyse
the 4 libraries independently and ask whether a cell-state hierarchy obtained
from each of them separately is actually statistically supported. This mimics a
scenario where a potential user analyses a single-cell library from one experiment
(e.g. condition) and tries to figure out whether the biological sample contains
heterogeneity of cell-states that might be represented in the form of a hierarchy
with statistical support.

Let’s obtain first the cell-state hierarchy for each time using the first two di-
mensions of a dimensionality reduction with Independent Component Analysis
(ICA) and a Minimum Spanning Tree (MST)

t0 <- grep("T0_", colnames(EMlog))

t24 <- grep("T24_", colnames(EMlog))

t48 <- grep("T48_", colnames(EMlog))

t72 <- grep("T72_", colnames(EMlog))

EMlog_t0<-EMlog[,t0]

EMlog_t24<-EMlog[,t24]

EMlog_t48<-EMlog[,t48]

EMlog_t72<-EMlog[,t72]

dim(EMlog_t0)

## [1] 575 69

dim(EMlog_t24)

## [1] 575 74

dim(EMlog_t48)
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## [1] 575 79

dim(EMlog_t72)

## [1] 575 49

SO_t0 <- sc_InitializingSincellObject(EMlog_t0)

SO_t0 <- sc_DimensionalityReductionObj(SO_t0, method="ICA",dim=2)

SO_t0 <- sc_GraphBuilderObj(SO_t0, graph.algorithm="MST",

graph.using.cells.clustering=FALSE)

SO_t24 <- sc_InitializingSincellObject(EMlog_t24)

SO_t24 <- sc_DimensionalityReductionObj(SO_t24, method="ICA",dim=2)

SO_t24 <- sc_GraphBuilderObj(SO_t24, graph.algorithm="MST",

graph.using.cells.clustering=FALSE)

SO_t48 <- sc_InitializingSincellObject(EMlog_t48)

SO_t48 <- sc_DimensionalityReductionObj(SO_t48, method="ICA",dim=2)

SO_t48 <- sc_GraphBuilderObj(SO_t48, graph.algorithm="MST",

graph.using.cells.clustering=FALSE)

SO_t72 <- sc_InitializingSincellObject(EMlog_t72)

SO_t72 <- sc_DimensionalityReductionObj(SO_t72, method="ICA",dim=2)

SO_t72 <- sc_GraphBuilderObj(SO_t72, graph.algorithm="MST",

graph.using.cells.clustering=FALSE)

Figure 6 represents the cell-state hierarchies calculated separately for each my-
oblast differentiation time:

# Plotting parameters

vertex.size=5;

edge.color="black";

edge.width=2;

vertex.label.cex=0.2;

vertex.label.dist=1

vertex.color=colorSCsByTime

vertex.label="";

layout.graph=layout.kamada.kawai;

par(bty="o",xaxs="i",yaxs="i",cex.axis=mycex-0.2,cex.main=mycex,cex.lab=mycex,

las=1,mar=c(5.3,5.3,2.9,1.6),oma=c(1,1,2,10))

zones=matrix(c(1:4),ncol=2,byrow=FALSE)

graphics::layout(zones)
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plot.igraph(SO_t0[["cellstateHierarchy"]],main="0 hours",

vertex.color=ColorT0,vertex.label=vertex.label,

vertex.size=vertex.size,edge.color=edge.color,

edge.width=edge.width,vertex.color=vertex.color,

vertex.label.cex=vertex.label.cex,layout=layout.graph)

plot.igraph(SO_t24[["cellstateHierarchy"]],main="24 hours",

vertex.color=ColorT24,vertex.label=vertex.label,

vertex.size=vertex.size,edge.color=edge.color,

edge.width=edge.width,vertex.color=vertex.color,

vertex.label.cex=vertex.label.cex,layout=layout.graph)

plot.igraph(SO_t48[["cellstateHierarchy"]],main="48 hours",

vertex.color=ColorT48,vertex.label=vertex.label,

vertex.size=vertex.size,edge.color=edge.color,

edge.width=edge.width,vertex.color=vertex.color,

vertex.label.cex=vertex.label.cex,layout=layout.graph)

plot.igraph(SO_t72[["cellstateHierarchy"]],main="72 hours",

vertex.color=ColorT72,vertex.label=vertex.label,

vertex.size=vertex.size,edge.color=edge.color,

edge.width=edge.width,vertex.color=vertex.color,

vertex.label.cex=vertex.label.cex,layout=layout.graph)

6.1 Statistical support of cell-state hierarchies by gene
resampling
One strategy to provide statistical support to a connected graph representing a
cell-state hierarchy, is the one implemented in Sincell ’s function sc_StatisticalSupportByGeneSubsampling()
. This function performs "s" times a random subsampling of a given number
"n" of genes on the original gene expression matrix. Then, for each sampling,
a new connected graph of cells is generated using the same parameters as for
the hierarchy being tested. In each subsampling, the similarity between the re-
sulting connected graph and the original one is assessed as the Spearman rank
correlation between the two graphs of the shortest distance for all pairs of cells.
The distribution of Spearman rank correlation values of all subsamplings might
be interpreted as the distribution of similarities between hierarchies that would
be obtained from small changes in the data. A distribution with a high median
and small variance would indicate a well-supported cell-state hierarchy. On the
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Figure 6: Cell-state hierarchies of differentiating myoblast samples at 4 time points
(0,24,48 and 72h) obtained through a dimensionality reduction with Independent Com-
ponent Analysis (ICA, 2 dimensions) and a Minimum Spanning Tree (MST)

contrary, a distribution with a low median of similarities and/or a wide variance
would indicate a hierarchy very sensitive to changes in the data, and therefore
not highly statistically supported.

To provide statistical support by gene subsampling to the cell-state hierarchies
obtained in the differentiating myoblasts libraries at 0, 24, 48 and 72 hours, we
may run:

# For the sake of time we set here num_it=100.

# For a higher significance, we recommend setting num_it=1000

SO_t0<-sc_StatisticalSupportByGeneSubsampling(SO_t0, num_it=100)

## The summary of the distribution of Spearman rank correlations

## between the original hierarchy and the hierarchies obtained

## from 100 resamplings of 287 genes in the initial expression matrix is:

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 0.552 0.805 0.883 0.855 0.922 0.956
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SO_t24<-sc_StatisticalSupportByGeneSubsampling(SO_t24, num_it=100)

## The summary of the distribution of Spearman rank correlations

## between the original hierarchy and the hierarchies obtained

## from 100 resamplings of 287 genes in the initial expression matrix is:

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 0.638 0.856 0.886 0.872 0.911 0.964

SO_t48<-sc_StatisticalSupportByGeneSubsampling(SO_t48, num_it=100)

## The summary of the distribution of Spearman rank correlations

## between the original hierarchy and the hierarchies obtained

## from 100 resamplings of 287 genes in the initial expression matrix is:

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 0.773 0.906 0.921 0.917 0.937 0.971

SO_t72<-sc_StatisticalSupportByGeneSubsampling(SO_t72, num_it=100)

## The summary of the distribution of Spearman rank correlations

## between the original hierarchy and the hierarchies obtained

## from 100 resamplings of 287 genes in the initial expression matrix is:

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 0.848 0.907 0.928 0.925 0.945 0.974

The distribution of Spearman rank correlation values of all subsampings is stored
as a vector in SincellObject[["StatisticalSupportbyGeneSubsampling"]] and a
summary is printed to the standard output.

We may now plot together the distribution corresponding to the hierarchies
from the different time points (Figure 7):

mycex<-1

par(bty="o",xaxs="i",yaxs="i",cex.axis=mycex-0.2,cex.main=mycex,cex.lab=mycex,

las=1,mar=c(5.3,5.3,2.9,1.6),oma=c(1,1,2,6))

plot(density(SO_t0[["StatisticalSupportbyGeneSubsampling"]]),col=ColorT0,lwd=4,

main="Similarities of hierarchies \nupon gene subsamping",xlim=c(0.5,1),

ylim=c(0,20),ylab="Density",xlab="Spearman rank correlation")

lines(density(SO_t24[["StatisticalSupportbyGeneSubsampling"]]),col=ColorT24,lwd=4)

lines(density(SO_t48[["StatisticalSupportbyGeneSubsampling"]]),col=ColorT48,lwd=4)

lines(density(SO_t72[["StatisticalSupportbyGeneSubsampling"]]),col=ColorT72,lwd=4)

par(fig = c(0, 1, 0, 1), oma = c(0, 0, 0, 0), mar = c(0, 0, 0, 0),

new = TRUE, xpd = TRUE)

plot(0, 0, type = "n", bty = "n", xaxt = "n", yaxt = "n")
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legend("right",title="Time\npoint", c("0h","24h","48h","72h"),

fill= c(ColorT0,ColorT24,ColorT48,ColorT72),

inset=c(0.03,0), bty="n")

Figure 7: Similarities of hierarchies upon random gene subsampling
The figure represents the similarities between a given cell-state hierarchy and the hierarchies obtained
when random sets of genes are subsampled. Four distributions are plotted corresponding to the hier-
archies obtained from the libraries at different time points: 0,24,48 and 72 hours, as indicated in the
legend. A high median and a low variance are indicative of a cell-state hierarchy robust to variations
in the data. See text for details.

A summary of the distributions of similarities obtained upon subsampling can
be printed as follows:

summary(SO_t0[["StatisticalSupportbyGeneSubsampling"]])

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 0.552 0.805 0.883 0.855 0.922 0.956

summary(SO_t24[["StatisticalSupportbyGeneSubsampling"]])

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 0.638 0.856 0.886 0.872 0.911 0.964

summary(SO_t48[["StatisticalSupportbyGeneSubsampling"]])

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 0.773 0.906 0.921 0.917 0.937 0.971

summary(SO_t72[["StatisticalSupportbyGeneSubsampling"]])
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## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 0.848 0.907 0.928 0.925 0.945 0.974

var(SO_t0[["StatisticalSupportbyGeneSubsampling"]])

## [1] 0.00807

var(SO_t24[["StatisticalSupportbyGeneSubsampling"]])

## [1] 0.00394

var(SO_t48[["StatisticalSupportbyGeneSubsampling"]])

## [1] 0.001

var(SO_t72[["StatisticalSupportbyGeneSubsampling"]])

## [1] 0.000762

Late time points (48 and 72h) lead to hierarchies with a high median while early
time points (0 and 24h) had a lower median and a higher variance. Results
suggest that at the initial stages of differentiation homogeneity of cell states
is rather high, leading to a hierarchy sensitive to the set of genes in which
it is assessed and therefore less statistically supported. However, late time
point showed a hierarchy very robust to gene subsampling, reflecting a marked
heterogeneity in cell-states characteristic of more mature differentiation stages.

6.2 Statistical support of cell-state hierarchies by ran-
dom cell substitution with in silico-generated cell
replicates
Gene expression levels detected by single-cell RNA seq are subject to stochastic
factors both technical and biological. This means that, if it were possible to
profile the same cell in the same cell-state multiple times (or, more realistically,
a population of individual cells in a highly homogeneous state), the detected
expression levels of a gene would randomly fluctuate within a distribution of
values. In the ideal scenario where that distribution was known for each gene,
individual cell replicates could be produced in silico, leading to variations in gene
expression levels similar to what would be obtained from in vivo replicates. The
generation of in silico replicates would then permit to test the reproducibility of
the cell-state hierarchy upon random replacement of a fraction of the original
cells with them.
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6.2.1 Generation of in silico cell replicates

The stochastic distribution of the expression levels of a gene can be character-
ized by a measure of dispersion, e.g. the variance or the coefficient of variation.
It is known that the expected variation is dependent on the mean expression
values of the gene, so that the higher the mean, the higher the variance and
the lower the coefficient of variation (Anders and Huber 2010; Brennecke et al
2013). Based on this, we can simulate a stochastic fluctuation of the expression
of a gene by perturbing the observed level in a given cell with an error term
whose magnitude is consistent with the mean-variance relationship observed in
the data. By doing that in all genes from an individual cell Ci, we can produce
an in silico replicate of it.

Sincell ’s function sc_InSilicoCellsReplicatesObj() implements this strategy as
follows: first, the mean and variance of all genes in the original gene expression
matrix is assessed. Genes are assigned to classes according to the deciles of
mean they belong to. Next, for a given gene g, a variance v is randomly chosen
from the set of variances within the class of the gene. Then, a random value
drawn from a uniform distribution U(0,v) of mean zero and variance v is added
to the expression value of a gene g in a cell c. By perturbing in this way
all genes in a reference cell c we obtain an in silico replicate c’. Redoing the
process N times, N stochastic replicates are generated for each original cell. If
method= "cv2.deciles" in function sc_InSilicoCellsReplicatesObj(), a coefficient
of variation cv2 is randomly chosen from the set of coefficient of variation values
within the class of the gene. Then, the parameter v for the uniform distribution
is assessed by v=cv2*(mean**2).

To generate 100 in-silico replicates of each individual cell in the differentiating
myoblasts libraries at 0, 24, 48 and 72 hours, we may run:

# For the sake of time we set here multiplier=100.

# For a higher significance, we recommend setting multiplier=1000

SO_t0 <- sc_InSilicoCellsReplicatesObj(SO_t0,

method="variance.deciles", multiplier=100)

SO_t24 <- sc_InSilicoCellsReplicatesObj(SO_t24,

method="variance.deciles", multiplier=100)

SO_t48 <- sc_InSilicoCellsReplicatesObj(SO_t48,

method="variance.deciles", multiplier=100)

SO_t72 <- sc_InSilicoCellsReplicatesObj(SO_t72,

method="variance.deciles", multiplier=100)

The cell replicates are concatenated by columns to the original gene expression
matrix and saved in the SincellObject[["InSilicoCellsReplicates"]].
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Stochasticity in gene expression at the single-cell level has also been described
as following a lognormal distribution log(x) ~N(m,v) (Bengtsson et al 2005;
Raj et al. 2006). More recently, Shalek et al 2014 described gene expres-
sion variability in single-cell RNA-seq through a log normal distribution with
a third parameter alpha describing the proportion of cells where transcript ex-
pression was detected above a given threshold level. Authors found that the
majority of genes in their study (91%) showed distributions well described by
the three-parameter model (p <0.01, goodness of fit test; Shalek et al 2014).
By setting parameter method="lognormal-3parameters" within Sincell ’s func-
tion sc_InSilicoCellsReplicatesObj(), the function uses this "three parameter"
model estimation to generate random perturbations of gene expression levels
and produce in silico cell replicates.

Other works have found that, for most of the genes, the variability observed
among their expression levels across individual cells was better described by a
negative binomial (NB) distribution rather than a lognormal distribution (Gr?n
et al., 2014). These authors used NB distribution to model not only technical
noise but also true biological gene expression noise. Their assumption is that
endogenous mRNA abundance follows a NB as supported by a physical model
of bursting expression (Raj et al., 2006). A negative binomial noise model
was also adopted in (Zeisel et al., 2015). As pointed out in these works, NB is
frequently used to model overdispersed count data and has been previously used
for bulk RNA-seq data (Anders and Huber, 2010; Robinson et al., 2010). We
recommend this approach only if normalized count data is used (i.e. not length-
normalized RPKM/FPKM). By setting parameter method="negative.binomial"
within Sincell ’s function sc_InSilicoCellsReplicatesObj(), Sincell can follow an
NB distribution parameterized on the observed gene expression levels to generate
random perturbations and produce in silico cell replicates accordingly.

6.2.2 Random cell substitution with in silico-generated cell repli-
cates

Once cell-replicates have been generated, a second strategy to provide statistical
support to a connected graph is provided by Sincell ’s function sc_StatisticalSupportByReplacementWithInSilicoCellsReplicates().
This function performs "s" times a random replacement of a given number "n"
cells on the original gene expression matrix with a randomly selected set of
in-silico replicates. Then, for each set of substitutions "s", a new connected
graph of cells is calculated using the same parameters as for the hierarchy be-
ing tested. In each "s", the similarity between the resulting connected graph
and the original one is assessed as the Spearman rank correlation between the
two graphs of the shortest distance for all pairs of cells. The distribution of
Spearman rank correlation values of all replacements might be interpreted as
the distribution of similarities between hierarchies that would be obtained from
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stochastic perturbations of a proportion of cells. A distribution with a high
median and small variance would indicate a well-supported cell-state hierarchy.
On the contrary, a distribution with a low median of similarities and/or a wide
variance would indicate a hierarchy very sensitive to changes in the data, and
therefore not much statistically supported.

To provide statistical support by gene substitution with in silico-generated cell
replicates to the cell-state hierarchies obtained in the differentiating myoblasts
libraries at 0, 24, 48 and 72 hours, we may run:

SO_t0<-sc_StatisticalSupportByReplacementWithInSilicoCellsReplicates(SO_t0,

num_it=100,fraction.cells.to.replace=1)

## The summary of the distribution of spearman rank correlations

## between the original hierarchy and the hierarchies obtained from

## substitution of in silico generated replicates of order own

## in the initial expression matrix is:

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 0.572 0.794 0.846 0.833 0.895 0.960

SO_t24<-sc_StatisticalSupportByReplacementWithInSilicoCellsReplicates(SO_t24,

num_it=100,fraction.cells.to.replace=1)

## The summary of the distribution of spearman rank correlations

## between the original hierarchy and the hierarchies obtained from

## substitution of in silico generated replicates of order own

## in the initial expression matrix is:

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 0.730 0.860 0.886 0.881 0.908 0.963

SO_t48<-sc_StatisticalSupportByReplacementWithInSilicoCellsReplicates(SO_t48,

num_it=100,fraction.cells.to.replace=1)

## The summary of the distribution of spearman rank correlations

## between the original hierarchy and the hierarchies obtained from

## substitution of in silico generated replicates of order own

## in the initial expression matrix is:

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 0.834 0.896 0.915 0.913 0.930 0.969

SO_t72<-sc_StatisticalSupportByReplacementWithInSilicoCellsReplicates(SO_t72,

num_it=100,fraction.cells.to.replace=1)

## The summary of the distribution of spearman rank correlations

## between the original hierarchy and the hierarchies obtained from

## substitution of in silico generated replicates of order own

## in the initial expression matrix is:
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## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 0.874 0.906 0.924 0.922 0.939 0.967

The distribution of Spearman rank correlation values of all subsampings is stored
as a vector in the SincellObject[["StatisticalSupportByReplacementWithInSilicoCellReplicates"]]
and a summary is printed to the standard output.

We may now plot together the distribution corresponding to the hierarchies
from the different time points (Figure 8):

mycex<-1

par(bty="o",xaxs="i",yaxs="i",cex.axis=mycex-0.2,cex.main=mycex,cex.lab=mycex,

las=1,mar=c(5.3,5.3,2.9,1.6),oma=c(1,1,2,6))

plot(density(SO_t0[["StatisticalSupportByReplacementWithInSilicoCellReplicates"]]),

col=ColorT0,lwd=4,

main="Similarities of hierarchies upon substitution\nwith in silico cell replicates",

xlim=c(0.5,1),ylim=c(0,20),ylab="Density",xlab="Spearman rank correlation")

lines(density(SO_t24[["StatisticalSupportByReplacementWithInSilicoCellReplicates"]]),

col=ColorT24,lwd=4)

lines(density(SO_t48[["StatisticalSupportByReplacementWithInSilicoCellReplicates"]]),

col=ColorT48,lwd=4)

lines(density(SO_t72[["StatisticalSupportByReplacementWithInSilicoCellReplicates"]]),

col=ColorT72,lwd=4)

par(fig = c(0, 1, 0, 1), oma = c(0, 0, 0, 0), mar = c(0, 0, 0, 0),

new = TRUE, xpd = TRUE)

plot(0, 0, type = "n", bty = "n", xaxt = "n", yaxt = "n")

legend("right",title="Time\npoint", c("0h","24h","48h","72h"),

fill= c(ColorT0,ColorT24,ColorT48,ColorT72),

inset=c(0.03,0), bty="n")

A summary of the distributions of similarities obtained upon subsampling can
be printed as follows:

summary(SO_t0[["StatisticalSupportByReplacementWithInSilicoCellReplicates"]])

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 0.572 0.794 0.846 0.833 0.895 0.960

summary(SO_t24[["StatisticalSupportByReplacementWithInSilicoCellReplicates"]])

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 0.730 0.860 0.886 0.881 0.908 0.963

33



Sincell: R package for statistical assessment of cell state hierarchies from single-cell RNA-
seq

Figure 8: Similarities of hierarchies upon random cell substitution with in silico-
generated cell replicates
The figure represents the similarities between a given cell-state hierarchy and the hierarchies obtained
when a random fraction of individual cells (here 100%) are substituted by a randomly chosen in silico
replicate of them. Four distributions are plotted corresponding to the hierarchies obtained from the
libraries at different time points: 0, 24, 48 and 72 hours, as indicated in the legend. A high median
and a low variance are indicative of a cell-state hierarchy robust to variations in the data. See text for
details.

summary(SO_t48[["StatisticalSupportByReplacementWithInSilicoCellReplicates"]])

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 0.834 0.896 0.915 0.913 0.930 0.969

summary(SO_t72[["StatisticalSupportByReplacementWithInSilicoCellReplicates"]])

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 0.874 0.906 0.924 0.922 0.939 0.967

var(SO_t0[["StatisticalSupportByReplacementWithInSilicoCellReplicates"]])

## [1] 0.00571

var(SO_t24[["StatisticalSupportByReplacementWithInSilicoCellReplicates"]])

## [1] 0.00206

var(SO_t48[["StatisticalSupportByReplacementWithInSilicoCellReplicates"]])

## [1] 0.000663

var(SO_t72[["StatisticalSupportByReplacementWithInSilicoCellReplicates"]])
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## [1] 0.000517

Consistent with results from the gene resampling procedure, time point 72 lead
to the hierarchy with the highest median while time point 0 had the lowest
median and the highest variance. Results again suggest that at 0 hours, homo-
geneity of cell states is high while at time point 72 hours, a higher degree of
heterogeneity is present. Actually, a gradient along time can be observed (from
0 to 24, 48 and 72h) suggesting that heterogeneity in cell-states increased as a
function of time.

6.3 Note on the spike-in molecules to deconvolute tech-
nical and biological noise.
The use of spike-in molecules is recommended in single-cell RNA-seq to infer
the amount of variability in the ex-pression levels of one gene that is expected
to arise from technical factors (Brennecke et al., 2013; Grün et al., 2014; Islam
et al., 2014). More recently, Ding et al. went a step further by using spike-
ins to explicitly remove technical noise and compute de-noised gene expression
levels (R software GRM, http://wanglab.ucsd.edu/star/GRM/ , Ding et al.,
2015). When spike-ins are available, we recommend performing first technical
denoise of the expression matrix before using Sincell . In such a way, Sincell ’s
computations of cell-state hierarchies would mainly rely on biological variation.

Notwithstanding, biological variation will contain two main components. First,
the heterogeneity explained by truly different cell-states in a differentiation/activation
process, which is the component we aim to capture in a hierarchy. And sec-
ond, the intrinsic biological noise that is expected to arise even among cells
in the same differentiation/activation state. Intrinsic biological noise originates
from the characteristics of gene expression mechanisms such as bursts of tran-
scription (Raj et al., 2006), the stochasticity of signal transmission (Rand et
al., 2012), bimodality (Shalek et al., 2013), cell cycle effects (McDavid et al.,
2014; Buettner et al., 2015) and random monoallelic expression (Deng et al.,
2014).

Therefore, even if technical noise has been removed, it is important to test
whether the hierarchy is mainly determined by real cell-state heterogeneity or,
on the contrary, it is an artifact of the intrinsic biological noise. To this end,
the reproducibility of the cell-state hierarchy can be evaluated upon random
perturbations of the de-noised expression levels. Sincell ’s strategies described
above based on either i) random gene subsampling or ii) random cell substitution
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with in silico-generated cell replicates, would in that case test whether the
hierarchy is robust to stochastic perturbations of the data mimicking the effect
of intrinsic biological noise.

Additionally, the user could eventually wish to test the reproducibility of the hi-
erarchy assessed on the original expression data (i.e. not performing first a tech-
nical de-noising step) upon random perturbations exclusively based on technical
noise. Estimates of technical noise for each gene can be obtained by modeling
the dependence of the coefficient of variation (cv2) of spike-in molecules as a
function of their average expression. For instance, in Brennecke et al. 2013,
for each technical gene i (e.g. the spike-ins), the sample mean (m) and sample
variance of its normalized counts are estimated. Then, the observed squared
coefficients of variation (cv2) are fitted against the sample mean (m) with a
generalized linear model of the gamma family with identity link and parameter-
ization cv2=a1/m+ alpha0. Applying the fitted formula to the sample mean
expression levels of a gene provides an estimate of cv2 arising from technical
noise, leading to a vector so-called here cv2.estimated. By setting parame-
ter method="negative.binomial", and dispersion.statistic=cv2.estimated within
Sincell ’s function sc_InSilicoCellsReplicatesObj(), Sincell permits to incorpo-
rate a technical cv2 estimate per gene in the assessment of in silico cell repli-
cates based on normalized counts (i.e. following the previously described nega-
tive binomial distribution whose dispersion is parameterized using the estimated
technical cv2).

Alternatively, in the absence of spike-in molecules, by setting parameter method="negative.binomial",
and dispersion.statistic="cv2.fitted.to.data" within Sincell ’s function sc_InSilicoCellsReplicatesObj()
Sincell implements the fit described in Brennecke et al. 2013 using the cv2
and m values of all genes in the input expression matrix to provide a surro-
gate of technical noise estimates. However, this alternative should not be used
if the user has previously followed our recommendation in Section 1 of using
such an approach to identify highly variable genes in order to decrease the size
of the input matrix (http://pklab.med.harvard.edu/scw2014/subpop_tutorial.
html; Section "Identifying highly variable genes").

7 Functional association tests to help inter-
preting cell-state hierarchies
Once a cell-state hierarchy has been assessed and its statistical support checked,
the next step is interpreting the hierarchy in functional terms. In Section 4.3
and Section 5.3 we have shown different graphical representations that can help
interpreting the hierarchies in terms of the features of the samples/libraries (e.g.
differentiation time) or the expression levels of markers of interest (Figures ??,
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4, and 5). In this section, we propose an analytical approach to test whether the
cell-state hierarchy associates with a given functional gene set, that is: whether
the relative similarities among the individual cells in the hierarchy are driven by
the expression levels of a subset of genes with a common functional feature.

Sincell ’s function sc_AssociationOfCellsHierarchyWithAGeneSet() implements
an algorithmic strategy to evaluate that association. First, the function calcu-
lates a new cell-state hierarchy where only the expression levels of the genes in a
given functional gene set are considered. Second, it calculates the similarity of
that hierarchy and the reference hierarchy (the one assessed on the initial gene
expression matrix). The similarity between the two hierarchies is computed as
the Spearman rank correlation between the two graphs of the shortest distance
for all pairs of cells. Third, the function provides an empirical p-value of the ob-
served similarity between the two hierarchies. This empirical p-value is derived
from a distribution of similarities resulting from random samplings of gene sets
of the same size.

# help(sc_AssociationOfCellsHierarchyWithAGeneSet())

Sincell ’s function sc_AssociationOfCellsHierarchyWithAGeneSet() is particu-
larly suited to evaluate gene set collections from the Molecular Signatures
Database (MSigDB) of the Broad Institute http://www.broadinstitute.org/gsea/
msigdb/collections.jsp). Here, we illustrate the use of this function for evaluat-
ing the association of the previously obtained hierarchy for time point 72 hours
(Section 6) with the gene sets derived from the Reactome pathway database
available at MSigDB (http://www.broadinstitute.org/gsea/msigdb/download_
file.jsp?filePath=/resources/msigdb/4.0/c2.cp.reactome.v4.0.symbols.gmt).

We first download gene set c2.cp.reactome.v4.0.symbols.gmt from MSigDB

# geneset.list <- lapply(strsplit(readLines("c2.cp.reactome.v4.0.symbols.gmt"),"\t"),

# as.character)

# geneset.list is provided here for illustrative purposes:

data(geneset.list)

head(geneset.list[[1]])

## [1] "REACTOME_GLYCOGEN_BREAKDOWN_GLYCOGENOLYSIS"

## [2] "http://www.broadinstitute.org/gsea/msigdb/cards/REACTOME_GLYCOGEN_BREAKDOWN_GLYCOGENOLYSIS"

## [3] "AGL"

## [4] "GYG1"

## [5] "PGM1"

## [6] "PHKA1"

# We establish a minimum gene set size overlap with the genes in

# the expression matrix
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minimum.geneset.size=30

myAssociationOfCellsHierarchyWithAGeneSet<-list()

for (i in 1:length(geneset.list)){

if(sum(rownames(SO_t72[["expressionmatrix"]])

%in% geneset.list[[i]])>=minimum.geneset.size){

SO_t72<-sc_AssociationOfCellsHierarchyWithAGeneSet(SO_t72,geneset.list[[i]],

minimum.geneset.size=minimum.geneset.size,p.value.assessment=TRUE,

spearman.rank.threshold=0.5,num_it=1000)

myAssociationOfCellsHierarchyWithAGeneSet[[

as.character(i)]]<-list()

myAssociationOfCellsHierarchyWithAGeneSet[[

as.character(i)]][["AssociationOfCellsHierarchyWithAGeneSet"]]<-

SO[["AssociationOfCellsHierarchyWithAGeneSet"]]

myAssociationOfCellsHierarchyWithAGeneSet[[

as.character(i)]][["AssociationOfCellsHierarchyWithAGeneSet.pvalue"]]<-

SO[["AssociationOfCellsHierarchyWithAGeneSet.pvalue"]]

}

}

## The spearman rank correlation between the original hierarchy

## and the hierarchy obtained when using only the 30 genes

## common with gene list REACTOME_IMMUNE_SYSTEM is

## r= 0.657973032847333

## with an empirical p-value= 4.49e-01

## drawn from 1000 random subsamplings of equal gene set size= 30

length(names(myAssociationOfCellsHierarchyWithAGeneSet))

## [1] 8

The previous code checks the association of the hierarchy SO_t72 with all
Reactome pathways. If the association with a pathway has a Spearman rank
correlation higher than 0.5, an empirical p.value is calculated and a summary of
the results is printed. If no gene set passes the Spearman correlation threshold,
no messages are generated. The content of all tests is stored in the list "myAs-
sociationOfCellsHierarchyWithAGeneSet". In this particular case, only the path-
way REACTOME_IMMUNE_SYSTEM showed a high correlation, though the
empirical p-value was not significant.

To test association with Gene Ontology terms. The following MSigDB col-
lections can be tested: - GO Biological process: c5.bp.v4.0.symbols.gmt -
GO Molecular function: c5.mf.v4.0.symbols.gmt - GO Cellular component:
c5.cc.v4.0.symbols.gmt
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9 Session Info
sessionInfo()

## R version 4.1.0 (2021-05-18)

## Platform: x86_64-pc-linux-gnu (64-bit)

## Running under: Ubuntu 20.04.2 LTS

##

## Matrix products: default

## BLAS: /home/biocbuild/bbs-3.13-bioc/R/lib/libRblas.so

## LAPACK: /home/biocbuild/bbs-3.13-bioc/R/lib/libRlapack.so

##

## locale:

## [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C

## [3] LC_TIME=en_GB LC_COLLATE=C

## [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8

## [7] LC_PAPER=en_US.UTF-8 LC_NAME=C

## [9] LC_ADDRESS=C LC_TELEPHONE=C

## [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C

##

## attached base packages:

## [1] splines stats4 parallel stats graphics grDevices utils

## [8] datasets methods base

##

## other attached packages:

## [1] biomaRt_2.48.0 monocle_2.20.0 DDRTree_0.1.5

## [4] irlba_2.3.3 VGAM_1.1-5 ggplot2_3.3.3

## [7] Biobase_2.52.0 BiocGenerics_0.38.0 Matrix_1.3-3

## [10] sincell_1.24.0 igraph_1.2.6 knitr_1.33

##

## loaded via a namespace (and not attached):

## [1] Rtsne_0.15 colorspace_2.0-1 ellipsis_0.3.2

## [4] XVector_0.32.0 proxy_0.4-25 ggrepel_0.9.1

## [7] bit64_4.0.5 AnnotationDbi_1.54.0 fansi_0.4.2

## [10] xml2_1.3.2 codetools_0.2-18 docopt_0.7.1
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## [13] cachem_1.0.5 spam_2.6-0 entropy_1.3.0

## [16] cluster_2.1.2 dbplyr_2.1.1 png_0.1-7

## [19] pheatmap_1.0.12 BiocManager_1.30.15 compiler_4.1.0

## [22] httr_1.4.2 assertthat_0.2.1 fastmap_1.1.0

## [25] limma_3.48.0 htmltools_0.5.1.1 prettyunits_1.1.1

## [28] tools_4.1.0 dotCall64_1.0-1 gtable_0.3.0

## [31] glue_1.4.2 GenomeInfoDbData_1.2.6 RANN_2.6.1

## [34] reshape2_1.4.4 dplyr_1.0.6 rappdirs_0.3.3

## [37] maps_3.3.0 Rcpp_1.0.6 slam_0.1-48

## [40] vctrs_0.3.8 Biostrings_2.60.0 iterators_1.0.13

## [43] xfun_0.23 stringr_1.4.0 lifecycle_1.0.0

## [46] statmod_1.4.36 XML_3.99-0.6 MASS_7.3-54

## [49] zlibbioc_1.38.0 scales_1.1.1 TSP_1.1-10

## [52] BiocStyle_2.20.0 hms_1.1.0 RColorBrewer_1.1-2

## [55] fields_12.3 curl_4.3.1 yaml_2.2.1

## [58] memoise_2.0.0 gridExtra_2.3 fastICA_1.2-2

## [61] stringi_1.6.2 RSQLite_2.2.7 highr_0.9

## [64] S4Vectors_0.30.0 foreach_1.5.1 filelock_1.0.2

## [67] densityClust_0.3 GenomeInfoDb_1.28.0 rlang_0.4.11

## [70] pkgconfig_2.0.3 matrixStats_0.58.0 bitops_1.0-7

## [73] qlcMatrix_0.9.7 evaluate_0.14 lattice_0.20-44
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