
flowMatch: Cell population matching and

meta-clustering in Flow Cytometry

Ariful Azad, Alex Pothen

May 19, 2021

aazad@purdue.edu

Contents

1 Licensing 2

2 Overview 2
2.1 FC sample . 2
2.2 Population matching . 2
2.3 Meta-clustering and construction of templates 2
2.4 Related packages in Bioconductor 5
2.5 Dataset for testing . 5

3 Data structures 6

4 Population identification by using clustering algorithms 6

5 Computing distance between clusters 8

6 Matching cell clusters across a pair of samples 9

7 Computing template from a collection of samples 10
7.1 Plotting templates . 13
7.2 Retrieving and plotting a meta-cluster from a template 18

1

1 Licensing

Under the Artistic License, you are free to use and redistribute this software for
academic and personal use.

2 Overview

The flowMatch package performs two major functions given a collection of flow
cytometry (FC) samples:

1. Match cell populations across FC samples

2. Compute meta-clusters and templates from a collection of FC samples

2.1 FC sample

A flow cytometry sample measuring p features for n cells is represented with
an n × p matrix A. The (i, j) entry of the matrix, A(i, j), represents the mea-
surement of the jth feature in the ith cell. We characterize a multi-parametric
sample with a finite mixture model of multivariate normal distributions, where
each component is a cluster of cells expressing similar phenotypes in the mea-
sured parameter space. Such a cluster of cells represents a particular cell type
and is called a cell population in cytometry. In the mixture model, a cell popu-
lation (cluster) is characterized by a multi-dimensional normal distribution and
is represented by two parameters µ, the p dimensional mean vector, and Σ, the
p× p covariance matrix [5].

2.2 Population matching

Registering cell populations and tracking their changes across samples often
reveal the biological conditions the samples are subjected to. To study these
cross-condition changes we first establish the correspondence among cell popu-
lations by matching clusters across FC samples. We used a robust variant of
matching algorithm called the mixed edge cover (MEC) algorithm that allows
cell cluster from one sample to get matched to zero or more clusters in another
sample [2]. MEC algorithm covers possible circumstances when a cell population
in one sample is absent from another sample, or when a cell population in one
sample splits into two or more cell populations in a second sample, which can
happen due to biological reasons or due to the limitations of clustering methods.

2.3 Meta-clustering and construction of templates

In high throughput flow cytometry, large cohorts of samples belonging to some
representative classes are produced. Different classes usually represent mul-
tiple experiment conditions, disease status, time points etc. In this setting,
samples belonging to same class can be summarized by a template, which is

2

a summary of the sample’s expression pattern [1, 3, 6]. The concept of cell
populations in a sample can be extended to meta-clusters in a collection of sim-
ilar samples, representing generic cell populations that appear in each sample
with some sample-specific variation. Each meta-cluster is formed by combin-
ing cell populations expressing similar phenotypes in different samples. Hence
mathematically a meta-cluster is characterized by a normal distribution, with
parameters computed from the distributions of the clusters included in it. Clus-
ters in a meta-cluster represent the same type of cells and thus have overlapping
distributions in the marker space.

A template is a collection of relatively homogeneous meta-clusters com-
monly shared across samples of a given class, thus describing the key immune-
phenotypes of an overall class of samples in a formal, yet robust, manner. Mathe-
matically a template is characterized by a finite mixture of normal distributions.
We summarize these concepts in Table 1 and in Figure 1. Given the inter-sample
variations, a few templates can together concisely represent a large cohort of
samples by emphasizing all the major characteristics while hiding unnecessary
details. Thereby, overall changes across multiple conditions can be determined
rigorously by comparing just the cleaner class templates rather than the noisy
samples themselves [1, 6].

+ + + =

Template Sample A Sample B Sample C Sample D

A cell population
(cluster) A meta-cluster A cell

Figure 1: Summary of terminology used in this package.

We build templates from a collection of samples by a hierarchical algorithm
that repeatedly merges the most similar pair of samples or partial templates
obtained by the algorithm thus far. The algorithm builds a binary tree called
the template tree denoting the hierarchical relationships among the samples. A
leaf node of the template tree represents a sample and an internal (non-leaf)
node represents a template created from the samples. Fig. 2 shows an example of
a template tree created from four hypothetical samples, S1, S2, S3, and S4. An
internal node in the template tree is created by matching similar cell clusters
across the two children and merging the matched clusters into meta-clusters.
For example, the internal node T (S1, S2) in Fig. 2 denotes the template from
samples S1 and S2. The mean vector and covariance matrix of a meta-cluster are
computed from the means and covariance matrices of the clusters participating
in the meta-cluster.

3

Terms meaning

Cell population (clus-
ter)

a group of cells expressing similar features, e.g.,
helper T cells, B cells

Sample a collection of cell populations within a single bi-
ological sample

Meta-cluster a set of biologically similar cell clusters from dif-
ferent samples

Template a collection of meta-clusters from samples of same
class

Table 1: Summary of terminology used in this package.

S1 S2 S3 S4

Template
T(S1, S2,S3,S4)

Intermediate
Template
T(S1, S2)

Intermediate
Template
T(S3,S4)

Figure 2: An example of a hierarchical template tree created from four hypo-
thetical samples S1, S2, S3 and S4. A leaf node of the template tree represents
a sample and an internal node represents a template created from its children.

4

2.4 Related packages in Bioconductor

Several packages are available in Bioconductor (http://www.bioconductor.org/)
for analyzing flow cytometry data. The flowCore package provides basic struc-
tures for flow cytometry data. A number of packages are available for cluster-
ing or automated gating in a FC samples such as flowClust/flowMerge and
flowMeans. Given an FC samples these packages identify cell populations (cell
clusters) in the sample.

The flowMatch package starts working with the output of clustering/gating
results. Given a pair of FC sample, flowMatch registers corresponding pop-
ulations across the sample pair by using a combinatorial algorithm called the
mixed edge cover [2]. In addition to registering populations, the flowMatch

package merges corresponding clusters across samples to build meta-clusters. A
meta-cluster represents the core pattern of a particular cell population across
a large collection of samples. The collection of meta-clusters are then grouped
together to build templates for a collection of similar samples. Thus, the flow-

Match package works in a higher level than the other packages such as flow-

Clust/flowMerge, flowMeans, flowQ, flowTrans, etc.
The only package related to this package is flowMap that also matches cell

population across samples. However, flowMap uses the nonparametric Friedman-
Rafsky (FR) multivariate run test to compute the mapping of clusters. By
contrast, flowMatch uses Mahalanobis distance or Kullback-Leibler divergence
to compute cluster dissimilarity and then applies a combinatorial algorithm to
match clusters. Additionally, flowMatch performs meta-clustering and creates
templates, which are not performed by flowMap. FLAME (not a Bioconductor
package) by Pyne et al. provides funtionalities similar to flowMatch. The dif-
ferences between these two approaches are discussed in [1].

2.5 Dataset for testing

In order to reduce the download size of flowMatch, I put an example dataset to
a Bioconductor data package (healthyFlowData). The data package contains a
dataset consisting of 20 FC samples where peripheral blood mononuclear cells
(PBMC) were collected from four healthy individuals. Each sample was divided
into five repplicates and each replicate was stained using labeled antibodies
against CD45, CD3, CD4, CD8, and CD19 protein markers. Therefore we have
total 20 samples from four healthy subjects. This is a part of a larger dataset
of 65 samples.

The healthyFlowData package can be downloaded in the usual way.

> if (!requireNamespace("BiocManager", quietly=TRUE))

+ install.packages("BiocManager")

> BiocManager::install("healthyFlowData")

To use the examples included in this package, we must load the flowMatch

and healthyFlowData packages:

5

> library(healthyFlowData)

> library(flowMatch)

3 Data structures

We summarized the concept of cluster, sample, meta-cluster and template in
Table 1 and in Figure 1. In this package we represent these terms with four S4
classes. Additionally we represent matching of clusters across a pair of sample
with another S4 class. We describe the classes in Table 2. Details about this
classes will be discussed in their related sections.

Terms S4 class

Cell population (cluster) Cluster

Sample ClusteredSample

Cluster matching ClusterMatch

Meta-cluster MetaCluster

Template Template

Table 2: S4 classes used in this package.

4 Population identification by using clustering algo-

rithms

Since flowMatch package can work with any clustering algorithm, we did not
include any clustering algorithm in this package.

We first identify cell populations in each sample by using any suitable cluster-
ing algorithm. We then create an object of class ClusteredSample to encapsulate
all necessary information about cell populations in a sample. An object of class
ClusteredSample stores a list of clusters (objects of class Cluster) and other
necessary parameters. Since we characterize a sample with a finite mixture of
normal distribution, the user can supply centers or cov of the clusters esti-
mated by methods of their choice. When centers or cov of the clusters are
not provided by user, they are estimated from the FC sample. The center of a
cluster is estimated with the mean of points present in the cluster. An unbiased
estimator of covariance is estimated using function cov from stats package.

> ## --

> ## load data and retrieve a sample

> ## --

>

> data(hd)

6

> sample = exprs(hd.flowSet[[1]])

> ## --

> ## cluster sample using kmeans algorithm

> ## --

> km = kmeans(sample, centers=4, nstart=20)

> cluster.labels = km$cluster

> ## --

> ## Create ClusteredSample object (Option 1)

> ## without specifying centers and covs

> ## we need to pass FC sample for paramter estimation

> ## --

>

> clustSample = ClusteredSample(labels=cluster.labels, sample=sample)

> ## --

> ## Create ClusteredSample object (Option 2)

> ## specifying centers and covs

> ## no need to pass the sample

> ## --

>

> centers = list()

> covs = list()

> num.clusters = nrow(km$centers)

> for(i in 1:num.clusters)

+ {

+ centers[[i]] = km$centers[i,]

+ covs[[i]] = cov(sample[cluster.labels==i,])

+ }

> # Now we do not need to pass sample

> clustSample = ClusteredSample(labels=cluster.labels, centers=centers, covs=covs)

> ## --

> ## Show summary and plot a clustered sample

> ## --

>

> summary(clustSample)

An Object of class 'ClusteredSample'

Number of clusters: 4

Number of cells in cluster 1: 1658 [8.6 %]

Number of cells in cluster 2: 4399 [22.8 %]

Number of cells in cluster 3: 10535 [54.5 %]

Number of cells in cluster 4: 2729 [14.1 %]

> plot(sample, clustSample)

>

7

CD4

−
2

0
1

2

−1.0 0.0 1.0 2.0

0
1

2
3

4
5

−2 0 1 2

CD8

CD3

−1 1 2 3 4

0 1 2 3 4 5

−
1

.0
0

.0
1

.0
2

.0
−

1
1

2
3

4

CD19

5 Computing distance between clusters

The mixed edge cover algorithm matches similar clusters based on a dissimi-
larity measure between a pair of clusters. In flowMatch package we included
Euclidean distance, Mahalanobis distance and KL divergence for computing the
dissimilarities. These distances are computed from a pair of Cluster objects by
using their distribution parameters.

> ## --

> ## load data and retrieve a sample

> ## --

>

> data(hd)

8

> sample = exprs(hd.flowSet[[1]])

> ## --

> ## cluster sample using kmeans algorithm

> ## --

>

> km = kmeans(sample, centers=4, nstart=20)

> cluster.labels = km$cluster

> ## --

> ## Create ClusteredSample object

> ## and retrieve two clusters (cluster from different samples can be used as well)

> ## --

>

> clustSample = ClusteredSample(labels=cluster.labels, sample=sample)

> clust1 = get.clusters(clustSample)[[1]]

> clust2 = get.clusters(clustSample)[[2]]

> ## --

> ## compute dissimilarity between the clusters

> ## --

>

> dist.cluster(clust1, clust2, dist.type='Mahalanobis')

[1] 9.71275

> dist.cluster(clust1, clust2, dist.type='KL')

[1] 48.92503

> dist.cluster(clust1, clust2, dist.type='Euclidean')

[1] 2.987692

>

6 Matching cell clusters across a pair of samples

Given a pair of ClusteredSample objects we match clusters by using the MEC al-
gorithm [2]. MEC algorithm allows a cluster to get matched to zero, one or more
than one clusters from another sample. The penalty for leaving a cluster un-
matched is empirically selected, see [2] for a discussion. When unmatch.penalty

is set to a very large value every cluster get matched.

> ## --

> ## load data and retrieve two samples

> ## --

>

> data(hd)

> sample1 = exprs(hd.flowSet[[1]])

9

> sample2 = exprs(hd.flowSet[[2]])

> ## --

> ## cluster samples using kmeans algorithm

> ## --

>

> clust1 = kmeans(sample1, centers=4, nstart=20)

> clust2 = kmeans(sample2, centers=4, nstart=20)

> cluster.labels1 = clust1$cluster

> cluster.labels2 = clust2$cluster

> ## --

> ## Create ClusteredSample objects

> ## --

>

> clustSample1 = ClusteredSample(labels=cluster.labels1, sample=sample1)

> clustSample2 = ClusteredSample(labels=cluster.labels2, sample=sample2)

> ## --

> ## Computing matching of clusteres

> ## An object of class "ClusterMatch" is returned

> ## --

>

> mec = match.clusters(clustSample1, clustSample2, dist.type="Mahalanobis", unmatch.penalty=99999)

> class(mec)

[1] "ClusterMatch"

attr(,"package")

[1] "flowMatch"

> summary(mec)

==

clusters/meta-clusters matched clusters/meta-clusters

from sample1/template1 sample2/template2

==

1 4

2 2

3 1

4 3

==

7 Computing template from a collection of samples

We now build a template by merging corresponding clusters from different sam-
ples of a class. A template is constructed by repeatedly matching clusters across
a pair of samples and merging the matched clusters into meta-cluster. The al-
gorithm is similar in spirit to the UPGMA algorithm from phylogenetics and
the hierarchy of the samples can be visualized by a dendrogram. Note that, the

10

samples in the attached dataset are from four subjects each of them is replicated
five times. The template tree preserves this structure by maintaining four well
separated branches.

> ## load data (20 samples in total)

> ## --

>

> data(hd)

> ## --

> ## Retrieve each sample, clsuter it and store the

> ## clustered samples in a list

> ## --

> set.seed(1234) # for reproducable clustering

> cat('Clustering samples: ')

Clustering samples:

> clustSamples = list()

> for(i in 1:length(hd.flowSet))

+ {

+ cat(i, ' ')

+ sample1 = exprs(hd.flowSet[[i]])

+ clust1 = kmeans(sample1, centers=4, nstart=20)

+ cluster.labels1 = clust1$cluster

+ clustSample1 = ClusteredSample(labels=cluster.labels1, sample=sample1)

+ clustSamples = c(clustSamples, clustSample1)

+ }

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

> ## --

> ## Create a template from the list of clustered samples

> ## the function returns an object of class "Template"

> ## --

>

> template = create.template(clustSamples)

Number of Meta Cluster = 4

mc1 = [1 1; 2 1; 3 1; 4 3; 5 1; 6 2; 7 2; 8 4; 9 1; 10 3; 11 4; 12 1; 13 4; 14 3; 15 4; 16 1; 17 4; 18 4; 19 1; 20 2];

mc2 = [1 2; 2 2; 3 3; 4 2; 5 2; 6 3; 7 1; 8 3; 9 3; 10 2; 11 1; 12 2; 13 1; 14 4; 15 3; 16 2; 17 1; 18 1; 19 3; 20 1];

mc3 = [1 3; 2 4; 3 4; 4 1; 5 4; 6 1; 7 3; 8 2; 9 4; 10 4; 11 3; 12 4; 13 3; 14 2; 15 1; 16 3; 17 3; 18 2; 19 4; 20 3];

mc4 = [1 4; 2 3; 3 2; 4 4; 5 3; 6 4; 7 4; 8 1; 9 2; 10 1; 11 2; 12 3; 13 2; 14 1; 15 2; 16 4; 17 2; 18 3; 19 2; 20 4];

> summary(template)

An Object of class 'Template'

Number of metaclusters: 4

11

Number of cells in metacluster 1: 195568 [53.16 %]

Number of cells in metacluster 2: 80884 [21.99 %]

Number of cells in metacluster 3: 45748 [12.44 %]

Number of cells in metacluster 4: 45682 [12.42 %]

12

7.1 Plotting templates

All samples within a template are organized as binary tree. We can plot the
hierarchy of samples established while creating a template-tree: Note that, the
samples in the attached dataset are from four subjects each of them is replicated
five times. The template tree preserves this structure by maintaining four well
separated branches.

> template.tree(template)

Number of objects: 20

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

1 2 3 4 5
1

1
1

2
1

3
1

4
1

5
1

6
1

9
2

0
1

7
1

8 6 9
1

0 7 8

13

We plot a template as a collection of bivariate contour plots of its meta-
clusters. To plot each meta-cluster we consider the clusters within the meta-
cluster normally distributed and represent each cluster with an ellipsoid. The
axes of an ellipsoid is estimated from the eigen values and eigen vectors of the
covariance matrix of a cluster [4]. We then plot the bivariate projection of the
ellipsoid as 2-D ellipses. There are several options to draw a template.

Option-1 (default): plot contours of each cluster of the meta-clusters

> plot(template)

−
2

−
1

0
1

2
3

4

Index

F
L

2
F

L
2

−
1

0
1

2
3

4
5

Index

F
L

3
F

L
3

Index

0

−1 0 1 2 3

−
1

0
1

2
3

4

FL1

F
L

4
F

L
4

FL1
−2 −1 0 1 2 3 4

FL2

0

FL2
−1 0 1 2 3 4 5

FL3

0

FL3

14

Option-2: plot contours of each cluster of the meta-clusters with defined
color

> plot(template, color.mc=c('blue','black','green3','red'))
−

2
−

1
0

1
2

3
4

Index

F
L

2
F

L
2

−
1

0
1

2
3

4
5

Index

F
L

3
F

L
3

Index

0

−1 0 1 2 3

−
1

0
1

2
3

4

FL1

F
L

4
F

L
4

FL1
−2 −1 0 1 2 3 4

FL2

0

FL2
−1 0 1 2 3 4 5

FL3

0

FL3

15

Option-3: plot contours of the meta-clusters with defined color

> plot(template, plot.mc=TRUE, color.mc=c('blue','black','green3','red'))

−
1

0
1

2
3

Index

F
L

2
F

L
2

−
1

0
1

2
3

4

Index

F
L

3
F

L
3

Index

0

−1 0 1 2

−
1

0
1

2
3

4

FL1

F
L

4
F

L
4

FL1
−1 0 1 2 3

FL2

0

FL2
−1 0 1 2 3 4

FL3

0

FL3

16

Option-4: plot contours of each cluster of the meta-clusters with different
colors for different samples

> plot(template, colorbysample=TRUE)
−

2
−

1
0

1
2

3
4

Index

F
L

2
F

L
2

−
1

0
1

2
3

4
5

Index

F
L

3
F

L
3

Index

0

−1 0 1 2 3

−
1

0
1

2
3

4

FL1

F
L

4
F

L
4

FL1
−2 −1 0 1 2 3 4

FL2

0

FL2
−1 0 1 2 3 4 5

FL3

0

FL3

17

7.2 Retrieving and plotting a meta-cluster from a template

Similar to template, we plot a meta-cluster as a contour plot of the distribution
of the underlying clusters or the combined meta-cluster. We consider cells in
clusters or in the meta-cluster are normally distributed and represent the dis-
tribution with ellipsoid. The axes of an ellipsoid is estimated from the eigen
values and eigen vectors of the covariance matrix. We then plot the bi-variate
projection of the ellipsoid as 2-D ellipses.

> # retrieve a metacluster from a template

> mc = get.metaClusters(template)[[1]]

> summary(mc)

An Object of class 'MetaCluster' :

Number of clusters in this MetaCluster: 20

MetaCluster size = 195568

MetaCluster center:

[1] 1.54021923 0.06349614 3.47060192 0.29862616

MetaCluster covariance matrix:

[,1] [,2] [,3] [,4]

[1,] 0.1165207491 0.0001517564 0.0036705228 -0.0049142970

[2,] 0.0001517564 0.0500229560 -0.0062793598 -0.0288248427

[3,] 0.0036705228 -0.0062793598 0.1173861123 -0.0002442223

[4,] -0.0049142970 -0.0288248427 -0.0002442223 0.1082847736

> # plot all participating cluster in this meta-cluster

> plot(mc)

>

18

−
0

.5
0

.0
0

.5
1

.0

Index

F
L

2
F

L
2

2
.5

3
.0

3
.5

4
.0

4
.5

Index

F
L

3
F

L
3

Index

0

0.5 1.0 1.5 2.0 2.5

−
0

.5
0

.0
0

.5
1

.0

FL1

F
L

4
F

L
4

FL1
−0.5 0.0 0.5 1.0

FL2

0

FL2
2.5 3.0 3.5 4.0 4.5

FL3

0

FL3

19

We can plot the outline of the combined meta-cluster as well.

> plot(mc, plot.mc=TRUE)

−
0

.4
0

.0
0

.2
0

.4
0

.6

Index

F
L

2
F

L
2

3
.0

3
.5

4
.0

Index

F
L

3
F

L
3

Index

0

1.0 1.5 2.0

−
0

.5
0

.0
0

.5
1

.0

FL1

F
L

4
F

L
4

FL1
−0.4 0.0 0.2 0.4 0.6

FL2

0

FL2
3.0 3.5 4.0

FL3

0

FL3

References

[1] A. Azad, S. Pyne, and A. Pothen. Matching phosphorylation response pat-
terns of antigen-receptor-stimulated T cells via flow cytometry. BMC Bioin-
formatics, 13(Suppl 2):S10, 2012.

[2] Ariful Azad, Johannes Langguth, Youhan Fang, Alan Qi, and Alex Pothen.
Identifying rare cell populations in comparative flow cytometry. Lecture
Notes in Computer Science, 6293:162–175, 2010.

20

[3] G. Finak, J.M. Perez, A. Weng, and R. Gottardo. Optimizing transforma-
tions for automated, high throughput analysis of flow cytometry data. BMC
Bioinformatics, 11(1):546, 2010.

[4] Richard Arnold Johnson and Dean W Wichern. Applied multivariate statis-
tical analysis, volume 5. Prentice hall Upper Saddle River, NJ, 2002.

[5] K. Lo, R.R. Brinkman, and R. Gottardo. Automated gating of flow cytom-
etry data via robust model-based clustering. Cytometry Part A, 73(4):321–
332, 2008.

[6] S. Pyne, X. Hu, K. Wang, E. Rossin, T.I. Lin, L.M. Maier, C. Baecher-Allan,
G.J. McLachlan, P. Tamayo, D.A. Hafler, et al. Automated high-dimensional
flow cytometric data analysis. Proceedings of the National Academy of Sci-
ences, 106(21):8519–8524, 2009.

21

	Licensing
	Overview
	FC sample
	Population matching
	Meta-clustering and construction of templates
	Related packages in Bioconductor
	Dataset for testing

	Data structures
	Population identification by using clustering algorithms
	Computing distance between clusters
	Matching cell clusters across a pair of samples
	Computing template from a collection of samples
	Plotting templates
	Retrieving and plotting a meta-cluster from a template

