
Quick Introduction to the rsbml Package

Michael Lawrence

May 19, 2021

Introduction

The rsbml package supports the import, validation, and export of SBML data.
It is similar in purpose to the SBMLR package [Radivoyevitch, 2004], except
rsbml relies on the external library libsbml [Bornstein, 2006] for its speed and
reliability. With rsbml, the user may import an SBML model as a graph object or
an S4-based Document Object Model (DOM). Parsed models may be checked for
consistency. rsbml is capable of checking models for consistency and exporting
SBML to a character vector or directly to a file. This vignette provides a
quick introduction to rsbml, demonstrating how to import an SBML model,
manipulate the model in R as a graph or S4 object, validate the model, and
export the model.

Importing an SBML document

Most users will begin an rsbml session by importing an SBML file into R. In
the example below, we load an SBML file describing the glycolysis pathway. It
is also possible to parse an R character vector instead of an external file.

> library(rsbml)

> doc <- rsbml_read(system.file("sbml", "GlycolysisLayout.xml", package = "rsbml"), dom = FALSE)

If errors are encountered, the function throws an error along with warnings
describing the specific problem(s) with the document. Otherwise, the result is
an opaque object referring to a low-level libsbml data structure. From here, the
user currently has two options for accessing the data: as an S4 object conforming
to the SBML document object model or as a Bioconductor graph object.

The S4 object representation

Converting the opaque libsbml parse result to an S4 object is simple:

> dom <- rsbml_dom(doc)

1

The result contains all of the information from the SBML. Methods exist for
accessing every element of the SBML specification (up to L2V1). Here is how
one would retrieve all of the species ID’s from the SBML model:

> sapply(species(model(dom)), id)

Glucose Glucose_6_phosphate

"Glucose" "Glucose_6_phosphate"

Fructose_6_phosphate Fructose_1_6_bisphosphate

"Fructose_6_phosphate" "Fructose_1_6_bisphosphate"

Dihydroxyacetonephosphate Glyceraldehyd_3_phosphate

"Dihydroxyacetonephosphate" "Glyceraldehyd_3_phosphate"

_1_3_Bisphosphoglycerate _3_Phosphoglycerate

"_1_3_Bisphosphoglycerate" "_3_Phosphoglycerate"

_2_Phosphoglycerate Phosphoenolpyruvate

"_2_Phosphoglycerate" "Phosphoenolpyruvate"

Pyruvate ATP

"Pyruvate" "ATP"

ADP H_

"ADP" "H_"

NAD_ NADH

"NAD_" "NADH"

H2O Pi

"H2O" "Pi"

The user may also modify every part of the model. Note that very little
validation is performed in response to modifications. See ?? for a guide to
checking SBML models for consistency problems.

The graph representation

All SBML models have an implicit graphical structure. To extract this into a
Bioconductor graph object, type the following:

> g <- rsbml_graph(doc)

> graph::nodes(g)

[1] "Glucose" "Glucose_6_phosphate"

[3] "Fructose_6_phosphate" "Fructose_1_6_bisphosphate"

[5] "Dihydroxyacetonephosphate" "Glyceraldehyd_3_phosphate"

[7] "_1_3_Bisphosphoglycerate" "_3_Phosphoglycerate"

[9] "_2_Phosphoglycerate" "Phosphoenolpyruvate"

[11] "Pyruvate" "ATP"

[13] "ADP" "H_"

[15] "NAD_" "NADH"

[17] "H2O" "Pi"

2

[19] "Hexokinase" "Phosphoglucoseisomerase"

[21] "Phosphofructokinase" "Aldolase"

[23] "triose_phosphate_isomerase" "GAP_Dehydrogenase"

[25] "Phosphoglyceratekinase" "Phosphoglyceratemutase"

[27] "Enolase" "Pyruvatekinase"

Note that the list of node ID’s contains all of the species ID’s retrieved from
the S4 object above. The additional ID’s are for the reaction nodes. At this
point, the graph can be passed to other packages, such as RBGL, Rgraphviz,
etc.

Checking SBML models for consistency

The SBML specification provides many complex rules that ensure an SBML
model is internally consistent. The following is an example of checking a docu-
ment against those rules.

> rsbml_check(doc)

[1] TRUE

If there were any problems with the document, they would be communicated
as R console messages, warnings or errors. If you would like to compute on
the problems, you will need to catch the conditions thrown by the rsbml_read

function. There are three different types of conditions: SBMLFatal, SBMLError
and SBMLWarning. SBMLFatal and SBMLError both inherit from error, while
SBMLWarning inherits from warning. The following code catches the error
resulting from a non-existent file and prints the message:

> tryCatch(rsbml_read("non-existent-file.xml"),

+ error = function(err) err$msg)

NULL

Writing SBML documents

After creating/manipulating SBML objects in R, the result may be translated
back to XML in two different ways: directly to a file or to an R character vector.
This example is of the latter:

> xml <- rsbml_xml(doc)

The result is a string XML representation of the SBML model.

More information

For more details, please see the online help for the rsbml package. If you en-
counter problems, please email lawremi at the domain iastate.edu.

3

References

B. Bornstein. libsbml, 2006. URL http://sbml.org/software/libsbml/.

T. Radivoyevitch. A two-way interface between limited systems biology
markup language and R. BMC Bioinformatics, 5(1):190, 2004. ISSN 1471-
2105. doi: 10.1186/1471-2105-5-190. URL http://www.biomedcentral.

com/1471-2105/5/190.

4

http://sbml.org/software/libsbml/
http://www.biomedcentral.com/1471-2105/5/190
http://www.biomedcentral.com/1471-2105/5/190

