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Abstract
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1.1

Chapter 1

Introduction

Scope

1.2

This document describes the differential analysis of Hi-C data with the diffHic package.
Differential interactions (DIs) are defined as interactions with significant changes in intensity
between experimental conditions. Dls are identified in a statistically rigorous manner using
methods in the edgeR package [1]. Knowledge of edgeR is useful but is not necessary for
this guide.

How to get help

1.3

Most questions about individual functions should be answered by the documentation. For
example, if you want to know more about preparePairs, you can bring up the documentation
by typing ?preparePairs or help(preparePairs) at the R prompt. Further detail on the
methods or the theory can be found in the references at the bottom of each help page. The
entire diffHic pipeline is also described in its own publication [2].

The authors of the package always appreciate receiving reports of bugs in the package
functions or in the documentation. The same goes for well-considered suggestions for im-
provements. Other questions about how to use diffHic are best sent to the Bioconductor
support site at https://support.bioconductor.org. Please send requests for general assis-
tance and advice to the support site, rather than to the individual authors. Users post-
ing to the support site for the first time may find it helpful to read the posting guide at
http://www.bioconductor.org/help /support/posting-guide.

A brief description of Hi-C

The Hi-C protocol [3] is used to study chromatin organization by identifying pairwise interac-
tions between two distinct genomic loci. Briefly, chromatin is cross-linked and digested with
a restriction enzyme. This releases chromatin complexes into solution, where each complex
contains multiple restriction fragments corresponding to interacting loci. Overhangs are filled
in with biotin-labelled nucleotides to form blunt ends. Proximity ligation is then performed,
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1.4

which favors ligation between blunt ends in the same complex. The ligated DNA is soni-
cated and the sheared fragments containing ligation junctions are purified by a streptavidin
pulldown. Paired-end sequencing is performed on the purified ligation products, and pairs of
interacting loci are identified by mapping the paired reads. Of course, some caution is required
due to the presence of non-specific ligation between blunt ends in different complexes.

Quick start

A typical differential analysis of Hi-C data is described below. For simplicity, assume that the
BAM files have already been processed into “index” files in input. Let design contain the
design matrix for this experiment. Also assume that the boundaries of the relevant restriction
fragments are present in fragments. The code itself is split across several steps:

1. Converting BAM files to index files.
2. Counting read pairs into pairs of genomic bins.

library(diffHic)
param <- pairParam(fragments=fragments)
data <- squareCounts(input, width=1e6, param=param)

3. Filtering out uninteresting bin pairs.

library(edgeR)
keep <- aveLogCPM(asDGEList(data)) > 0O
data <- data[keep, ]

4. Normalizing for sample-specific biases.

data <- normOffsets(data, type="loess", se.out=TRUE)
y <- asDGEList(data)

5. Modelling biological variability between replicates.

y <- estimateDisp(y, design)
fit <- glmQLFit(y, design, robust=TRUE)

6. Testing for significant differences between groups.

result <- glmQLFTest(fit)
clusters <- diClusters(data, result$table, target=0.05,
cluster.args=Llist(tol=1))

In the various examples for this guide, data will be used from three studies. The first dataset
examines the chromatin structure in K562 and GM06990 cell lines [3]. The second compares
interaction intensities between wild-type and cohesin-deficient murine neural stem cells [4].
The final study compares ERG-overexpressing RWPE1 cells with a GFP-expressing control
[5]. Obviously, readers will have to modify the code for their own analyses.
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Chapter 2

Preparing index files from BAM
files

This box will appear at the start of each chapter, describing the objects required from
previous chapters. As we're starting out here, we don't really need anything.

A comment on aligning Hi-C libraries

In a typical Hi-C library, sequencing will occasionally be performed over the ligation junction
between two restriction fragments. This forms a chimeric read that contains sequences from
two distinct genomic loci. Here, correct alignment of the 5’ end of the chimeric read is more
important. This is because the location of the 3’ end is already provided by mapping the 5’
end of the mate read. Direct application of alignment software will not be optimal as only
one mapping location will be usually reported for each read. This means that the 5 location
will be ignored if the 3’ alignment is superior, e.g., longer or fewer mismatches.

Instead, chimeric alignment can be performed with approaches like iterative mapping [6]
or read splitting [7]. In the latter, we define the ligation signature as the sequence that is
obtained after ligation between blunt ends derived from cleaved restriction sites. For example,
the Hindlll enzyme cleaves at AAGCTT with a 4 bp overhang. This yields a signature sequence
of AAGCTAGCTT upon ligation of blunt ends. The ligation signature in each chimeric read is
identified with cutadapt [8], and the read is split into two segments at the center of the
signature. Each segment is then aligned separately to the reference genome using Bowtie2
[9]. Mapping by read splitting is performed in diffHic using a custom Python script:

system.file("python", "presplit_map.py", package="diffHic", mustWork=TRUE)
Users are strongly recommended to synchronize mate pair information and to mark duplicate

read pairs in the resulting BAM file. This can be achieved using the various tools in the
Picard software suite (http://broadinstitute.github.io/picard).
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2.2 Matching mapped reads to restriction fragments

The Hi-C protocol is based on ligation between restriction fragments. Sequencing of the
ligation product is performed to identify the interacting loci — or, more precisely, the two
restriction fragments containing the interacting loci. The resolution of Hi-C data is inherently
limited by the frequency of restriction sites and the size of the restriction fragments. Thus,
it makes sense to report the read alignment location in terms of the restriction fragment to
which that read was mapped. The boundaries of each restriction fragment can be obtained
with the cutGenome function, as shown below for the human genome after digestion with the
HindlIl restriction enzyme (recognition site of AAGCTT, 5’ overhang of 4 bp).

library(BSgenome.Hsapiens.UCSC.hgl9)
hs.frag <- cutGenome(BSgenome.Hsapiens.UCSC.hgl9, "AAGCTT", 4)

hs.frag

## GRanges object with 846225 ranges and 0 metadata columns:
#i# seqnames ranges strand

## <Rle> <IRanges> <Rle>

#it [1] chrl [ 1, 16011] *

#it [2] chrl [16008, 24575] *

#t [3] chrl [24572, 27985] *

#it [4] chrl [27982, 30433] *

## [5] chrl [30430, 32157] *

##

##  [846221] chrUn_glo00249 [22854, 25904]
##  [846222] chrUn_gl060249 [25901, 31201]
##  [846223] chrUn_glo60249 [31198, 36757]
##  [846224] chrUn_glo00249 [36754, 36891]
##  [846225] chrUn_glo00249 [36888, 38502]
A

##  seqinfo: 93 sequences from hgl9 genome

EOE SRR R

These fragments should be stored in a pairParam object. The constructor below checks that
the fragment ranges are properly ordered. Later, this object will also hold other parameters
for counting. This simplifies coordination of the various steps in the diffHic pipeline, as the
same pairParam object can be easily passed between different functions.

hs.param <- pairParam(hs.frag)
hs.param

## Genome contains 846225 restriction fragments across 93 chromosomes
## No discard regions are specified

## No limits on chromosomes for read extraction

## No cap on the read pairs per pair of restriction fragments

The preparePairs function matches the mapping location of each read to a restriction
fragment in the reference genome. Mapping results for paired reads should be provided in
a name-sorted BAM file. The function converts the read position into an index, pointing to
the matching restriction fragment in hs.frag. The resulting pairs of indices are stored in an
index file using the HDF5 format. The fragments to which the reads mapped are referred to
as “anchors” — the larger index is defined as the first anchor fragment whereas the smaller is
the second. This process is demonstrated using Hi-C data generated from GM06990 cells.


http://bioconductor.org/packages/diffHic
http://bioconductor.org/packages/diffHic

diffHic User’s Guide

2.3

diagnostics <- preparePairs("SRR027957.bam", hs.param, file="SRR027957.h5",
dedup=TRUE, ming=10)
names (diagnostics)

## [1] "pairs" "same.id" ‘"singles" "chimeras"

The function itself returns a list of diagnostics showing the number of read pairs that are lost
for various reasons. Of particular note is the removal of reads that are potential PCR dupli-
cates with dedup=TRUE. This requires marking of the reads beforehand using an appropriate
program such as MarkDuplicates from the Picard suite. Filtering on the minimum mapping
quality score with ming is also recommended to remove spurious alignments.

diagnostics$pairs

## total marked filtered mapped
## 7068675 103594 1532760 5460120

Read pairs mapping to the same restriction fragment provide little information on interactions
between fragments [10]. Dangling ends are inward-facing read pairs that are mapped to the
same fragment. These are uninformative as they are usually formed from sequencing of
the restriction fragment prior to ligation. Self-circles are outward-facing read pairs that are
formed when two ends of the same restriction fragment ligate to one another. Interactions
within a fragment cannot be easily distinguished from these self-circularization events. Both
structures are removed to avoid confusion in downstream steps.

diagnostics$same.id

## dangling self.circle
#it 425219 138248

Processing of chimeric reads

In the BAM file, chimeric reads are represented by two separate alignments for each read.
Hard clipping is used to denote the length trimmed from each sequence in each alignment,
and to determine which alignment corresponds to the 5" or 3’ end of the read. Only the
5" end(s) is used to determine the restriction fragment index for that read pair. The total
number of chimeric read pairs will be reported by preparepPairs, along with the number of
pairs where both 5’ ends are mapped (mapped) and the nuber where both 5" ends and at
least one 3’ end are mapped (multi). Of course, the function will also work if the mapping
location is only given for the 5’ end, though chimeric statistics will not be properly computed.

diagnostics$chimeras

##  total mapped multi invalid
## 2495159 1725843 1040864 67989

The proportion of invalid chimeric pairs is also calculated by preparePairs. Invalid pairs are
those where the 3’ location of a chimeric read disagrees with the 5’ location of the mate. The
invalid proportion can be used as an empirical measure of the mapping error rate - or, at least,
the upper bound thereof, given that error rates are likely to be lower for longer, non-chimeric
alignments. High error rates may be indicative of a fault in the mapping pipeline.

10
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diagnostics$chimeras[["invalid"]]/diagnostics$chimeras[["multi"]]

## [1] 0.06531977

Invalid chimeric pairs can be discarded by setting ichim=FALSE in preparePairs. However,
this is not recommended for routine analyses. Mapping errors for short 3’ ends may result in
apparent invalidity and loss of the (otherwise correct) 5" alignments.

Filtering artifactual read pairs

2.4.1

Reprocessing index files for quality control

The prunePairs function removes read pairs that correspond to artifacts in the Hi-C proce-
dure. The returned vector contains the number of read pairs removed for each type of artifact.
Values of length, inward and outward correspond to removal by max.frag, min.inward and
min.outward, respectively. Retained read pairs are stored in another index file for later use.

min.inward <- 1000

min.outward <- 25000

prunePairs("SRR027957.h5", hs.param, file.out="SRR027957_trimmed.h5",
max.frag=600, min.inward=min.inward, min.outward=min.outward)

## total length inward outward retained
## 4896653 870339 94644 82964 3860024

The max.frag argument removes read pairs where the inferred length of the sequencing
fragment (i.e., the ligation product) is greater than a specified value. The length of the
sequencing fragment is computed by summing, for both reads, the distance between the
mapping location of the 5" end and the nearest restriction site on the 3’ side. Excessively
large lengths are indicative of off-site cleavage, i.e., where the restriction enzyme or some
other agent cuts the DNA at a location other than the restriction site. While not completely
uninformative, these are discarded as they are not expected from the Hi-C protocol. The
threshold value can be chosen based on the size selection interval in library preparation, or
by examining the distribution of inferred fragment lengths from getPairData.

diags <- getPairData("SRR027957.h5", hs.param)
hist(diags$length[diags$length < 1000], ylab="Frequency",
xlab="Spacing (bp)", main="", col="grey80")

11
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2.4.2
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The insert size is defined as the linear distance between two paired reads on the same chro-
mosome. The min.inward paramater removes inward-facing intra-chromosomal read pairs
where the insert size is less than the specified value. The min.outward parameter does the
same for outward-facing intra-chromosomal read pairs. This is designed to remove dangling
ends or self-circles involving DNA fragments that have not been completely digested [11].
Such read pairs are technical artifacts that are (incorrectly) retained by preparePairs, as the
two reads involved are mapped to different restriction fragments. Appropriate thresholds for
both parameters can be determined using strand orientation plots.

Setting size thresholds with strand orientation plots

The strand orientation for a read pair refers to the combination of strands for the two
alignments. These are stored as flags where setting 0x1 or ©x2 means that the read on the first
or second anchor fragment, respectively, is mapped on the reverse strand. If different pieces
of DNA were randomly ligated together, one would expect to observe equal proportions of all
strand orientations. This can be tested by examining the distribution of strand orientations
for inter-chromosomal read pairs. Each orientation is equally represented across these read
pairs, which is expected as different chromosomes are distinct pieces of DNA.

intra <- !is.na(diags$insert)
table(diags$orientation[!intral)

##
## 0 1 2 3
## 768247 764801 764579 764536

This can be repeated for intra-chromosomal read pairs, by plotting the distribution of insert
sizes for each strand orientation [11]. The two same-strand distributions are averaged for
convenience. At high insert sizes, the distributions will converge for all strand orientations.
This is consistent with random ligation between two separate restriction fragments. At lower
insert sizes, spikes are observed in the ouward- and inward-facing distributions due to self-
circularization and dangling ends, respectively. Thresholds should be chosen in prunePairs
to remove these spikes, as represented by the grey lines.

12
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# Constructing the histograms for each orientation.

llinsert <- log2(diags$insert + 1L)

intra <- !is.na(llinsert)

breaks <- seq(min(llinsert[intra]), max(llinsert[intra]), length.out=30)

inward <- hist(llinsert[diags$orientation==1L], plot=FALSE, breaks=breaks)

outward <- hist(llinsert[diags$orientation==2L] ,plot=FALSE, breaks=breaks)

samestr <- hist(llinsert[diags$orientation==0L | diags$orientation==3L],
plot=FALSE, breaks=breaks)

samestr$counts <- samestr$counts/2

# Setting up the axis limits.

ymax <- max(inward$counts, outward$counts, samestr$counts)/le6
xmax <- max(inward$mids, outward$mids, samestr$mids)

xmin <- min(inward$mids, outward$mids, samestr$mids)

# Making a plot with all orientations overlaid.
plot(0,0,type="n", xlim=c(xmin, xmax), ylim=c(0, ymax),

xlab=expression(log[2]~"[insert size (bp)]"), ylab="Frequency (millions)")
lines(inward$mids, inward$counts/le6, col="darkgreen", lwd=2)
abline(v=log2(min.inward), col="darkgrey")
lines (outward$mids, outward$counts/le6, col="red", lwd=2)
abline(v=1log2(min.outward), col="darkgrey", lty=2)
lines(samestr$mids, samestr$counts/le6, col="blue", lwd=2)
legend("topright", c("inward", "outward", "same"),

col=c("darkgreen", "red", "blue"), lwd=2)
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As an aside, the position of the spikes in the above plots can be used to estimate some
fragment lengths. The x-coordinate of the outward-facing spike represents the average length
of the DNA fragments after restriction digestion. This is useful as it provides a lower bound
on the spatial resolution of any given Hi-C experiment. The position of the inward-facing
spike represents the average length of the fragments after sonication. This should be lower
than the size selection thresholds used in library preparation.

13
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Merging technical replicates

2.6

Hi-C experiments often involve deep sequencing as read pairs are sparsely distributed across
the set of possible interactions. As a result, multiple index files may be generated from
multiple technical replicates of a single Hi-C library. These can be merged together using
the mergePairs function prior to downstream processing. This is equivalent to summing
the counts for each pair of restriction fragment indices, and is valid if one assumes Poisson
sampling for each sequencing run [12]. An example is provided below that merges several
technical replicates for a Hi-C library generated from GM06990 cells [3].

prepped <- preparePairs("SRR027958.bam", hs.param, file="SRR027958.h5",
dedup=TRUE, ming=10)
counted <- prunePairs("SRR027958.h5", hs.param, file.out="SRR027958 trimmed.h5",
max.frag=600, min.inward=min.inward,
min.outward=min.outward)
mergePairs(files=c("SRRO27957_trimmed.h5", "SRR0O27958 trimmed.h5"), "merged.h5")

In addition, any Hi-C dataset that is processed manually by the user can be stored in an index
file using the savePairs function. This takes a dataframe with the first and second anchor
indices, as well as any additional information that might be useful. The idea is to provide an
entry point into the diffHic analysis from other pipelines. If the dataset is too large, one can
save chunks at a time before merging them all together with mergePairs.

anchorl.id <- as.integer(runif(100, 1, length(hs.param$fragments)))
anchor2.id <- as.integer(runif (100, 1, length(hs.param$fragments)))
dummy <- data.frame(anchorl.id, anchor2.id, other.data=runif(100))
savePairs(dummy, "example.h5", hs.param)

For full compatibility, users should include the alignment positions and lengths for each read
pair as anchorX.pos and anchorX.len, where X is 1 or 2 for each of the paired reads. The
alignment position refers to the 1-based coordinate of the left-most base of the alignment.
The alignment length refers to the span of the alignment relative to the reference, and should
be negative for alignments on the reverse strand. This information will be used in downstream
diffHic functions, such as read counting around blacklisted regions.

Handling DNase Hi-C experiments

DNase Hi-C is a variant of the standard protocol whereby the DNase | enzyme is used to
fragment the genome instead of restriction enzymes [13]. Random fragmentation provides
resolution beyond that of individual restriction fragments. However, cleavage sites for DNase |
cannot be easily predicted to construct param$fragments. Fragment indices have no meaning
here because there are no restriction fragments for reads to be assigned to.

Instead, diffHic handles this type of data by operating directly on the alignment position of
each read. This reflects the theoretical base-pair resolution of the data during quantification.
To indicate that the reads come from a DNase Hi-C experiment, an empty GRanges object
should be supplied as the fragments in the pairParam object. Most diffHic functions will
detect this and behave appropriately to exploit the improved resolution. An example of this
approach is shown below, where the SRR027957 library is treated as a DNase Hi-C sample.

14
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seg.frags <- emptyGenome(BSgenome.Hsapiens.UCSC.hgl9)
preparePairs("SRR027957.bam", pairParam(seg.frags), file="SRR027957.h5",
dedup=TRUE, ming=10)

## $pairs
## total marked filtered mapped
## 7068675 103594 1532760 5460120

##

## $singles
## [1] 0
##

## $chimeras
##  total mapped multi invalid
## 2495159 1779050 1073948 41582

Unlike preparePairs, no diagnostic information regarding self-circles or dangling ends is
reported here. Such metrics are irrelevant when restriction fragments are not involved. Sim-
ilarly, the length field in the output of getPairData is set to NA and should be ignored.
This is because the length of the sequencing fragment cannot be generally computed without
knowledge of the fragmentation sites. As a result, the max. frag argument should also be set
to NA in prunePairs. Metrics for inward- and outward-facing read pairs are unaffected, as
these are computed independently of the fragments. See the documentation for individual
functions to determine if/how their behaviour changes for DNase Hi-C data.

Users should also note that the alignment script described in Section 2.1 is not appropriate
for DNase Hi-C experiments. This approach is based on splitting chimeric reads at the
ligation signature, which is constructed from the recognition site of a restriction enzyme.
The sequence around the ligation junction is not well-defined when DNase | is used for
cleavage. Instead, alignment programs should be used that can directly handle chimeric
reads with arbitrary breakpoints in the genome, e.g., BWA [14]. A Python script for iterative
mapping [6] is also provided for this purpose.

system.file("python", "iter_map.py", package="diffHic", mustWork=TRUE)
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Chapter 3

Counting read pairs into
interactions

A different dataset will be used here, so we don't need anything from the last chapter.
Horses for courses; this dataset's a lot nicer for detecting differential interactions.

Overview

Prior to any statistical analysis, the read pairs in a Hi-C library must be summarized into a
count for each interaction. This count is used as an experimental measure of the interaction
intensity. Specifically, each pairwise interaction is parameterized by two genomic intervals
representing the interacting loci. The count for that interaction is defined as the number of
read pairs with one read mapping to each of the intervals. Counting is performed for each
sample in the dataset, such that each interaction is associated with a set of counts.

The interaction space is defined as the genome-by-genome space over which the read pairs
are distributed. Recall that each paired read is assigned to a restriction fragment index. The
interaction space contains all index pairs (x,y) for z,y € [1..N], where x > y and N is
the number of restriction fragments in the genome. This can be visualized as the triangular
space between y = x, y = 0 and = = N on the Cartesian plane. A rectangular area in the
interaction space represents a pairwise interaction between the genomic intervals spanned
by the two adjacent sides of that rectangle. The number of read pairs in this area is used
as the count for the corresponding interaction. Non-rectangular areas can also represent
interactions, but these are more difficult to interpret and will not be considered here.

The examples shown here will use the neural stem cell dataset [4] in which wild-type cells
are compared to cohesin-deficient cells. Read processing has already been performed to
construct an index file for each library. Some additional work is required to obtain the
restriction fragment coordinates for the Hindlll-digested mouse genome.

library(BSgenome.Mmusculus.UCSC.mm10)

mm.frag <- cutGenome(BSgenome.Mmusculus.UCSC.mm10, "AAGCTT", 4)

input <- c("merged_flox_1.h5", "merged_flox_2.h5",
"merged_ko_1.h5", "merged ko_2.h5")
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Counting into bin pairs

3.2.1

Overview

Here, the genome is partitioned into contiguous non-overlapping bins of constant size. Each
interaction is defined as a pair of these bins. This approach avoids the need for prior knowledge
of the loci of interest when summarizing Hi-C counts. Counting of read pairs between paired
bins is performed for multiple libraries using the squareCounts function.

bin.size <- le6

mm.param <- pairParam(mm.frag)

data <- squareCounts(input, mm.param, width=bin.size, filter=1)
data

## class: InteractionSet

## dim: 3319100 4

## metadata(2): param width

## assays(l): counts

## rownames: NULL

## rowData names(0):

## colnames: NULL

## colData names(1l): totals

## type: ReverseStrictGInteractions
## regions: 2739

This generates an InteractionSet object containing information for multiple genomic interac-
tions [15]. Each row of the object corresponds to an interaction, i.e., bin pair, while each
column represents a library. For each interaction, the coordinates of its two “anchor” bins are
returned. The first/second anchor notation is used for these bins, whereby the first anchor
bin is that with the “higher” genomic coordinate.

head(anchors(data, type="first"))

## GRanges object with 6 ranges and 1 metadata column:

## segnames ranges strand | nfrags
## <Rle> <IRanges> <Rle> | <integer>
##  [1] chrl [3004106, 4000741] * | 389
##  [2] chrl [3004106, 4000741] * | 389
##  [3] chrl [4000738, 5001375] * | 334
##  [4] chrl [4000738, 5001375] * | 334
##  [5] chrl [4000738, 5001375] * | 334
##  [6] chrl [5001372, 5997485] * | 340
#H -

## seqinfo: 66 sequences from an unspecified genome
head(anchors(data, type="second"))

## GRanges object with 6 ranges and 1 metadata column:

## seqnames ranges strand | nfrags
## <Rle> <IRanges> <Rle> | <integer>
##  [1] chrl [ 1, 3004109] * | 1
## [2] chrl [3004106, 4000741] * | 389
##  [3] chrl [ 1, 3004109] x| 1
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##  [4] chrl [3004106, 4000741] * | 389
#  [5] chrl [4000738, 5001375] * | 334
##  [6] chrl [ 1, 3004109] * | 1
SEL e

##  seqinfo: 66 sequences from an unspecified genome

The returned InteractionSet object contains a count matrix with the number of read pairs
for each interaction in each library. It also contains a totals vector in the colData, which
stores the total number of read pairs for each library.

head(assay(data))

##t (.11 [,21 [,3]1 [.,4]
## [1,] 83 48 33 19
## [2,] 21332 17151 12894 12357
## [3,] 20 20 17 6
## [4,] 8215 7023 4399 4237
## [5,] 14729 12460 8985 8443
## [6,] 7 2 3 0

data$totals

## [1] 85786306 74685186 60860491 54596160

Bin pairs can also be filtered to remove those with to a count sum below filter. This
removes uninformative bin pairs with very few read pairs, and reduces the memory footprint
of the function. A higher value of filter may be necessary for analyses of large datasets in
limited memory. More sophisticated filtering strategies are discussed in Chapter 4.

Choosing a bin width

The width of the bin is specified in base pairs and determines the spatial resolution of
the analysis. Smaller bins will have greater spatial resolution as adjacent features can be
distinguished in the interaction space. Larger bins will have greater counts as a larger area is
used to collect read pairs. Optimal summarization will not be achieved if bins are too small
or too large to capture the (changes in) intensity of the underlying interactions.

For this analysis, 1 Mbp bins are used to capture broad structural features. This is also useful
for demonstration purposes, as the counts are large enough for clear manifestation of biases in
later chapters. Of course, diffHic is more than capable of handling smaller sizes (e.g., below
20 kbp) for higher-resolution analyses of looping interactions between specific elements. In
such cases, filter should be increased to avoid excessive memory usage.

head(regions(data))

## GRanges object with 6 ranges and 1 metadata column:

## seqnames ranges strand | nfrags
## <Rle> <IRanges> <Rle> | <integer>
##  [1] chrl [ 1, 3004109] x| 1
##  [2] chrl [3004106, 4000741] * | 389
##  [3] chrl [4000738, 5001375] x| 334
#  [4] chrl [5001372, 5997485] x| 340
##  [5] chrl [5997482, 7000260] * | 342
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##  [6] chrl [7000257, 8000015] * | 349
GHi  coscooo
##  seqinfo: 66 sequences from an unspecified genome

The boundary of each bin is rounded to the closest restriction site in squareCounts. This
is due to the inherent limits on spatial resolution in a Hi-C experiment. The number of
restriction fragments in each bin is recorded in the nfrags field of the metadata.

Determination of the ideal bin size is not trivial as the features of interest are not usually
known in advance. Instead, repeated analyses with multiple bin sizes are recommended. This
provides some robustness to the choice of bin size. Sharp interactions can be detected by pairs
of smaller bins while diffuse interactions can be detected by larger bin pairs. See Section 7.3
for more information on consolidating results from multiple bin sizes.

Counting with pre-defined regions

3.3.1

Connecting counts between pairs of regions

For some studies, prior knowledge about the regions of interest may be available. For example,
a researcher may be interested in examining interactions between genes. The coordinates can
be obtained from existing annotation, as shown below for the mouse genome. Other pre-
specified regions can also be used, e.g., known enhancers or protein binding sites.

library(TxDb.Mmusculus.UCSC.mm10.knownGene)
gene.body <- genes(TxDb.Mmusculus.UCSC.mm10.knownGene)
strand(gene.body) <- "x" # Removing strand info, for simplicity.

Counting is directly performed for these defined regions using the connectCounts function.
Interactions are defined between each pair of regions in the pre-specified set. This may be
easier to interpret than pairs of bins if the interacting regions have some biological significance.
The count matrix and the vector of totals are defined as previously described.

redata <- connectCounts(input, mm.param, regions=gene.body)
redata

## class: InteractionSet

## dim: 12926724 4

## metadata(l): param

## assays(l): counts

## rownames: NULL

## rowData names(0):

## colnames: NULL

## colData names(1l): totals

## type: ReverseStrictGInteractions
## regions: 24044

19


http://bioconductor.org/packages/diffHic

diffHic User’s Guide

3.3.2

Again, first/second anchor notation applies whereby the interval with the larger start coor-
dinate in the genome is defined as the first anchor. Note that the anchor may not have a
larger end coordinate if the supplied regions are nested. In addition, each region is rounded
to the nearest restriction site. Resorting is also performed, though the indices of the original
regions can be found in the metadata as original if back-referencing is necessary.

head(regions(redata))

## GRanges object with 6 ranges and 2 metadata columns:

## seqnames ranges strand | nfrags original
## <Rle> <IRanges> <Rle> | <integer> <integer>
## 497097 chrl [3211067, 3675240] x| 197 15372
#it 19888 chrl [4286646, 4409818] * | 49 7094
## 20671 chrl [4487488, 4498343] * | 2 7482
## 27395 chrl [4772601, 4786029] * | 3 13110
#it 18777 chrl [4802092, 4847111] * | 8 6523
## 21399 chrl [4856126, 4899085] x| 16 8171
## -

##  seqinfo: 66 sequences (1 circular) from mmlO® genome

One obvious limitation of this approach is that interactions involving unspecified regions will
be ignored. This is obviously problematic when searching for novel interacting loci. Another
issue is that the width of the regions cannot be easily changed. This means that the compro-
mise between spatial resolution and count size cannot be tuned. For example, interactions will
not be detected around smaller genes as the counts will be too small. Conversely, interactions
between distinct loci within a large gene body will not be resolved.

Connecting counts between two sets of regions

The connectCounts function can also be used to identify interactions between two sets of
regions, by specifying a value for the second.regions argument. This only considers inter-
actions between one entry in regions and another in second.regions. This differs from the
standard application of the function, which would consider an interaction between any pair
of entries in regions. If an integer scalar is supplied as second.regions, the second set is
automatically defined as contiguous bins of that size across the genome.

The use of second. regions is particularly useful in cases where there are defined “viewpoints”
of interest, e.g., 4C-seq, Capture-C. These viewpoints can be specified in regions, as shown
below for a set of mock probe locations for a hypothetical Capture-C experiment [16]. Specifi-
cally, the viewpoint is defined as a 100 kbp bin centred at each capture probe. The interaction
profile across the rest of the genome can then be extracted by setting second.regions to
some bin size. In this case, 100 kbp bins are used.

probe.loc <- GRanges(c("chrl", "chr2", "chr3"),
IRanges(c(1le7, 2e7, 3e7), c(le7, 2e7, 3e7)))
viewpoints <- resize(probe.loc, fix="center", width=1e5)
viewdata <- connectCounts(input, mm.param, regions=viewpoints,
second.regions=1e5)
head(anchors(viewdata, type="first"))

## GRanges object with 6 ranges and 3 metadata columns:
## seqnames ranges strand | nfrags is.second original
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##
##
##
##
##
##
##
##
##

head(anchors(viewdata, type="second"))

[1]
[2]
[3]
[4]
[5]
[6]

<Rle>
chrl [99
chrl [99
chrl [99
chrl [99
chrl [99
chrl [99

45397,
45397,
45397,
45397,
45397,
45397,

<IRanges>
100542781
100542781
100542781
100542781
100542781
100542781

<Rle>

EE R G R

<integer> <logical> <integer>

I

| 38
| 38
| 38
| 38
| 38
| 38

seqinfo: 66 sequences from an unspecified genome

## GRanges object with 6 ranges and 3 metadata columns:
ranges strand

##
##
##
##
##
##
##
##
##
##

As these results demonstrate, interactions are only considered if exactly one interacting locus
is from the specified regions. The identity of the other locus (i.e., from second. regions)
can be determined based on the is.second field in the GRanges object. This approach avoids

segnames
<Rle>

[1] chrl [
[2] chrl [30
[3] chrl [31
[4] chrl [31
[5] chrl [33
[6] chrl [33

1,
04106,
00832,
94458,
01638,
99155,

<IRanges>
3004109]
3100835]
3194461]
3301641]
3399158]
3501374]

<Rle>

* ¥ X X ¥ %

nfrags is.second
<integer> <logical> <integer>

1
34
30
41
52
39

seqinfo: 66 sequences from an unspecified genome

1

L = I ==

0

o © o © o

loading irrelevant interactions when only specific viewpoints are of interest.

Counting into single bins

original

<NA>
<NA>
<NA>
<NA>
<NA>
<NA>

e I S R S

The marginalCounts function counts the number of reads mapped inside each bin. This
effectively treats each Hi-C library as single-end data to quantify the genomic coverage of
each bin. One can use these “marginal” counts to determine whether there are systematic
differences in coverage between libraries for a given bin.

variations are present, which may confound detection of differential interactions.

margin.data <- marginCounts(input, mm.param, width=bin.size)

margin.data

##
##
##
##
##
##
##
##

class: RangedSummarizedExperiment
dim: 2739 4

metadata(
assays(1)
rownames:

1): param
: counts
NULL

rowData names(1):

colnames:

NULL

colData names(1):

nfrags

totals

This implies that copy number
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Each row of the RangedSummarizedExperiment contains the marginal read counts for a
genomic bin. For this dataset, there are no major changes in coverage for the vast majority
of bins. The most extreme events occur at low abundances and are unlikely to be precise.
This suggests that a direct comparison of interaction intensities will be valid. Remedial action
in the presence of copy number changes is not trivial and will be discussed in Section 5.4.

adjc <- cpm(asDGEList(margin.data), log=TRUE, prior.count=5)
smoothScatter(0.5%(adjc[,1]+adjc[,3]), adjc[,1]-adjc[,3],
xlab="A", ylab="M", main="Flox (1) vs. Ko (1)")

Flox (1) vs. Ko (1)

1.0

-0.5

-1.0

Additional parameter options

3.5.1

Restricting the input chromosomes

Users can restrict counting to particular chromosomes by setting the restrict slot in the
pairParam object. This is useful to ensure that only interactions between relevant chro-
mosomes are loaded. Sequences such as the mitochondrial genome, unassigned contigs or
random chromosome segments can be ignored in routine analyses.

new.param <- reform(mm.param, restrict=c("chrl", "chr2"))
new.param

## Genome contains 851636 restriction fragments across 66 chromosomes
## No discard regions are specified

## Read extraction is limited to 2 chromosomes

## No cap on the read pairs per pair of restriction fragments

In addition, if restrict is a n-by-2 matrix, count loading will be limited to the read pairs that
are mapped between the n specified pairs of chromosomes. The example below considers all
read pairs mapped between chromosomes 2 and 19. This feature is useful when memory is
limited, as each pair of chromosomes can be loaded and analyzed separately.
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3.5.3

new.param <- reform(mm.param, restrict=cbind("chr2", "chrl9"))
new.param

## Genome contains 851636 restriction fragments across 66 chromosomes
## No discard regions are specified

## Read extraction is limited to pairs between:

## 'chr2' and 'chrl9'

## No cap on the read pairs per pair of restriction fragments

Specifying regions to ignore

Users can also discard alignments that lie within blacklisted regions by setting the discard
slot. The aim is to eliminate reads within known repeat regions. Such regions are prob-
lematic, as reads from several repeat units in the real genome may be collated into a single
representative unit in the genome build. This results in a sharp, spurious spike in interaction
intensity. The problem is exacerbated by different repeat copy numbers between biological
conditions, resulting in spurious differential interactions due to changes in coverage. Removal
of reads in these repeats may be necessary to obtain reliable results.

dummy . repeat <- GRanges("chrl", IRanges (10000, 1000000))
new.param <- reform(mm.param, discard=dummy.repeat)
new.param

## Genome contains 851636 restriction fragments across 66 chromosomes
## 1 region specified in which alignments are discarded

## No limits on chromosomes for read extraction

## No cap on the read pairs per pair of restriction fragments

Coordinates of annotated repeats can be obtained from several different sources. A cu-
rated blacklist of problematic regions is available from the ENCODE project [17], and can
be obtained at https://sites.google.com /site/anshulkundaje/projects/blacklists. This list is
constructed empirically from the ENCODE datasets and includes obvious offenders like telom-
eres, microsatellites and some rDNA genes. Alternatively, repeats can be predicted from
the genome sequence using software like RepeatMasker. These calls are available from the
UCSC website (e.g., hgdownload.soe.ucsc.edu/goldenPath/mm10/bigZips/chromOut.tar.gz
for mouse) or they can be extracted from an appropriate masked BSgenome object. Experi-
ence suggests that the ENCODE blacklist is generally preferable. Repeat predictions tend to
be aggressive such that too much of the genome (and interactions therein) will be discarded.

Capping the read pairs per restriction fragment pair

Incomplete removal of PCR duplicates or read pairs in repeat regions may result in spikes
of read pairs within the interaction space. The effect of these artifacts can be mitigated by
capping the number of read pairs associated with each pair of restriction fragments. This is
done by specifying a value for the cap slot. Diffuse interactions should not be affected, as the
associated read pairs will be distributed sparsely across many fragment pairs. More caution
is required if sharp interactions are present, i.e., interactions between 5 - 10 kbp regions.
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new.param <- reform(mm.param, cap=5)
new.param

## Genome contains 851636 restriction fragments across 66 chromosomes
## No discard regions are specified

## No limits on chromosomes for read extraction

## Cap of 5 on the read pairs per pair of restriction fragments

Loading counts from existing count matrices

3.7

It is possible to use counts from existing count matrices, by using coercion methods available
to ContactMatrix objects from the InteractionSet package [15]. Assume that there are two
ContactMatrix objects (cml and cm2) spanning the same region of the binned interaction
space. The mergeCMs function converts these two objects into a single InteractionSet object
for use in the diffHic analysis pipeline. Only bin pairs with a count sum greater than 10 are
retained, analogous to the output obtained with a squareCounts call with filter=10.

data.com <- mergeCMs(cml, cm2, filter=10)

This procedure facilitates input from other Hi-C data processing pipelines that return count
matrices rather than BAM files. It is easily extended to datasets involving more than two
samples by simply including additional ContactMatrix objects in the mergeCls call.

Summary

Counting into bin pairs is the most general method for quantifying interaction intensity. It
does not require any prior knowledge regarding the regions of interest. The bin size can be
easily adjusted to obtain the desired spatial resolution. It is also easier/safer to compare
between bin pairs (e.g., during filtering) when each bin is roughly of the same size. Thus,
bin-based counting will be the method of choice for the rest of this guide.

For simplicity, all counting steps will be performed here with the default settings, i.e., no
values for restrict, discard or cap. However, users are encouraged to use non-default
values if it can improve the outcome of their analyses. Non-default values should be recorded
in a single pairParam object for consistent use across all functions in the diffHic pipeline.
This ensures that the same read pairs will always be extracted from each index file.
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Chapter 4

Filtering out uninteresting
interactions

Here, we'll need the data object that was loaded in the previous chapter. We'll also need
bin.size and mm.param, as well as the file names in input.

Overview

411

Computing the average abundance in a NB model

Filtering is often performed to remove uninteresting features in analyses of high-throughput
experiments. This reduces the severity of the multiplicity correction and increases power
among the remaining tests. The filter statistic should be independent of the p-value under
the null hypothesis, but correlated to the p-value under the alternative [18]. The aim is to
enrich for false nulls without affecting type | error for the true nulls.

Assume that the counts for each bin pair are sampled from the negative binomial (NB) dis-
tribution. In this model, the overall NB mean across all libraries is (probably) an independent
filter statistic. The log-mean-per-million is known as the average abundance and can be
computed with the aveLogCPM function in edgeR [19].

library(edgeR)
ave.ab <- avelogCPM(asDGEList(data))
hist(ave.ab, xlab="Average abundance", col="grey80", main="")
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Average abundance

Any bin pair with an average abundance less than a specified threshold value will be discarded.
At the very least, the threshold should be chosen to filter out bin pairs with very low absolute
counts. This is because these bin pairs will never have sufficient evidence to reject the null
hypothesis. The discreteness of low counts will also reduce the accuracy of approximations
that are used in normalization and statistical modelling. The example below identifies those
bin pairs where the overall NB mean across all samples is not less than 5.

count.keep <- ave.ab >= avelLogCPM(5, lib.size=mean(data$totals))
summary(count.keep)

## Mode  FALSE TRUE
## logical 2433389 885711

The count.keep vector is then used to subset the InteractionSet object. The resulting dummy
object will contain only the interesting bin pairs for downstream analysis. The same procedure
can be used for any logical or integer vector that specifies the bin pairs to be retained.

dummy <- data[count.keep,]

This count-based approach is fairly objective yet is still effective, i.e., it removes a large num-
ber of bin pairs that are likely to be uninteresting. However, it will be less useful with greater
sequencing depth where all bin pairs will have higher counts. More sophisticated strategies
can be implemented where the choice of threshold is motivated by some understanding of
the Hi-C protocol. These strategies will be described in the rest of this chapter.

Directly removing low-abundance interactions

4.2.1

Computing the threshold from inter-chromosomal counts

The simplest definition of an “uninteresting” interaction is that resulting from non-specific
ligation. These are represented by low-abundance bin pairs where no underlying contact is
present to drive ligation between the corresponding bins. Any changes in the counts for these
bin pairs are uninteresting and are ignored. In particular, the filter threshold can be defined
by mandating some minimum fold change above the level of non-specific ligation.
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The magnitude of non-specific ligation is empirically estimated by assuming that most inter-
chromosomal contacts are not genuine. This is reasonable given that most chromosomes are
arranged in self-interacting territories [20]. The median abundance across inter-chromosomal
bin pairs is used as an estimate of the non-specific ligation rate. Here, filtering is performed to
retain only those bin pairs with abundances that are at least 5-fold higher than this estimate.
This aims to remove the majority of uninteresting bin pairs.

direct <- filterDirect(data)
direct$threshold

## [1] -3.845944

direct.keep <- direct$abundances > log2(5) + direct$threshold
summary(direct.keep)

## Mode  FALSE TRUE
## logical 3159187 159913

The direct.keep vector can then be used to filter data, as shown previously. This approach
is named here as “direct” filtering, as the average abundance for each bin pair is directly
compared against a fixed threshold value. In practice, the direct filter can be combined with
count.keep to ensure that the retained bin pairs have large absolute counts.

direct.keep2 <- direct.keep & count.keep

Computing the threshold from larger bin pairs

The procedure above assumes that no additional filtering has been performed during count
loading with squareCounts, i.e., filter is set to unity. Any pre-filtering that removes low-
abundance bin pairs will inflate the median and lead to overestimation of the filter threshold.
However, it may not be practical to load counts without pre-filtering. For example, at small
bin sizes, too many non-empty bin pairs may be present to fit into memory. Counts that are
too small will also yield imprecise estimates of the background ligation rate.

To overcome this, counts are loaded for a larger bin size without pre-filtering. This reduces
memory usage as the interaction space is partitioned into fewer bin pairs. The filter threshold
is estimated from the inter-chromosomal interactions as previously described, exploiting the
presence of large counts for large bin sizes to achieve precise estimates. The estimated
threshold for the larger bin pairs is then converted into a corresponding threshold for the
original (smaller) bin pairs, after adjusting for the differences in bin sizes.

To illustrate, imagine that a bin size of 100 kbp is of interest. We load the counts for the
smaller bin pairs, using a reasonably large filter to avoid excessive memory consumption.

new.bin.size <- 1le5
smaller.data <- squareCounts(input, mm.param, width=new.bin.size, filter=20)

Direct filtering of these smaller bin pairs is performed using filterDirect, using the larger
(1 Mbp) bin pairs to estimate the filter threshold. This is done by passing the unfiltered
counts for the larger bin pairs in data as the reference parameter. The returned statistics
can then be used to directly filter the smaller bin pairs. Here, a minimum 5-fold change over
the threshold is required for the retention of each 100 Mbp bin pair.
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direct <- filterDirect(smaller.data, reference=data)
direct$threshold

## [1] -5.087542

small.keep <- direct$abundances > direct$threshold + log2(5)
summary(small.keep)

## Mode  FALSE TRUE
## logical 426056 634789

Filtering as a function of interaction distance

4.3.1

Computing the threshold directly from the bin pair counts

A more complex filter involves adjusting the threshold according to the distance between
the bins in each bin pair. In typical Hi-C datasets, larger counts are observed at lower
interaction distances. This is probably driven by non-specific compaction of chromatin into
a 3D “globule” conformation. If such compaction is uninteresting, a concomitantly higher
threshold is necessary to offset the increase in counts for these local interactions [21].

In the trended strategy, a trend is fitted to the abundances for all intra-chromosomal bin pairs
using the log-distance as the covariate. The bin size is added to the distance as a prior, to
avoid undefined values upon log-transformation when distances are zero. The fitted value is
then used as the threshold for each bin pair. For inter-chromosomal bin pairs, the threshold
is set to that from the direct filtering approach, for completeness.

trended <- filterTrended(data)

The effect of this strategy can be visualized by plotting the interaction distance against the
normalized abundance. A power-law relationship between distance and abundance is usually
observed in Hi-C data [3]. The average abundance (and thus, the filter threshold) decreases
as the distance between the interacting loci increases.

smoothScatter(trended$log.distance, trended$abundances,
xlab="Log-Distance", ylab="Normalized abundance")

0 <- order(trended$log.distance)

lines(trended$log.distance[o], trended$threshold[o], col="red", lwd=2)
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The assumption here is that the majority of interactions are generated by non-specific pack-
aging of the linear genome. Each bin pair is only retained if its abundance is greater than
the corresponding fitted value at that distance, i.e., above that expected from compaction.
This favors selection of longer-range interactions, compared to the direct filter.

trend.keep <- trended$abundances > trended$threshold
summary (trend.keep)

#it Mode  FALSE TRUE
## logical 1445284 1873816

Of course, the threshold can also be defined at some minimum fold change above the fitted
value. This effectively increases the stringency of the filter. The example below retains bin
pairs with abundances that are two-fold higher than the expected compaction intensity.

trend.keep2 <- trended$abundances > trended$threshold + log2(2)
summary (trend.keep2)

## Mode  FALSE TRUE
## logical 3081407 237693

The trended filter can also be combined with count.keep to ensure that the absolute counts
are large. This is particularly important at large distances, where the drop in the threshold
may lead to the inappropriate retention of very low abundance bins.

trend.keep3 <- trend.keep & count.keep

The distance between bins can also be obtained directly with the pairdist function. Dis-
tances for inter-chromosomal bin pairs are marked as NA. These tend to dominate the output
as they constitute most of the interaction space. Of course, the majority of these bin pairs
will have low counts due to the sparseness of the data.
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4.3.2 Using larger bin pairs to save memory

4.4

The procedure above assumes that no pre-filtering was performed on the counts for small
bin pairs. In situations with limited memory, the counts for larger bin pairs can again be
used to define the thresholds. The trend is fitted to the abundances and distances of the
larger bin pairs, and interpolation (or extrapolation) is performed to obtain fitted values at
the distances of the smaller bin pairs. The interpolated trend can then be applied to filter
the smaller bin pairs based on their abundances. This entire process is done automatically
within filterTrended when a reference argument is supplied, as shown below.

trended <- filterTrended(smaller.data, reference=data)
summary (trended$abundances > trended$threshold)

## Mode  FALSE TRUE
## logical 625765 435080

Another advantage of this approach is that threshold estimation is more precise with larger
counts. Thus, even if there is enough memory for loading smaller bin pairs with filter=1,
larger bin sizes may still be preferred for computing the filter threshold. Otherwise, median
calculation or trend fitting will be confounded by discreteness at low counts.

Peak-calling in the interaction space

4.4.1

Defining enrichment values for each bin pair

Peaks in the interaction space are bin pairs that have substantially more reads than their
neighbors. The enrichedPairs function counts the number of read pairs in the “neighbor-
hood" of each bin pair. For a bin pair x, the function considers several neighborhood regions
including bin pairs above or below z; in pairs to the left and right of x; bin pairs in a box
centered at x; and for intra-chromosomal bin pairs, the quadrant closest to the diagonal [22].
The size of each neighborhood is determined by flank, defined in terms of bins. In this case,
each bin is around 1 Mbp so the flank width has an actual size of ~5 Mbp.

flank.width <- 5
en.data <- enrichedPairs(data, flank=flank.width)
en.data

## class: InteractionSet

## dim: 3319100 4

## metadata(2): param width

## assays(5): counts quadrant vertical horizontal surrounding

## rownames: NULL

## rowData names(4): N.quadrant N.vertical N.horizontal N.surrounding
## colnames: NULL

## colData names(1l): totals

## type: ReverseStrictGInteractions

## regions: 2739

The filterPeaks function uses the neighborhood counts to compute an enrichment value
for each bin pair. The average abundance across libraries for each neighborhood region
is computed, and the region with the largest abundance is chosen. The enrichment value
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is defined as the difference between the abundance of the bin pair and that of its chosen
neighborhood region (adjusted for the number of bin pairs in the latter). Bin pairs with
high enrichment values are putative peaks that should be retained. This extends the concept
of peak calling on the linear genome (e.g., in ChlP-seq) to the 2-dimensional interaction
space [22]. Neighborhood regions are defined to capture high-intensity structural features
like looping domains, TADs or banding patterns. This ensures that the structural features
themselves do not drive high enrichment values. Rather, to be called a peak, a bin pair in a
structural feature must be enriched relative to other bin pairs in the same feature.

enrichments <- filterPeaks(en.data, get.enrich=TRUE)
summary(enrichments)

H#i# Min. 1st Qu. Median Mean 3rd Qu. Max.
## -11.57616 -0.46568 -0.17210 Inf 0.08292 Inf

In this example, an enrichment value above 0.5 is required for retention. This is a mod-
est threshold that errs on the side of caution, as weak peaks may still be DlIs and should
be retained for testing. In practice, filtering of enrichment values should be combined with
filtering on absolute abundances. This eliminates low-abundance bin pairs with high enrich-
ment values, e.g., when the neighborhood is empty. Near-diagonal elements should also be
removed, as these tend to have high enrichment scores without actually being peaks. All of
these steps can be conveniently applied through the filterPeaks wrapper function.

peak.keep <- filterPeaks(data, enrichments, min.enrich=0.5,
min.count=5, min.diag=2L)
sum(peak.keep)

## [1] 88356

Examining some peak-calling diagnostics

This filtering strategy can be evaluated by examining the interaction space around each
putative peak (see Chapter 7.5). Briefly, the color intensity of each “pixel” is proportional to
the number of read pairs between the corresponding loci on each axis. Red boxes mark the
bin pairs retained by filtering, where each side represents a bin. In both examples, the bin
pairs correspond nicely to punctate high-intensity contacts in the interaction space.
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Another diagnostic is based on the sparsity of putative peaks. Bin pairs nested within larger
“parent” bin pairs are identified using the boxPairs function. Most of these parents should
contain low numbers of nested bin pairs. This is because each peak, by definition, should be
isolated in its neighborhood. The example below considers parent bin pairs of size equal to
the neighborhood used to compute the enrichment values, and calculates the percentage of
parents that contain a given number (from 1 to 10, or higher) of nested bin pairs.

neighborhood <- (2xflank.width + 1) * metadata(data)$width
boxed <- boxPairs(data[peak.keep], reference=neighborhood)
out <- tabulate(tabulate(boxed$indices[[1]]))

out <- c(out[1:10], sum(out[1ll:length(out)])) # sum all >10
setNames (round(out/sum(out)*100, 1), c(1:10, ">10"))

## 1 2 3 4 5 6 7 8 9 10 >10
## 22.3 22.3 18.2 13.0 8.8 5.6 3.5 2.3 1.6 0.9 1.5

Most parents should contain few bin pairs (< 10, as a rule of thumb), as shown above. In the
second example below, a larger proportion of parents with many nested bin pairs is observed.
This suggests that more aggressive filtering on the enrichment score is required.

peak.keep2 <- filterPeaks(data, enrichments, min.enrich=0,
min.count=5, min.diag=2L)

boxed <- boxPairs(data[peak.keep2], reference=neighborhood)

out <- tabulate(tabulate(boxed$indices[[1]]))

out <- c(out[1:10], sum(out[1ll:length(out)])) # sum all >10

setNames (round(out/sum(out)*100, 1), c(1:10, ">10"))

## 1 2 3 4 5 6 7 8 9 10 >10
## 5.4 4.3 4.0 3.7 3.7 3.4 3.1 2.9 2.8 2.7 64.0
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4.5

Obviously, peak calling assumes that changes in intensity of broad interactions are not in-
teresting. This may not be appropriate for every study. Indeed, the definition of “broad”
depends on the bin size, whereby a peak called at large bin sizes may be discarded at smaller
sizes. Users should try out the other, more general filters before proceeding to peak calling,
to check that potentially interesting differences are not discarded by the latter.

Efficient peak calling at high resolution

The enrichedPairs function requires that all bin pairs are loaded into memory, i.e., with fil
ter=1 during squareCounts. This may not be feasible for high resolution analyses with small
bin sizes, where there is a large number of bin pairs with low counts. In such cases, it may be
more practical to use the neighborCounts function. This re-counts the read pairs for each bin
pair, storing only a limited portion of the interaction space to compute the neighbourhood
counts. The need to load all non-empty bin pairs is avoided. Only bin pairs with count sums
greater than or equal to filter are returned, along with neighborhood counts that can be
used in filterPeaks. This reduces memory usage at the cost of some speed.

en.data <- neighborCounts(input, param, width=1e5, filter=20, flank=5)
en.data

## class: InteractionSet

## dim: 1060845 4

## metadata(2): param width

## assays(5): counts quadrant vertical horizontal surrounding

## rownames: NULL

## rowData names(4): N.quadrant N.vertical N.horizontal N.surrounding
## colnames: NULL

## colData names(1l): totals

## type: ReverseStrictGInteractions

## regions: 26729

enrichments <- filterPeaks(en.data, get.enrich=TRUE)
summary (enrichments)

## Min. 1st Qu. Median Mean 3rd Qu. Max .
## -5.98142 -1.20472 -0.36342 Inf 0.08444 Inf

Filtering for pre-specified regions

Filtering for pairs of arbitrary regions is complicated by the potential irregularity of the regions.
In particular, there is no guarantee that the supplied regions will cover the entirety of the
interaction space. Filter thresholds may not be estimated accurately if the covered area is not
representative of the rest of the space. At worst, genuine interactions between all specified
regions would preclude direct or trended filtering, which assume that most interactions are
uninteresting. That said, threshold estimation from a subset of the interaction space may
actually be desirable in some cases, e.g., using only the captured regions to compute a relevant
estimate of the non-specific ligation rate in a Capture-C experiment.

Another consideration is that different regions will have different widths. The resulting areas
used for read pair counting will probably be different between region pairs, such that some
will have systematically higher counts than others. Whether or not this is a problem depends
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4.6

on the user's perspective. The position of this guide is that it would be inappropriate to
penalize larger areas for having larger counts. As long as there are sufficient counts for an
analysis, the size of the area involved should be irrelevant. Thus, use of avelLogCPM alone is
recommended for calculation of the average abundance when filtering region pairs.

summary (aveLogCPM(asDGEList(redata)))

## Min. 1st Qu. Median Mean 3rd Qu. Max .
## -4.942 -4.939 -4.936 -4.753 -4.786 13.310

Filtering out diagonal elements

4.7

Incomplete removal of artifacts (e.g., dangling ends, self-circles) will generally manifest as
counts for diagonal bin pairs, i.e., pairs of the same bin. If artifact generation and/or removal
is not consistent between libraries, the behavior of the diagonal elements will differ markedly
from the other bin pairs. This can be diagnosed using MA plots between libraries, where the
diagonal elements show up as a distinct mass that is unconnected to the other points. As
such, they cannot be smoothly normalized and should be removed prior to further analysis or
analyzed separately. This is done by generating ndiag. keep for filtering, as shown below.

ndiag.keep <- filterDiag(data)
summary(ndiag.keep)

## Mode  FALSE TRUE
## logical 2614 3316486

Removal of diagonal elements is also motivated by the difficulty of intepreting interactions
within a bin. For small bin sizes, read pairs corresponding to internal interactions are in-
distinguishable from those driven by non-specific packaging of a locus. The latter is mostly
uninteresting and can be avoided by discarding the bin pairs on the diagonal. For large bin
sizes, internal interactions may be more interesting — these can be recovered by repeating
the analysis with smaller bins. Short-range interactions will then be represented by the off-
diagonal pairs, while artifacts will still be restricted to diagonal bin pairs, so long as the bins
are larger than ~25 kbp (see Section 2.4.2). Count sizes will also decrease but this should
not be a major problem as counts should be inherently larger at low interaction distances.

Summary of the filtering strategies

Each filtering strategy can be tuned by increasing or decreasing the minimum fold change
required for retention. This can be driven by the biological knowledge available to the user,
based on features that are biologically interesting. Even when such knowledge is unavailable,
the filters are still useful as they can guide the user towards a sensible interpretation of the
filter threshold. This would not be possible if the threshold value was chosen arbitrarily.

The choice of filtering method depends on the features that are most likely to be of interest
in each analysis. In general, less aggressive filtering should be performed if these features
are not well defined. Here, a tentative recommendation is provided for direct filtering as it is
reasonable to discard non-specific ligation events. On a practical level, the simplicity of the
direct approach is attractive and will be used throughout the rest of the guide.
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original <- data
data <- data[direct.keep2,]

The filtered results are assigned back into data. This is mostly for consistency, so that all
operations are performed on data in the rest of this guide. The original unfiltered data is
retained for later use in Section 5.3, but can otherwise be ignored. Direct filtering is also
performed for the smaller bin pairs, and the results stored in smaller.data.

smaller.data <- smaller.data[small.keep, ]
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Chapter 5

Normalization strategies for Hi-C
data

Here, we're using the data object that was filtered in the previous chapter. We'll also
need the original object, as well as margin.data from Section 3.4. Another human
dataset will be loaded here, so hs.frag from Chapter 2 will be required.

Normalizing with scaling methods

The simplest approach is to use scaling methods such as library size normalization. This
accounts for differences in library preparation efficiency and sequencing depth between sam-
ples. In edgeR, scaling is performed using the effective library size, defined as the product
of the library size and the normalization factor for each sample (see the edgeR user's guide).
Library size normalization is thus achieved by setting all normalization factors to unity.

data.lib <- data # Making a copy to avoid side-effects.
data.lib$norm.factors <- 1

Alternatively, TMM normalization [23] can be applied on the counts for the bin pairs. This
accounts for composition biases by assuming that most interactions do not change in intensity
between conditions. Here, the normalization factors differ from unity as the library size alone
is not sufficient to describe the bias in each sample.

data.tmm <- normOffsets(data, se.out=TRUE)
data.tmm$norm. factors

## [1] 0.8953459 0.8979718 1.1127467 1.1177640

In practice, scaling methods are usually too simplistic. More sophisticated approaches are
necessary to handle the complex biases observed in real Hi-C data.
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Removing trended biases between libraries

5.2.1

Using non-linear normalization

Trended biases may be observed in Hi-C data, caused by uncontrolled differences in sample
preparation in a complex protocol. Changes in cross-linking efficiency or ligation specificity
can lead to a systematic redistribution of read pairs throughout the interaction space. For
example, reduced specificity may result in more counts for weak non-specific interactions, and
fewer counts for strong genuine interactions. Such biases may manifest as an abundance-
dependent trend in a MA plot between libraries. This is especially true for a trend observed
between replicates, which must be technical in origin. The code below generates a MA plot
comparing one library from each group, which can be repeated for each pair of libraries.

ab <- avelLogCPM(asDGEList(data))

0 <- order(ab)

adj.counts <- cpm(asDGEList(data), log=TRUE)

mval <- adj.counts[,3]-adj.counts[,2]

smoothScatter(ab, mval, xlab="A", ylab="M", main="KO (1) vs. Flox (2)")
fit <- loessFit(x=ab, y=mval)

lines(ablo], fit$fitted[o], col="red")

KO (1) vs. Flox (2)

Trended biases are problematic as they can inflate the variance estimates or fold-changes
for some bin pairs. They must be eliminated with non-linear normalization prior to further
analysis. We use LOESS normalization with the norm0ffsets function from the csaw package
[24], adapted from existing non-linear methods to handle discrete count data.

data <- normOffsets(data, type="loess", se.out=TRUE)
This function computes an offset term for each bin pair in each library. When fitting a

generalized linear model (GLM) to the counts for a particular bin pair, a large offset for a
library is equivalent to downscaling the corresponding count relative to the counts of other
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libraries. The matrix of offsets has the same dimensions as the count matrix and is stored as
an element of the assays slot of the InteractionSet object. (Specifying se.out=FALSE returns
the offset matrix directly, instead of a modified InteractionSet containing the offsets.)

nb.off <- assay(data, "offset")
head(nb.off)

## [,1] [,2] [,3] [,4]
## [1,] 0.1359035 -0.1111409 0.0520197 -0.07678226
## [2,] 0.3827167 0.2058267 -0.2489948 -0.33954867
## [3,] 0.3021307 0.1516470 -0.1829528 -0.27082491
## [4,] 0.3536789 0.1864192 -0.2252649 -0.31483322
## [5,] 0.2285073 0.1019900 -0.1225945 -0.20790279
## [6,] 0.2932061 0.1455843 -0.1756060 -0.26318443

In most cases, the above code is sufficient for normalization. However, as previously men-
tioned, bin pairs near the diagonal may exhibit irregular behavior relative to the rest of the
interaction space. This manifests in the previous MA plot as a distinct mass of points at
high abundances, preventing smooth normalization of the trended bias. To overcome this,
the near-diagonal bin pairs can be normalized separately from the others.

neardiag <- filterDiag(data, by.dist=1.5e6)

nb.off <- matrix(0, nrow=nrow(data), ncol=ncol(data))

nb.off[neardiag] <- normOffsets(data[neardiag,], type="loess", se.out=FALSE)
nb.off[!neardiag] <- normOffsets(data[!neardiag,], type="loess", se.out=FALSE)
assay(data, "offset") <- nb.off # updating the offset matrix

We examine the MA plot after adjusting the log-counts with the offsets. Most of the trend
is removed, indicating that non-linear normalization was successful.

adj.counts <- log2(assay(data) + 0.5) - nb.off/log(2)

mval <- adj.counts[,3]-adj.counts[,2]

smoothScatter(ab, mval, xlab="A", ylab="M", main="KO (1) vs. Flox (2)")
fit <- loessFit(x=ab, y=mval)

lines(abfo], fit$fitted[o], col="red")

KO (1) vs. Flox (2)
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5.2.2 Requirements of non-linear normalization

5.3

Filtering on average abundance prior to normalization is strongly recommended. This removes
low counts and avoids problems with discreteness during trend fitting. Filtering also improves
the sensitivity of span-based fitting algorithms like LOESS at higher abundances. Otherwise,
the fitted trend will be dominated by the majority of low-abundance bin pairs.

Non-linear normalization also assumes that the majority of bin pairs at each abundance
do not represent differential interactions. Any systematic differences between libraries are
assumed to be technical in origin and are removed. If this assumption does not hold, genuine
differences may be lost upon normalization. For example, a global increase in the compaction
of the genome would manifest as an upward trend in the MA plot, as low-abundance distal
interactions are weakened in favor of high-abundance short-range interactions. In such cases,
use of library size normalization in Section 5.1 may be more appropriate.

lterative correction of interaction intensities

While this is not the intended purpose of the diffHic package, a method is also provided for
the removal of biases between genomic regions. The correctedContact function performs
iterative correction of the interaction space [6] with some modifications. Namely, if multiple
libraries are used to present, correction is performed using the overall NB mean for each
bin pair, rather than on the counts themselves. Winsorizing through winsor.high is also
performed to mitigate the impact of high-abundance bin pairs.

corrected <- correctedContact(original, winsor.high=0.02, ignore.low=0.02)
head(corrected$truth)

## [1] 0.45646178 0.43318032 0.14752258 0.15233067 0.26725581 0.03447091

The returned truth contains the “true” contact probability for each bin pair in data. This
is designed to account for differences in sequencibility, mappability, restriction site frequency,
etc. between bins. Comparisons can then be directly performed between the contact probabil-
ities of different bin pairs. Some NA values will be present due to the removal of low-abundance
bins that do not exhibit stable behavior during correction. The convergence of the correction
procedure can then be checked by examining the maximum fold change to the truth at each
iteration. This should approach unity, i.e., no further change.

corrected$max

## [1] 186.415803 8.018365 2.848421 1.703012 1.324769 1.170798
##  [7] 1.098717 1.060892 1.039169 1.025855 1.017337 1.011736
## [13] 1.007991 1.005461 1.003740 1.002565 1.001761 1.001209
## [19] 1.000831 1.000571 1.000393 1.000270 1.000185 1.000127
## [25] 1.000088 1.000060 1.000041 1.000028 1.000020 1.000013
## [31] 1.000009 1.000006 1.000004 1.000003 1.000002 1.000002
## [37] 1.000001 1.000001 1.000001 1.000000 1.000000 1.000000
## [43] 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
## [49] 1.000000 1.000000
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5.4

Note that original is used as the input to correctedContact. No filtering should be per-
formed prior to iterative correction. All non-empty bin pairs are needed as information is
collected across the entire interaction space. The contribution of many bin pairs with low
counts might end up being as substantial as that of a few bin pairs with large counts.

In addition, normalization from iterative correction can be fed naturally into the DI analysis
via the GLM machinery in edgeR. The log-transformed product of the estimated genomic
biases for both bins in each bin pair can be used as the offset for that bin pair. This is
computed separately for each library by setting average=FALSE, to correct for sample-specific
genomic biases. NA offsets will be obtained for some bin pairs, but these should not be too
problematic given that the affected bin pairs will generally have low counts (as at least one
interacting partner will be of low abundance) and be filtered out during the analysis proper.

corrected <- correctedContact(original, average=FALSE)

anchorl.bias <- corrected$bias[anchors(original, type="first", id=TRUE), ]
anchor2.bias <- corrected$bias[anchors(original, type="second", id=TRUE), ]
iter.off <- log(anchorl.bias * anchor2.bias)

Of course, iterative correction only removes biases between different bins. It is not guaranteed
to remove (trended) biases between libraries. For example, two replicates could have the same
genomic biases but a different distribution of read pairs in the interaction space, e.g., due
to differences in ligation specificity. The latter would result in a trended bias, but iterative
correction would have no effect due to the identical genomic biases. In short, normalization
within a library is a different problem from normalization between libraries.

Accounting for copy number variations

5.4.1

Eliminating CNVs with multi-dimensional smoothing

Copy number variations (CNVs) in the interacting regions will also affect the interaction
intensity. These CNV-driven differences in intensities are generally uninteresting and must be
removed to avoid spurious detection of Dls. Normalization of CNV-based biases is achieved
using the normalizeCNV function, which performs multi-dimensional smoothing across several
covariates with the /ocfit package [25]. It requires both bin pair and marginal counts, obtained
with the same width and param in calls to squareCounts and marginCounts.

cnv.offs <- normalizeCNV(data, margin.data)
head(cnv.offs)

## [,1] [,2] [,3] [.4]
## [1,] 0.3849393 -0.24953617 0.05145434 -0.1868574
## [2,] 0.3883340 0.15601877 -0.26384559 -0.2805072
## [3,] 0.2990999 0.13624039 -0.20061591 -0.2347244
## [4,] 0.3509612 0.17525088 -0.24302170 -0.2831904
## [5,] 0.2285712 0.08363148 -0.13948501 -0.1727176
## [6,] 0.2925324 0.13509101 -0.19407793 -0.2335454
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5.4.2

Three covariates are defined for each bin pair. For a pair of libraries, the ratio of marginal
counts for each bin can be used as a proxy for the relative CNV between libraries in that bin.
Each bin pair will be associated with two of these marginal log-ratios to use as covariates.
The third covariate for each bin pair is that of the average abundance across all libraries.
This will account for any abundance-dependent trends in the biases.

The response for each bin pair is defined as the log-ratio of interaction counts between a pair
of libraries. A locally weighted surface is fitted to the response against all three covariates for
all bin pairs. At any combination of covariate values, most bin pairs are assumed to represent
non-differential interactions. Any systematic differences between libraries are attributed to
CNV-driven (or trended) biases and are removed. Specifically, GLM offsets are returned and
can be supplied to the statistical analysis to eliminate the bias.

As with trended biases, filtering by average abundance is strongly recommended prior to
running normalizeCNV. This reduces the computational work required for multi-dimensional
smoothing. Discreteness and domination of the fit by low-abundance bin pairs is also avoided.

Visualizing the effect of CNV removal

To demonstrate, the RWPE1 dataset [5] is used here as it contains more CNVs. Interaction
counts are loaded for each bin pair, and marginal counts are loaded for each bin. Some
filtering is performed to eliminate low-abundance bin pairs, as previously described.

count.files <- c("merged_erg.h5", "merged_gfp.h5")

rick.data <- squareCounts(count.files, hs.param, width=1e6)
rick.marg <- marginCounts(count.files, hs.param, width=1e6)
rick.data <- rick.data[avelLogCPM(asDGEList(rick.data)) > 0,]

Our aim is to plot the log-ratio of the counts for each bin pair between the first two libraries,
as a function of the log-ratio of the marginal counts of the corresponding bins. The code
below computes the marginal log-ratios after matching the bins in rick.marg to the bin pairs
in rick.data with matchMargins. As two marginal log-ratios are present for each bin pair,
these are added together to simplify visualization.

m.adjc <- cpm(asDGEList(rick.marg), log=TRUE)

margin.lr <- m.adjc[,1] - m.adjc[,2]

matched <- matchMargins(rick.data, rick.marg)

margin.lr <- margin.lr[matched$anchorl] + margin.lr[matched$anchor2]

We generate plots before and after subtracting the offsets computed by normalizeCNV. Before
normalization, we observe that a decrease in copy number results in a decrease in interaction
intensity. This is expected given that fewer copies should result in fewer chances for interac-
tion. After normalization, the trend in the interaction log-ratios is removed. This indicates
that the CNV effect has been eliminated and can be ignored in downstream analyses. Note
that increasing maxk may be necessary to obtain accurate results in the internal call to /ocfit.

before <- cpm(asDGEList(rick.data), log=TRUE)

cnv.offs <- normalizeCNV(rick.data, rick.marg, maxk=1000)

after <- log2(assay(rick.data)+0.5) - cnv.offs/log(2)

par(mfrow=c(1,2), cex.axis=1.2, cex.lab=1.4)

smoothScatter(margin.lr, before[,1]-before[,2], ylim=c(-4, 4), main="Before",
xlab="Sum of marginal log-ratios", ylab="Interaction log-ratio")
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smoothScatter(margin.lr, after[,1]-after[,2], ylim=c(-4, 4), main="After",
xlab="Sum of marginal log-ratios", ylab="Interaction log-ratio")

Before After

Interaction log-ratio
0
1
Interaction log-ratio
0
|

Sum of marginal log-ratios Sum of marginal log-ratios

Using alternative copy number definitions

The method above uses the marginal counts as a proxy for genomic coverage [6]. Changes in
the marginal counts can be used as a proxy for change in the copy number between samples.
In most cases, this is an effective and sufficient strategy as exact quantification of the copy
number difference is not required. However, external information can also be used, based on
copy number arrays or genomic sequencing data for each sample. The (relative) copy number
for each bin/region in each sample can be stored in a RangedSummarizedExperiment and
passed to normalizeCNV as shown above. This may be more accurate as it avoids potential
problems from interaction-specific effects on the marginal counts.
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Chapter 6

Modelling biological variability

In this chapter, the data object is again required. The computed offsets in nb.off will
also be used from the last chapter. Methods from the edgeR package should already be
loaded into the workspace, but if they aren’t, then library(edgeR) will do the job.

Overview

The differential analysis in diffHic is based on the statistical framework in the edgeR package
[1]. This models the counts for each bin pair with NB distributions. The NB model is useful
as it can naturally accommodate low, discrete counts. It can also consider extra-Poisson
variability between biological replicates of the same condition. Here, biological replicates
refer to Hi-C libraries prepared from independent biological samples.

The magnitude of biological variability is empirically determined from these biological repli-
cates. In edgeR, variability is modelled by estimating the dispersion parameter of the NB
distribution. This is used during testing to reduce the significance of any detected differ-
ences when the counts are highly variable. Similarly, estimation of the quasi-likelihood (QL)
dispersion can be performed to model variability of the dispersions [26].

Dispersion estimation requires the fitting of a GLM to the counts for each bin pair [19]. To
do so, a design matrix must be specified to describe the experimental setup. For the neural
stem cell dataset, a simple one-way layout is sufficient. The code below specifies two groups
of two replicates, where each group corresponds to a genotype. The aim is to compute the
dispersion from the variability in counts within each group.

design <- model.matrix(~factor(c("flox", "flox", "ko", "ko")))
colnames(design) <- c("Intercept", "KO0")
design

##  Intercept KO

## 1 1 0
## 2 1 0
## 3 1 1
## 4 1 1

## attr(,"assign")
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## [1] 0 1

## attr(,"contrasts")

## attr(,"contrasts")$ factor(c("flox", "flox", "ko", "ko"))"
## [1] "contr.treatment"

Obviously, more complex designs can be used if necessary. This includes designs with blocking
factors for batch effects, pairing between samples or multiple groups.

The InteractionSet object also needs to be converted into a DGEList object for analysis
with edgeR. If the normalization factors or offsets are already stored in data, as previously
described, then they will be automatically extracted by the asDGEList function and stored
in the output DGEList. Alternatively, they can be passed explicitly to asDGEList. Note that
the offset matrix will take precedence over scaling factors in edgeR analyses.

y <- asDGEList(data)

Estimating the NB dispersion

Estimation of the NB dispersion is performed by maximizing the Cox-Reid adjusted profile
likelihood (APL) [19] for each bin pair. Of course, when replication is limited, there is not
enough information per bin pair to estimate the dispersion. This is overcome by computing
and sharing APLs across many bin pairs to stablize the estimates.

y <- estimateDisp(y, design)
y$common.dispersion

## [1] 0.007331746

A more sophisticated strategy is also used whereby an abundance-dependent trend is fitted
to the APLs. This should manifest as a smooth trend in the NB dispersion estimates with
respect to the average abundances of all bin pairs. The aim is to improve modelling accuracy
by empirically modelling any non-NB mean-variance relationships.

plotBCV(y)
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In most cases, the relationship should be monotonic decreasing as the counts become more
precise with increasing size. Minor deviations are probably due to the imperfect nature of
non-linear normalization. Major increases are indicative of batch effects. For example, a
cluster of outliers indicates that there may be copy number changes between replicates.

Estimating the QL dispersion

The QL dispersion for each bin pair is estimated from the deviance of the fitted GLM. This
may seem superfluous given that the NB dispersion already accounts for biological variability.
However, it is mathematically easier to model variability in the QL dispersions across bin
pairs, compared to variability in the NB dispersions. GLM fitting and estimation of the QL
dispersion for each bin pair are performed with the function.

fit <- glmQLFit(y, design, robust=TRUE)

Again, there is not enough information for each bin pair for precise estimation. Instead,
information is shared between bin pairs using an empirical Bayes (EB) approach. Per-bin-
pair QL estimates are shrunk towards a common trend across all bin pairs. This stabilizes
the QL dispersion estimates and improves precision for downstream applications.

plotQLDisp(fit)
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The extent of the EB shrinkage is determined by the variability of the dispersions. If the true
dispersions are highly variable, shrinkage to a common value would be inappropriate. On
the other hand, more shrinkage can be performed to increase precision (and thus detection
power) if the true dispersions are not variable. This is quantified as the prior degrees of
freedom, for which smaller values correspond to more variability and less shrinkage.

summary (fit$df.prior)

## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 19.12 19.82 19.82 19.82 19.82 19.82
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It is important to use the robust=TRUE argument in glmQLFit [27]. This protects the EB
shrinkage against large positive outliers corresponding to highly variable counts. It also
protects against large negative outliers. These are formed from near-zero deviances when
counts are identical, and are not uncommon when counts are low. Both types of outliers
inflate the apparent variability and decrease the estimated prior degrees of freedom.

Further information

More details on the statistical methods in edgeR can be found, unsurprisingly, in the edgeR
user's guide. Of course, diffHic is compatible with any statistical framework that accepts a
count matrix and a matrix of log-link GLM offsets. Advanced users may wish to use methods
from other packages. This author prefers edgeR as it works quite well for routine analyses of
Hi-C data. He also has a chance of being cited when edgeR is involved [28].
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Chapter 7

Testing for significant
interactions

This chapter brings everything together. We need the fit object from the last chapter,
along with the data object (as usual). We also require the smaller.data object from
Chapter 4. The bin.size and mm.param objects are required from Chapter 3.

Using the quasi-likelihood F-test

The glmQLFTest function performs a QL F-test for each bin pair to identify significant dif-
ferences. Users should ensure that the correct contrast is performed by explicitly specifying
the coef or contrast arguments. In this case, the coefficient of interest refers to the change
in the KO counts over the WT counts. The null hypothesis for each bin pair is that the
coefficient is equal to zero, i.e., there is no change between the WT and KO groups.

result <- glmQLFTest(fit, coef=2)
topTags (result)

## Coefficient: KO
## logFC logCPM F PValue FDR

## 93599 1.383842 4.168789 230.8401 4.357777e-13 3.961340e-08
## 84768 1.540142 3.157513 227.8982 4.954369e-13 3.961340e-08
## 84766 1.540032 2.405414 166.1560 1.114922e-11 5.434360e-07
## 2541 1.385410 2.977601 160.1627 1.590940e-11 5.434360e-07
## 58458 1.031685 4.673526 159.0746 1.699161le-11 5.434360e-07
## 84767 1.203459 3.313556 150.3301 2.926939e-11 7.800928e-07
## 93501 1.075536 3.844916 145.9064 3.895252e-11 8.898593e-07
## 84765 1.418004 2.290288 141.1296 5.349632e-11 1.047273e-06
## 59485 1.054100 4.004050 138.8398 6.249153e-11 1.047273e-06
## 2542 1.047167 4.093494 138.1557 6.549016e-11 1.047273e-06
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More savvy users might wonder why the likelihood ratio test (LRT) was not used here. Indeed,
the LRT is the more obvious test for any inferences involving GLMs. However, the QL F-test
is preferred as it accounts for the variability and uncertainty of the QL dispersion estimates
[26]. This means that it can maintain more accurate control of the type | error rate compared
to the LRT in the presence of limited replication.

It is also convenient to store the significance statistics in the rowData of the InteractionSet
object. This ensures that any operations like subsetting are applied on both the genomic
coordinates and statistics simultaneously, which simplifies data management.

rowData(data) <- cbind(rowData(data), result$table)

Multiplicity correction and the FDR

7.2.1

7.2.2

Overview

In a diffHic analysis, many bin pairs are tested for significant differences across the interaction
space. Correction for multiple testing is necessary to avoid excessive detection of spurious
differences. For genome-wide analyses, this correction is typically performed by controlling
the false discovery rate (FDR) with the Benjamini-Hochberg (BH) method [29]. This provides
a suitable comprimise between specificity and sensitivity. In contrast, traditional methods of
correction (e.g., Bonferroni) are often too conservative.

Interpretation of the differential interactions (Dls) is complicated by spatial dependencies
between adjacent bin pairs. If many adjacent bin pairs were separately reported as Dls, this
would complicate the interpretation of the results by introducing unnecessary redundancy. To
mitigate this effect, diffHic provides several methods for clustering bin pairs and controlling
the relevant FDR. Each of these methods is described below, along with its relative strengths
and weaknesses. For routine analyses, the approach based on clustering significiant bin pairs
is recommended — see Section 7.2.5 for details.

Direct application of the BH method

The simplest approach is to directly apply the BH method to the set of p-values for all
tested bin pairs. The FDR here refers to the proportion of detected bin pairs that are false
positives. Dls are defined as those bin pairs detected at a given FDR threshold, e.g., 5%.
Their coordinates are saved to file along with the bin pair-based test statistics. Resorting on
p-value is performed to prioritize strong Dls, thus simplifying inspection of the results.

adj.p <- p.adjust(result$table$PValue, method="BH")
sum(adj.p <= 0.05)

## [1] 4431

useful.cols <- as.vector(outer(c("segnames", "start", "end"), 1:2, paste0))
inter.frame <- as.data.frame(interactions(data))[,useful.cols]
results.r <- data.frame(inter.frame, result$table, FDR=adj.p)
0.r <- order(results.r$PValue)
write.table(results.r[o.r,], file="binpairs.tsv", sep="\t",
quote=FALSE, row.names=FALSE)
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This approach is best suited for analyses using large bins, i.e., greater than or equal to 1
Mbp. Here, adjacent bin pairs need not be considered redundant as they cover distinct areas
of the interaction space. Thus, no clustering is required to simplify interpretation.

Clustering to reduce redundancy in the results

Adjacent bin pairs can be aggregated into larger clusters to reduce redundancy in the results.
This is especially useful at smaller bin sizes where multiple bin pairs may overlap a single
underlying interaction. Each cluster of bin pairs will then represent the underlying interaction.
This is demonstrated below with the 100 kbp bin pairs. The clusterPairs function puts two
bin pairs in the same cluster if they are no more than tol bp apart in any dimension.

clustered.small <- clusterPairs(smaller.data, tol=1l, upper=1e6)

In practice, this approach requires aggressive filtering to avoid chaining effects. Otherwise,
clustering will be confounded in high-density areas of the interaction space, e.g., at short
distances or in TADs. This leads to the formation of very large clusters that are difficult to
interpret. Some protection is provided by specifying the maximum dimensions of each cluster
in upper. This will break up very large clusters, albeit in a somewhat arbitrary manner.

There is also no guarantee that the cluster will form a regular shape in the interaction space.
In clusterPairs, an approximate solution is used whereby the minimum bounding box for
each cluster is reported. This refers to the smallest rectangle in the interaction space that
contains all bin pairs in the cluster. The coordinates of this rectangle can be easily recorded,
whereas it is more difficult to store the detailed shape of the cluster. ldentification of the
top-ranking bin pair within each cluster may also be desirable (see Section 7.4).

length(clustered.small$interactions)
## [1] 33139
head(clustered.small$interactions)

## ReverseStrictGInteractions object with 6 interactions and © metadata columns:

## seqnamesl rangesl seqnames?2 ranges?2
## <Rle> <IRanges> <Rle> <IRanges>
##  [1] chrl [3004106, 3100835] --- chrl [ 1, 3004109]
##  [2] chrl [3004106, 4000741] --- chrl [3004106, 4000741]
##  [3] chrl [4000738, 5001375] --- chrl [3004106, 4000741]
##  [4] chrl [4000738, 5001375] --- chrl [4000738, 5001375]
##  [5] chrl [5001372, 5997485] --- chrl [3004106, 4000741]
##  [6] chrl [5001372, 5997485] --- chrl [4000738, 5001375]
#H -

##  regions: 29896 ranges and 0 metadata columns
## seqinfo: 66 sequences from an unspecified genome

The FDR across clusters is not the same as that across bin pairs. The former is more useful
as the results are usually interpreted in terms of clusters, where each cluster corresponds to
one interaction event. However, the FDR across bin pairs is easier to control by applying
the BH method directly to the bin pair p-values. Treating the FDR across bin pairs as that
across clusters is usually inappropriate and results in loss of FDR control [30]. The following
text will describe some strategies for controlling the cluster-level FDR.
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7.2.4 Independent clustering of adjacent bin pairs

The basic idea of independent clustering is that it is done independently of the differential
test statistics. This means that other metrics must be used to identify relevant bin pairs. If
there are pre-defined areas of interest in the interaction space (e.g., based on existing inter-
actions from earlier experiments or when studying interactions between annotated features),
identification of these bin pairs can be performed with methods like findOverlaps from the
InteractionSet package. All bin pairs overlapping a pre-defined area can then be defined as
a single cluster. Otherwise, filtering on the average abundance will implicitly restrict the
clustering to high-abundance bin pairs. This may be satisfactory when the interaction space
is sparse such that the clusters will be small enough to be interpretable. To demonstrate, a
quick-and-dirty differential analysis is performed using counts for the 100 kbp bin pairs.

smaller.data <- normOffsets(smaller.data, type="loess", se.out=TRUE)
y.small <- asDGEList(smaller.data)

y.small <- estimateDisp(y.small, design)

fit.small <- glmQLFit(y.small, design, robust=TRUE)

result.small <- glmQLFTest(fit.small)

A combined p-value is computed for each cluster from the p-values of its bin pairs, using
Simes' method [31] as implemented in the combineTests function from the csaw package.
Each combined p-value represents the evidence against the global null hypothesis, i.e., that
none of the constituent bin pairs are significant in the cluster. Cluster-level FDR control is
maintained by applying the BH method on the combined p-values for all clusters. Significant
clusters are then defined at a certain FDR threshold, e.g., 5%.

library(csaw)
tabcluster <- combineTests(clustered.small$indices[[1]], result.small$table)
head(tabcluster)

##  nWindows logFC.up logFC.down PValue FDR direction
## 1 1 0 1 3.251461e-02 1.388666e-01 down
## 2 55 0 0 2.636977e-02 1.190695e-01 up
## 3 99 1 10 2.925148e-01 5.475090e-01 mixed
## 4 55 0 6 8.591867e-10 7.521332e-08 down
## 5 99 26 4 1.598432e-01 3.888596e-01 up
## 6 100 1 14 8.480900e-05 1.027224e-03 down

sum(tabcluster$FDR <= 0.05)

## [1] 5629

The combineTests function also reports details about each cluster, including the total number
of bin pairs and the number changing in each direction. These results are saved to file below,
along with the coordinates of the minimum bounding box for each cluster.

inter.frame <- as.data.frame(clustered.small$interactions)[,useful.cols]

results.i <- data.frame(inter.frame, tabcluster)

0.1 <- order(results.i$PValue)

write.table(results.if[o.i,], file="independent.tsv", sep="\t",
quote=FALSE, row.names=FALSE)

The statistics can also stored in the metadata of the Glnteractions object returned by clus
terPairs. This ensures that the genomic coordinates and statistics are synchronised.
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mcols(clustered.small$interactions) <- chind(
mcols(clustered.small$interactions), tabcluster)

Clustering based on significant bin pairs

The interaction space is often dominated by high-abundance structural features like domains
and compartments. In such high-density areas, too many bin pairs may be retained after in-
dependent filtering on abundance. Clustering would then result in excessive chaining, yielding
very large clusters for which the coordinates provide no information on Dls.

To avoid this, it may be necessary to cluster using only those bin pairs that are significantly
different. These bin pairs are more sparsely distributed throughout the interaction space,
such that the coordinates of the resulting clusters can be easily interpreted. This is done
using the diClusters function, as shown below for the results with the 1 Mbp bin pairs.
Each cluster represents a DI containing only significant bin pairs. This is more useful than
reporting the coordinates for an entire domain if only a portion of the domain is changing.

clustered.sig <- diClusters(data, result$table, target=0.05,
cluster.args=Llist(tol=1))
length(clustered.sig$interactions)

## [1] 4430
head(clustered.sig$interactions)

## ReverseStrictGInteractions object with 6 interactions and © metadata columns:

## seqnamesl rangesl seqnames?2 ranges?2
## <Rle> <IRanges> <Rle> <IRanges>
##  [1] chrl [16000179, 11003377] --- chrl [8999921, 10000182]
#  [2] chrl [11003374, 11998773] --- chrl [7000257, 8000015]
##  [3] chrl [11003374, 11998773] --- chrl [8000012, 8999924]
##  [4] chrl [11003374, 11998773] --- chrl [8999921, 10000182]
##  [5] chrl [11998770, 12998158] --- chrl [5997482, 7000260]
##  [6] chrl [11998770, 12998158] --- chrl [7000257, 8000015]
#H -

## regions: 2195 ranges and 0 metadata columns
##  seqinfo: 66 sequences from an unspecified genome

The clusterPairs function is used internally to cluster significant bin pairs. No limits are
placed on the maximum dimensions as the sparsity of the selected bin pairs should avoid
chaining effects. Additional sophistication can be obtained by setting fc.col="1ogFC" above.
This will cluster bin pairs separately if they are changing in opposite directions.

The diClusters function will attempt to control the cluster-level FDR below target, i.e.,
5%. Specifically, the cluster-level FDR is estimated from the FDR threshold used to define
significant bin pairs (see the clusterFDR function in the csaw package). The bin pair-level
threshold is then adjusted until the estimate of the cluster-level FDR lies close to target.
The estimated cluster-level FDR is stored in the FDR field of the output. Formally speaking,
this procedure is not entirely rigorous and will yield biased estimates for small numbers of
clusters. However, this may be a necessary price to pay for interpretable results.
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clustered.sig$FDR
## [1] 0.04988713

The identities of the bin pairs in each cluster are also returned in the indices field of the
output list. These can be used to compute additional statistics for each cluster using the
combineTests and getBestTest functions in csaw. The latter will identify the bin pair with
the lowest p-value, which is useful for finding the strongest changes in large clusters. Users
are advised to ignore the p-value and FDR fields as these assume independent clustering.

tabcom <- combineTests(clustered.sig$indices[[1]], result$table)

head (tabcom)

## nWindows logFC.up logFC.down PValue FDR direction
## 1 1 0 0 8.232598e-04 9.948283e-04 up
## 2 1 0 0 1.338344e-03 1.351877e-03 up
## 3 1 0 0 8.615071e-04 1.020448e-03 up
## 4 1 0 0 2.545062e-04 4.645498e-04 up
## 5 1 0 0 7.417598e-05 2.046502e-04 up
## 6 1 1 0 3.303351e-06 2.440763e-05 up
tabbest <- getBestTest(clustered.sig$indices[[1]], result$table)

head (tabbest)

##  best logFC  logCPM F PValue FDR

## 1 36 0.2769275 6.177678 15.03136 8.232598e-04 9.948283e-04

## 2 42 0.3240413 3.959689 13.51290 1.338344e-03 1.351877e-03

## 3 43 0.3248683 4.333464 14.88638 8.615071e-04 1.020448e-03

## 4 44 0.3721554 4.340252 19.00829 2.545062e-04 4.645498e-04

## 5 50 0.4590971 3.342406 23.69257 7.417598e-05 2.046502e-04

## 6 51 0.5932889 3.582650 38.22647 3.303351e-06 2.440763e-05

Test statistics are saved to file for later examination, along with the coordinates of each
cluster’'s bounding box. The combined p-value from combineTests is stored but is only used
for sorting and should not be interpreted as a significance measure.

tabstats <- data.frame(tabcom[,1:4], logFC=tabbest$logFC, FDR=clustered.sig$FDR)
results.d <- as.data.frame(clustered.sig$interactions)[,useful.cols]
results.d <- chind(results.d, tabstats)
0.d <- order(results.d$PValue)
write.table(results.d[o.d,], file="DIclusters.tsv", sep="\t",
quote=FALSE, row.names=FALSE)

Again, the statistics can stored in the metadata of GInteractions object.

mcols(clustered.sig$interactions) <- cbind(
mcols(clustered.sig$interactions), tabstats)
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Merging results from different bin widths

7.3.1

7.3.2

Clustering with different bin widths

The optimal choice of bin size is not clear when there are both sharp and diffuse changes in
the interaction space. Smaller bins provide greater spatial resolution and can identify sharp
Dls that would be lost within larger bin pairs. Conversely, larger bin pairs have larger counts
and greater power to detect diffuse DIs. Comprehensive detection of Dls can be achieved
by combining analyses from several bin sizes. For example, clusterPairs accepts multiple
InteractionSet objects to cluster results of analyses with different sizes.

clustered.mult <- clusterPairs(larger=data, smaller=smaller.data,
tol=1, upper=1e6)
head(clustered.mult$indices$larger)

## [11 123 456
head(clustered.mult$indices$smaller)

## [1]1 122222

Alternatively, the boxPairs function can be used to identify all smaller bin pairs that are
nested within each of the larger “parent” bin pairs. This is a form of independent clustering
where all nested bin pairs are defined as a single cluster. Each set of nested bin pairs will only
be reported once, reducing redundancy and limiting the potential for misinterpretation of the
FDR. Note that the larger bin size must be an integer multiple of the smaller bin size(s).
This is necessary to simplify the interpretation of the nesting procedure.

boxed <- boxPairs(larger=data, smaller=smaller.data)
head (boxed$indices$larger)

## [1] 123456
head(boxed$indices$smaller)

## [1]1 122222

Computing consolidated cluster-level statistics

Regardless of whether clusterPairs or boxPairs is used, the statistics for each cluster can
be computed with the consolidatePairs function. This uses a weighted version of Simes'
method to ensure each analysis contributes equally to the significance of each cluster [32].
For each bin pair, the weight of its p-value is inversely proportional to the number of bin pairs
of the same size in the same cluster. This ensures that the combined p-value calculation for
each cluster is not dominated by smaller, more numerous bin pairs. The BH method is then
applied to the combined p-values to control the cluster-level FDR.

merged.results <- list(result$table, result.small$table)
cons <- consolidatePairs(boxed$indices, merged.results)
head(cons)

## nWindows logFC.up logFC.down PValue FDR direction
## 1 2 0 2 8.290943e-04 2.311825e-02 down
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## 2 56 0 0 1.043286e-02 1.301009e-01 up
## 3 100 1 10 3.732473e-01 7.056014e-01 mixed
## 4 56 0 6 1.718373e-09 6.708121e-07 down
## 5 100 26 4 3.196865e-01 6.632161e-01 up
## 6 101 1 14 1.696180e-04 6.788497e-03 down

sum(cons$FDR <= 0.05)
## [1] 7619

Here, the number of detections is greater than that found with large bins alone. This sug-
gests that the different bin sizes complement each other by detecting features at different
resolutions. Statistics for each of the larger bin pairs can then be stored to file. Reordering
is performed using the combined p-value to promote the strongest changes.

results.b <- data.frame(as.data.frame(boxed$interactions)[,useful.cols], cons)
0.b <- order(results.b$PValue)
write.table(results.bf[o.b,], file="boxed.tsv", sep="\t",

quote=FALSE, row.names=FALSE)

Clustering significant bin pairs of different widths

The diClusters function will also accept multiple InteractionSet objects in the form of a
list. It will simply pass the arguments to clusterPairs and control the cluster-level FDR as
described in Section 7.2.5. It will also use a frequency-weighted version of the FDR to ensure
an equal contribution from each bin size when defining significant bin pairs.

merged.data <- list(data, smaller.data)

clustered.mult <- diClusters(merged.data, merged.results, target=0.05,
cluster.args=Llist(tol=1))

length(clustered.mult$interactions)

## [1] 11091

The output is also directly compatible with consolidatePairs. Again, users should ignore
the p-values when clustering based on significant bin pairs.

cons.sig <- consolidatePairs(clustered.mult$indices, merged.results)

Reporting nested bin pairs

It is often convenient to identify the top-ranked bin pair nested within each of the larger
features, i.e., parent bin pairs or clusters. Here, the top-ranked bin pair is identified by
getBestTest as the one with the smallest individual p-value. This means that any high-
resolution changes nested within a large feature can be easily identified. However, keep in
mind that the FDR is computed with respect to the features, not the nested bin pairs.

inside <- getBestTest(boxed$indices$smaller, result.small$table)
best.interactions <- interactions(smaller.data)[inside$best, ]

54


http://bioconductor.org/packages/diffHic

diffHic User’s Guide

7.5

inter.frame <- as.data.frame(best.interactions)[,useful.cols[-c(1,4)]]

nested <- data.frame(inter.frame, inside[,c("logFC", "F")1)
head (nested)

## startl endl start2 end2 logFC F
## 1 3004106 3100835 1 3004109 -0.7240461 4.571166
## 2 3004106 3100835 3004106 3100835 0.3347865 11.298605
## 3 4801990 4899085 3801896 3901860 -1.2225469 7.671230
## 4 4693997 4801993 4500265 4599273 -0.8968364 45.455462
## 5 5599281 5695146 3004106 3100835 1.0039228 9.068671
## 6 5001372 5100850 4801990 4899085 -0.5602859 23.252441

expanded <- rep(NA, nrow(results.b)) # For parents with no nested elements.
expanded[as.integer(rownames(inside))] <- seg_len(nrow(inside))
results.b <- data.frame(results.b, best=nested[expanded,])
write.table(results.bf[o.b,], file="boxed best.tsv", sep="\t",

quote=FALSE, row.names=FALSE)

The above code only reports the top-ranked nested bin pair within each large feature. This
may not be sufficient when many internal changes are occurring. An alternative approach is
to store the entirety of the smaller.data in a R save file, along with cons and data. Any
interesting nested changes can then be interactively identified for a given feature.

Visualization with plaid plots

7.5.1

Using conventional plaid plots

Plaid plots are widely used to visualize the distribution of read pairs in the interaction space
[3]. In these plots, each axis is a chromosome segment. Each “pixel” represents an interaction
between the corresponding intervals on each axis. The color of the pixel is proportional to
the number of read pairs mapped between the interacting loci. We demonstrate below using
large bin pairs detected in the consolidated analysis with small nested bin pairs.

# Setting up the interaction space to be plotted.

chosen <- 0.b[1]

chosen.al <- anchors(boxed$interactions[chosen], type="first")
chosen.a2 <- anchors(boxed$interactions[chosen], type="second")
expandedl <- resize(chosen.al, fix="center", width=bin.sizex*5)
expanded2 <- resize(chosen.a2, fix="center", width=bin.sizex*5)
cap.wt <- 100

cap.ko <- cap.wtxdata$totals[3]/data$totals[1]

# Plotting the WT library.

par(mfrow=c(1,2))

plotPlaid(input[1], first=expandedl, second=expanded2, max.count=cap.wt,
width=5e4, param=mm.param, main="Flox")

rect(start(chosen.al), start(chosen.a2), end(chosen.al), end(chosen.a2))

# Plotting the KO library.
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plotPlaid(input[3], first=expandedl, second=expanded2, max.count=cap.ko,
width=5e4, param=mm.param, main="K0")
rect(start(chosen.al), start(chosen.a2), end(chosen.al), end(chosen.a2))
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Expansion of the plot boundaries ensures that the context of the interaction can be determined
by examining the features in the surrounding space. It is also possible to tune the size of the
pixels through a parameter that is, rather unsurprisingly, named width. In this case, the side
of each pixel represents a 50 kbp bin, rounded to the nearest restriction site. The actual bin
pair occurs at the center of the plot and is marked by a rectangle.

The max.count value controls the relative scale of the colors. Any pixel with a larger count
will be set at the maximum color intensity. This ensures that a few high-count regions do not
dominate the plot. A smaller max.count is necessary for smaller libraries so that the intensity
of the colors is comparable. The actual color can be set by specifying col.

In the example above, the differential interaction is driven mainly by the smaller bin pairs.
Changes in intensities are particularly prevalent at the top left and bottom right corners of
the rectangle. By comparison, the fold change for the entire bin pair is a little less than 30%.
This highlights the usefulness of including analyses with smaller bin sizes.

Another example is shown below for the top DI detected in the analysis using only large bins.
Because the counts are “averaged” across the area of the interaction space, the change must
be consistent throughout that area (and thus, more obvious) for detection to be successful.
Of course, any sharp changes within each of these large bin pairs will be overlooked as the
smaller bin pairs are not used.

# Setting up the interaction space to be plotted.

chosen <- o0.r[1]

chosen.al <- anchors(data[chosen], type="first")

chosen.a2 <- anchors(data[chosen], type="second")

expandedl <- resize(chosen.al, fix="center", width=bin.sizex*5)
expanded2 <- resize(chosen.a2, fix="center", width=bin.sizex*5)
cap.wt <- 30

cap.ko <- cap.wtxdata$totals[3]/datas$totals[1]

# Plotting the WT sample.
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par(mfrow=c(1,2))

plotPlaid(input[1], first=expandedl, second=expanded2, max.count=cap.wt,
width=5e4, param=mm.param, main="Flox")

rect(start(chosen.al), start(chosen.a2), end(chosen.al), end(chosen.a2))

# Plotting the KO sample.

plotPlaid(input[3], first=expandedl, second=expanded2, max.count=cap.ko,
width=5e4, param=mm.param, main="K0")

rect(start(chosen.al), start(chosen.a2), end(chosen.al), end(chosen.a2))
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7.5.2 Using rotated plaid plots

Alternatively, users may prefer to use rotPlaid to generate rotated plaid plots. These are
more space-efficient and are easier to stack onto other genomic tracks, e.g., for ChlP-seq
data. However, rotated plots are only effective for local interactions within a specified region.
Some more effort is also required in interpretation. In the example below, each colored box
represents an interaction between two bins. The coordinates of each interacting bin can be
identified by extending lines from opposite sides of the box until they intersect the z-axis.

# Setting up the interaction space to be plotted.

chosen <- 0.b[4]

example <- anchors(boxed$interactions[chosen], type="second")

end(example) <- end(anchors(boxed$interactions[chosen], type="first"))
best.mid.al <- (results.b$best.startl[chosen]+results.b$best.endl[chosen])/2
best.mid.a2 <- (results.b$best.start2[chosen]+results.b$best.end2[chosen])/2
best.mid <- (best.mid.al + best.mid.a2)/2

best.gap <- best.mid.al - best.mid.a2

# Plotting the WT sample.

par(mfrow=c(2,1))

rotPlaid(input[1], mm.param, region=example, width=2.5e4,
main="Flox", max.count=cap.wt)
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points(best.mid, best.gap, cex=7)

# Plotting the KO sample.

rotPlaid(input[3], mm.param, region=example, width=2.5e4,
main="K0", max.count=cap.ko)

points(best.mid, best.gap, cex=7)
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The circle marks the area of the interaction space that corresponds to the top-ranked nested
bin pair within the chosen larger bin pair. An increase in the interaction intensity is clearly
observed in the KO condition. This sharp change would not be observed with larger bin pairs,
where the final count would be dominated by other (non-differential) areas.
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7.5.3

Using differential plaid plots

In some cases, it may be more informative to display the magnitude of the changes across
the interaction space. This is achieved using the plotDI function, which assigns colors to
bin pairs according to the size and direction of the log-fold change. Visualization of the
changes is useful as it highlights the Dls, whereas conventional plaid plots are dominated by
high-abundance features like TADs. The latter features may be constant between libraries
and, thus, not of any particular interest. The log-fold changes also incorporate normalization
information, which is difficult to represent on a count-based plaid plot.

chosen <- o0.r[5]

chosen.al <- anchors(data[chosen], type="first")

chosen.a2 <- anchors(data[chosen], type="second")

expandedl <- resize(chosen.al, fix="center", width=5e7)

expanded2 <- resize(chosen.a2, fix="center", width=5e7)

colfun <- plotDI(data, result$table$logFC, expandedl, expanded2, diag=FALSE)
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The example above uses red and blue for positive and negative log-fold changes, respectively.
White and near-white regions correspond to those with log-fold change close to zero. Grey
regions mark the parts of the space where no bin pairs are present in data, possibly due to
filtering on abundance. As a result, this approach tends to be less useful when high-abundance
bin pairs are more sparsely distributed, e.g., for long-range interactions. A rotated DI plot
can be similarly constructed using the rotDI function.

Both rotDI and plotDI will invisibly return another function that maps log-fold changes to
colors. This can be used to generate a custom color bar, as shown below. A similar function
that maps counts to colors is also returned by plotPlaid and rotPlaid.

logfc <- -20:20/10

plot(0,0,type="n", axes=FALSE, xlab="", ylab="", xlim=range(logfc), ylim=c(0,1))
rect(logfc - 0.05, 0, logfc + 0.05, 1, col=colfun(logfc), border=NA)

axis(1l, cex.axis=1.2)

mtext ("logFC", side=1, line=3, cex=1.4)
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8.1

Chapter 8

Detecting differential domain
boundaries

This chapter, like the cheese, stands alone, so there's not much we require from other
chapters. We'll only need the input and mm.param objects from Chapter 3.

Overview

High intensity triangles are often observed on the diagonal of the intra-chromosomal interac-
tion space. These correspond to topologically associating domains (TADs) where loci within
each domain interact more frequently than those between domains. Such domains are pro-
posed to control genomic behavior by limiting the scope for interactions and restraining the
spread of chromatin marks [33]. At higher resolutions, small domains may also be formed
due to looping between specific genomic elements [22].

To identify these domains, Dixon et al. defined a “directionality index” for each genomic locus
[34]. This was computed by counting the number of read pairs mapped between the target
locus and an “upstream” interval with higher genomic coordinates; counting the number of
read pairs mapped between the target locus and a “downstream” interval with lower genomic
coordinates; and taking the normalized difference of the counts. A region at the start of a
domain will interact preferentially with upstream regions in the same domain, compared to
downstream regions in a different domain. Conversely, the region at the end of each domain
will interact preferentially with the downstream regions compared to upstream regions. This
results in a characteristic pattern of positive directionality indices at the start of the domain,
followed by negative values at the end. These patterns can be extracted with hidden Markov
models (HMMs) to explicitly identify the domain boundaries.

An alternative analysis is to identify loci where the size or direction of the directionality
statistic changes between conditions. This complements the standard DI analysis by focusing
on regions where the domain boundary changes in strength or orientation. Thus, changes in
domain definition between conditions can be quantified in a statistically rigorous manner.
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8.2

Loading up- and downstream counts

8.3

Up- and downstream counts for each 100 kbp genomic bin are loaded using the domainDi
rections function. This returns a RangedSummarizedExperiment object, in which each row
corresponds to a bin and each column corresponds to a library. The two matrices "up" and
“down" contain the counts to the up- and downstream regions, respectively.

finder <- domainDirections(input, mm.param, width=1e5, span=10)
finder

## class: RangedSummarizedExperiment
## dim: 26729 4

## metadata(3): param span width

## assays(2): up down

## rownames: NULL

## rowData names(1l): nfrags

## colnames: NULL

## colData names(0):

The two matrices are combined into a single matrix, and the total counts for each library are
also loaded. These counts are used to construct a DGEList for analysis with edgeR.

all.counts <- chind(assay(finder, "up"), assay(finder, "down"))
totals <- totalCounts(input, mm.param)
ydom <- DGEList(all.counts, lib.size=rep(totals, 2))

As an aside, the same counts can be used to compute the directionality index [34]. A
Gaussian HMM can then be fitted to explicitly define domain boundaries, using packages
like depmixS4. However, this analysis is largely outside the scope of diffHic and will not be
discussed here.

Constructing the design matrix

A design matrix is constructed with condition-specific coefficients for the log-fold change
between up- and downstream counts. It also contains sample-specific blocking factors to
avoid incorporating unnecessary variability in the dispersion estimate due to sample-specific
effects. Recall that each library contributes two sets of counts to the final matrix, so the
vectors containing condition and sample information must be doubled appropriately.

Condition <- factor(c("flox", "flox", "ko", "ko"))

Sample <- factor(seg_along(input))

Condition <- rep(Condition, 2)

Sample <- rep(Sample, 2)

Direction <- rep(c("Up", "Down"), each=length(input))
design <- model.matrix(~0 + Sample + Direction:Condition)

Some further manipulation is performed to clean up the design matrix prior to downstream
analysis. Redundant coefficients that cause linear dependencies are removed, and the re-
maining columns are given simpler names. For convenience, the condition-specific up/down
log-fold changes will be referred to as directionality statistics in the text below.
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design <- design[, !grepl("DirectionDown", colnames(design))]
colnames(design) <- sub("DirectionUp:", "", colnames(design))
design

##  Samplel Sample2 Sample3 Sample4 Conditionflox Conditionko

## 1 1 0 0 0 1 0
## 2 0 1 0 0 1 0
## 3 0 0 1 0 0 1
## 4 0 0 0 1 0 1
## 5 1 0 0 0 0 0
## 6 0 1 0 0 0 0
## 7 0 0 1 0 0 0
## 8 0 0 0 1 0 0

Pre-processing of the count data

8.5

Filtering is performed to remove low-abundance bins that do not contain enough counts to
reject the null hypothesis. In general, this should have little effect as most of the counts
should be very large. This is because domainDirections effectively counts read pairs for
highly local interactions (as the up- or downstream intervals are adjacent to each bin).

ab <- avelLogCPM(ydom)
keep <- ab > 0

ydom <- ydom[keep, ]
summary (keep)

## Mode  FALSE TRUE
## logical 1602 25127

The same filter is applied to the set of genomic bins to match with the entries of ydom.
cur.regions <- rowRanges(finder) [keep,]

Normalization is not performed here as it is not required. The model contains sample-specific
blocking factors, which largely negates the need for normalization between samples. Addition-
ally, the differential test for each bin will compare directionality values between conditions.

This means that any biases between the up- and downstream counts within each library or
condition (e.g., due to mappability of different regions) should cancel out.

Testing for significant differences with edgeR

The analysis proceeds directly to dispersion estimation and GLM fitting. The mean-dependent
trend in the NB dispersions is modelled using estimateDisp as previously described.

ydom <- estimateDisp(ydom, design)
plotBCV(ydom)
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A GLM is fitted to the counts for each bin using the specified model and the trended NB
dispersion, and QL dispersions are estimated for all bins using robust EB shrinkage.

fitdom <- glmQLFit(ydom, design, robust=TRUE)

plotQLDisp(fitdom)
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The aim of the differential analysis is to identify bins where the directionality statistics change
between conditions. The makeContrasts function is used to construct an appropriate contrast
vector, and the QL F-test is applied to detect significant differences.

con <- makeContrasts(Conditionko - Conditionflox, levels=design)
resdom <- glmQLFTest(fitdom, contrast=con)
topTags (resdom)

## Coefficient: -1xConditionflox 1xConditionko

## logFC logCPM F PValue FDR
## 2386  0.9988340 4.162087 154.24808 8.060085e-17 2.025258e-12
## 4595 -1.1083619 3.422453 131.62341 1.511300e-15 1.898722e-11
## 1408 1.0645073 3.912424 132.28480 3.538199e-15 2.963478e-11
## 14712 0.8743536 4.239697 115.14725 1.628958e-14 1.023271e-10
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## 5606 0.9730969
## 12073 0.8063455
## 1872 -0.7809661
## 16854 -0.8406668
## 757 -0.7928171
## 6323  0.8459912

.687062 111.38663
.229938 106.29182 6.470913e-14 2.709911e-10
.451015 105.05435 7.896109e-14 2.834365e-10

2.898853e-14 1
6 2
7 2
.108131 104.20904 9.054610e-14 2.843940e-10
3 8
3 9

.456789¢-10

.229549 96.66591 3.181203e-13 8.881567e-10
.929275 95.71750 3.742996e-13 9.100861e-10

The interpretation of these changes requires some care. If the directionality statistic was
positive in the WT cells, a positive 1ogFC would represent a strengthening of the domain
boundary. However, if it was negative, a positive LogFC would represent a weakening of the
domain boundary or a reversal of the domain orientation. To assist interpretation, users are
advised to report the condition-specific directionality statistics in the output.

output <- data.frame(as.data.frame(cur.regions)[,1:3],
KO=fitdom$coefficients[,"Conditionko"]/log(2),
Flox=fitdom$coefficients[,"Conditionflox"]/log(2),
resdom$table)

output$FDR <- p.adjust(resdom$table$PValue, method="BH")

0 <- order(output$PValue)

output <- outputfo,]

head(output[,1:5], 10) # not showing test statistics for brevity

## seqnames start end KO Flox
## 2386 chr2 48799546 48901284 -0.5048126 -1.5036466
## 4595 chr3 90499471 90598684 -0.8547325 0.2536294
## 1408 chrl 143599379 143696849 -0.2618755 -1.3263828
## 14712 chrl0 105698492 105799539 -0.8688601 -1.7432137
## 5606 chrd 34499260 34602534 -0.2329656 -1.2060626
## 12073 chr8 89700733 89799215 -0.5422071 -1.3485526
## 1872 chrl 190000997 190100303 0.8932561 1.6742222
## 16854 chrl2 73005689 73097744 0.7891691 1.6298359
## 757 chrl 78500961 78603837 0.5289130 1.3217301
## 6323 chr4 106298974 106398973 0.1908319 -0.6551592

Users can also examine whether the absolute values of the directionalities increase or decrease
between conditions. This provides an indication of whether the domains become more or less
well-defined. Here, domain definition seems to weaken in the KO condition.

is.sig <- output$FDR <= 0.05
summary(is.sig)

#i# Mode FALSE TRUE
## logical 19339 5788

change.type <- abs(output$K0) > abs(output$Flox)
summary(change.type[is.sig])

#i#t Mode FALSE TRUE
## logical 4174 1614

Finally, the region with the top change in directionality is visualized. Each rotated plaid plot
shows the surrounding interaction space, with the region itself highlighted in red.
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tophit <- cur.regions[o[1]]
expanded <- resize(tophit, fix="center", width=width(tophit)x*10)

par(mfrow=c(2,1))

rotPlaid(input[1], mm.param, region=expanded, width=2.5e4, main="Flox")
segments(start(tophit), 0, end(tophit), 0, col="red", lwd=10)
rotPlaid(input[3], mm.param, region=expanded, width=2.5e4, main="K0")
segments(start(tophit), 0, end(tophit), 0, col="red", lwd=10)
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9.1

Chapter 9

Epilogue

Congratulations on getting to the end. As a reward for your efforts, here is a poem:
| once had a friend named Bjork,
With him | would always talk,
But he was a pig,
So when he got big,
We killed him and ate his pork.

Data sources

9.2

All datasets are publicly available from the NCBI Gene Expression Omnibus (GEO). The
K562/GM06990 dataset [3] was obtained using the GEO accession number GSE18199. The
neural stem cell data set [4] was obtained using the accession GSE49017. Finally, the RWPE1
dataset [5] was obtained using the accession GSE37752. All libraries were processed as
described in Chapter 2. For some datasets, multiple technical replicates are available for each
library. These were merged together prior to read pair counting.

All libraries were downloaded in the Sequence Read Archive format (SRA). The SRA files
were aligned to the reference genome using the ‘sra2bam.sh’ script at https://github.com/
LTLA/diffHicUsersGuide. Some software packages are also required to run this script, such
as various tools from the Picard suite — read the source code in ‘sra2bam.sh’ for more details.
The resulting BAM files were then converted into index files using the ‘bam2hdf.R’ script.

Session information

sessionInfo()

## R version 3.4.0 Patched (2017-04-28 r72639)

## Platform: x86_64-pc-linux-gnu (64-bit)

## Running under: Cent0S release 6.4 (Final)

#i#t

## Matrix products: default

## BLAS: /wehisan/home/allstaff/a/alun/Software/R/R-3-4-branch_devel/lib/libRblas.so
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## LAPACK: /wehisan/home/allstaff/a/alun/Software/R/R-3-4-branch_devel/lib/1libRlapack.so

##

## locale:

## [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C

## [3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8
## [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
## [7] LC_PAPER=en_US.UTF-8 LC_NAME=C

## [9] LC_ADDRESS=C LC_TELEPHONE=C

## [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C

#i#

## attached base packages:

## [1] parallel stats4 stats graphics grDevices utils datasets
## [8] methods  base

#i#t

## other attached packages:

## [1] csaw_1.11.3

## [2] BiocParallel_1.11.9

## [3] TxDb.Mmusculus.UCSC.mm10.knownGene_3.4.0
## [4] GenomicFeatures_1.29.11

## [5] AnnotationDbi _1.39.3

## [6] BSgenome.Mmusculus.UCSC.mm10_1.4.0
## [7] BSgenome.Hsapiens.UCSC.hgl9 1.4.0
## [8] BSgenome_1.45.3

## [9] rtracklayer_1.37.3

## [10] Biostrings_2.45.4

## [11] XVector_0.17.1

## [12] edgeR_3.19.7

## [13] limma_3.33.13

## [14] diffHic_1.9.8

## [15] InteractionSet_1.5.7

## [16] SummarizedExperiment_1.7.10

## [17] DelayedArray_0.3.21

## [18] matrixStats_0.52.2

## [19] Biobase_2.37.2

## [20] GenomicRanges_1.29.15

## [21] GenomeInfoDb_1.13.5

## [22] IRanges_2.11.19

## [23] S4Vectors_0.15.12

## [24] BiocGenerics_0.23.3

##

## loaded via a namespace (and not attached):

## [1] progress_1.1.2 statmod_1.4.30
## [3] locfit 1.5-9.1 splines_3.4.0
## [5] lattice 0.20-35 rhdf5.2.21.6
## [7] htmltools_0.3.6 yaml_2.1.14

## [9] blob_1.1.0 XML_3.98-1.9
## [11] rlang_0.1.2 DBI_0.7

## [13] bit64_0.9-7 GenomeInfoDbData 0.99.1
## [15] stringr_1.2.0 zlibbioc_1.23.0
## [17] evaluate_0.10.1 memoise_1.1.0

## [19] knitr_1.17 biomaRt_2.33.4
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##
##
##
##
##
##
##
##
##
##
##
##
##

[21]
[23]
[25]
[27]
[29]
[31]
[33]
[35]
[37]
[39]
[41]
[43]
[45]

highr_0.6
KernSmooth_2.23-15
bit 1.1-12
BiocStyle_2.5.40
stringi_1.1.5
grid_3.4.0
tools_3.4.0
magrittr_1.5
RSQLite 2.0
pkgconfig 2.0.1
prettyunits_1.0.2
rmarkdown_1.6

Rcpp_0.12.13
backports_1.1.1
Rsamtools_1.29.1
digest 0.6.12
Rhtslib_1.9.2
rprojroot_1.2
bitops_1.0-6
RCurl_1.95-4.8
tibble_1.3.4
Matrix 1.2-11
assertthat_0.2.0
R6.2.2.2

GenomicAlignments_1.13.6 compiler_3.4.0
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