
Some Basic Analysis of ChIP-Seq Data

July 23, 2010

Our goal is to describe the use of Bioconductor software to perform some basic tasks in the analysis of
ChIP-Seq data. We will use several functions in the as-yet-unreleased chipseq package, which provides
convenient interfaces to other powerful packages such as ShortRead and IRanges. We will also use the
lattice and rtracklayer packages for visualization.

> library(chipseq)

> library(GenomicFeatures)

> library(lattice)

>

Example data

The cstest data set is included in the chipseq package to help demonstrate its capabilities. The dataset
contains data for three chromosomes from Solexa lanes, one from a CTCF mouse ChIP-Seq, and one from
a GFP mouse ChIP-Seq. The raw reads were aligned to the reference genome (mouse in this case) using
an external program (MAQ), and the results read in using the the readAligned function in the
ShortRead, in conjunction with a filter produced by the chipseqFilter function. This step filtered the
reads to remove duplicates, to restrict mappings to the canonical, autosomal chromosomes and ensure
that only a single read maps to a given position. A quality score cutoff was also applied. The remaining
data were reduced to a set of aligned intervals (including orientation). This saves a great deal of memory,
as the sequences, which are unnecessary, are discarded. Finally, we subset the data for chr10 to chr12,
simply for convenience in this vignette.
We outline this process with this unevaluated code block:

> qa_list <- lapply(sampleFiles, qa)

> report(do.call(rbind, qa_list))

> ## spend some time evaluating the QA report, then procede

> filter <- compose(chipseqFilter(), alignQualityFilter(15))

> cstest <- GenomicRangesList(lapply(sampleFiles, function(file) {

+ as(readAligned(file, filter), "GRanges")

+ }))

> cstest <- cstest[seqnames(cstest) %in% c("chr10", "chr11", "chr12")]

The above step has been performed in advance, and the output has been included as a dataset in this
package. We load it now:

> data(cstest)

> cstest

1

GRangesList object of length 2:

$ctcf

GRanges object with 450096 ranges and 0 metadata columns:

seqnames ranges strand

<Rle> <IRanges> <Rle>

[1] chr10 3012936-3012959 +

[2] chr10 3012941-3012964 +

[3] chr10 3012944-3012967 +

[4] chr10 3012955-3012978 +

[5] chr10 3012963-3012986 +

...

[450092] chr12 121239376-121239399 -

[450093] chr12 121245849-121245872 -

[450094] chr12 121245895-121245918 -

[450095] chr12 121246344-121246367 -

[450096] chr12 121253499-121253522 -

seqinfo: 35 sequences from an unspecified genome

$gfp

GRanges object with 295385 ranges and 0 metadata columns:

seqnames ranges strand

<Rle> <IRanges> <Rle>

[1] chr10 3002512-3002535 +

[2] chr10 3009093-3009116 +

[3] chr10 3020716-3020739 +

[4] chr10 3023026-3023049 +

[5] chr10 3024629-3024652 +

...

[295381] chr12 121213126-121213149 -

[295382] chr12 121216905-121216928 -

[295383] chr12 121216967-121216990 -

[295384] chr12 121251805-121251828 -

[295385] chr12 121253426-121253449 -

seqinfo: 35 sequences from an unspecified genome

cstest is an object of class GRangesList, and has a list-like structure, each component representing the
alignments from one lane, as a GRanges object of stranded intervals.

> cstest$ctcf

GRanges object with 450096 ranges and 0 metadata columns:

seqnames ranges strand

<Rle> <IRanges> <Rle>

[1] chr10 3012936-3012959 +

[2] chr10 3012941-3012964 +

[3] chr10 3012944-3012967 +

[4] chr10 3012955-3012978 +

2

[5] chr10 3012963-3012986 +

...

[450092] chr12 121239376-121239399 -

[450093] chr12 121245849-121245872 -

[450094] chr12 121245895-121245918 -

[450095] chr12 121246344-121246367 -

[450096] chr12 121253499-121253522 -

seqinfo: 35 sequences from an unspecified genome

Extending reads

Solexa gives us the first few (24 in this example) bases of each fragment it sequences, but the actual
fragment is longer. By design, the sites of interest (transcription factor binding sites) should be
somewhere in the fragment, but not necessarily in its initial part. Although the actual lengths of
fragments vary, extending the alignment of the short read by a fixed amount in the appropriate direction,
depending on whether the alignment was to the positive or negative strand, makes it more likely that we
cover the actual site of interest.
It is possible to estimate the fragment length, through a variety of methods. There are several
implemented by the estimate.mean.fraglen function. Generally, this only needs to be done for one
sample from each experimental protocol. Here, we use SSISR, the default method:

> fraglen <- estimate.mean.fraglen(cstest$ctcf, method="correlation")

> fraglen[!is.na(fraglen)]

chr10 chr11 chr12

340 340 340

Given the suggestion of 190 nucleotides, we extend all reads to be 200 bases long. This is done using the
resize function, which considers the strand to determine the direction of extension:

> ctcf.ext <- resize(cstest$ctcf, width = 200)

> ctcf.ext

GRanges object with 450096 ranges and 0 metadata columns:

seqnames ranges strand

<Rle> <IRanges> <Rle>

[1] chr10 3012936-3013135 +

[2] chr10 3012941-3013140 +

[3] chr10 3012944-3013143 +

[4] chr10 3012955-3013154 +

[5] chr10 3012963-3013162 +

...

[450092] chr12 121239200-121239399 -

[450093] chr12 121245673-121245872 -

[450094] chr12 121245719-121245918 -

[450095] chr12 121246168-121246367 -

[450096] chr12 121253323-121253522 -

seqinfo: 35 sequences from an unspecified genome

3

We now have intervals for the CTCF lane that represent the original fragments that were precipitated.

Coverage, islands, and depth

A useful summary of this information is the coverage, that is, how many times each base in the genome
was covered by one of these intervals.

> cov.ctcf <- coverage(ctcf.ext)

> cov.ctcf

RleList of length 35

$chr1

integer-Rle of length 197195432 with 1 run

Lengths: 197195432

Values : 0

$chr2

integer-Rle of length 181748087 with 1 run

Lengths: 181748087

Values : 0

$chr3

integer-Rle of length 159599783 with 1 run

Lengths: 159599783

Values : 0

$chr4

integer-Rle of length 155630120 with 1 run

Lengths: 155630120

Values : 0

$chr5

integer-Rle of length 152537259 with 1 run

Lengths: 152537259

Values : 0

...

<30 more elements>

For efficiency, the result is stored in a run-length encoded form.

4

The regions of interest are contiguous segments of non-zero coverage, also known as islands.

> islands <- slice(cov.ctcf, lower = 1)

> islands

RleViewsList object of length 35:

$chr1

Views on a 197195432-length Rle subject

views: NONE

$chr2

Views on a 181748087-length Rle subject

views: NONE

$chr3

Views on a 159599783-length Rle subject

views: NONE

...

<32 more elements>

For each island, we can compute the number of reads in the island, and the maximum coverage depth
within that island.

> viewSums(islands)

IntegerList of length 35

[["chr1"]] integer(0)

[["chr2"]] integer(0)

[["chr3"]] integer(0)

[["chr4"]] integer(0)

[["chr5"]] integer(0)

[["chr6"]] integer(0)

[["chr7"]] integer(0)

[["chr8"]] integer(0)

[["chr9"]] integer(0)

[["chr10"]] 2400 200 200 200 200 200 200 600 ... 200 200 400 200 200 200 200

...

<25 more elements>

> viewMaxs(islands)

IntegerList of length 35

[["chr1"]] integer(0)

[["chr2"]] integer(0)

[["chr3"]] integer(0)

[["chr4"]] integer(0)

5

[["chr5"]] integer(0)

[["chr6"]] integer(0)

[["chr7"]] integer(0)

[["chr8"]] integer(0)

[["chr9"]] integer(0)

[["chr10"]] 11 1 1 1 1 1 1 3 1 1 1 1 1 1 2 1 ... 1 2 1 1 1 1 3 1 1 1 2 1 1 1 1

...

<25 more elements>

> nread.tab <- table(viewSums(islands) / 200)

> depth.tab <- table(viewMaxs(islands))

> nread.tab[,1:10]

1 2 3 4 5 6 7 8 9 10

chr1 0 0 0 0 0 0 0 0 0 0

chr2 0 0 0 0 0 0 0 0 0 0

chr3 0 0 0 0 0 0 0 0 0 0

chr4 0 0 0 0 0 0 0 0 0 0

chr5 0 0 0 0 0 0 0 0 0 0

chr6 0 0 0 0 0 0 0 0 0 0

chr7 0 0 0 0 0 0 0 0 0 0

chr8 0 0 0 0 0 0 0 0 0 0

chr9 0 0 0 0 0 0 0 0 0 0

chr10 68101 13352 3019 924 418 246 191 123 133 100

chr11 71603 15993 4334 1410 619 338 245 199 180 151

chr12 59141 11279 2613 816 344 175 140 119 84 71

chr13 0 0 0 0 0 0 0 0 0 0

chr14 0 0 0 0 0 0 0 0 0 0

chr15 0 0 0 0 0 0 0 0 0 0

chr16 0 0 0 0 0 0 0 0 0 0

chr17 0 0 0 0 0 0 0 0 0 0

chr18 0 0 0 0 0 0 0 0 0 0

chr19 0 0 0 0 0 0 0 0 0 0

chrX 0 0 0 0 0 0 0 0 0 0

chrY 0 0 0 0 0 0 0 0 0 0

chrM 0 0 0 0 0 0 0 0 0 0

chr1_random 0 0 0 0 0 0 0 0 0 0

chr3_random 0 0 0 0 0 0 0 0 0 0

chr4_random 0 0 0 0 0 0 0 0 0 0

chr5_random 0 0 0 0 0 0 0 0 0 0

chr7_random 0 0 0 0 0 0 0 0 0 0

chr8_random 0 0 0 0 0 0 0 0 0 0

chr9_random 0 0 0 0 0 0 0 0 0 0

chr13_random 0 0 0 0 0 0 0 0 0 0

chr16_random 0 0 0 0 0 0 0 0 0 0

chr17_random 0 0 0 0 0 0 0 0 0 0

chrX_random 0 0 0 0 0 0 0 0 0 0

chrY_random 0 0 0 0 0 0 0 0 0 0

chrUn_random 0 0 0 0 0 0 0 0 0 0

6

> depth.tab[,1:10]

1 2 3 4 5 6 7 8 9 10

chr1 0 0 0 0 0 0 0 0 0 0

chr2 0 0 0 0 0 0 0 0 0 0

chr3 0 0 0 0 0 0 0 0 0 0

chr4 0 0 0 0 0 0 0 0 0 0

chr5 0 0 0 0 0 0 0 0 0 0

chr6 0 0 0 0 0 0 0 0 0 0

chr7 0 0 0 0 0 0 0 0 0 0

chr8 0 0 0 0 0 0 0 0 0 0

chr9 0 0 0 0 0 0 0 0 0 0

chr10 68149 14748 2386 547 256 180 150 129 120 101

chr11 71677 17945 3527 862 362 268 205 179 181 130

chr12 59181 12441 2078 482 191 131 131 108 95 77

chr13 0 0 0 0 0 0 0 0 0 0

chr14 0 0 0 0 0 0 0 0 0 0

chr15 0 0 0 0 0 0 0 0 0 0

chr16 0 0 0 0 0 0 0 0 0 0

chr17 0 0 0 0 0 0 0 0 0 0

chr18 0 0 0 0 0 0 0 0 0 0

chr19 0 0 0 0 0 0 0 0 0 0

chrX 0 0 0 0 0 0 0 0 0 0

chrY 0 0 0 0 0 0 0 0 0 0

chrM 0 0 0 0 0 0 0 0 0 0

chr1_random 0 0 0 0 0 0 0 0 0 0

chr3_random 0 0 0 0 0 0 0 0 0 0

chr4_random 0 0 0 0 0 0 0 0 0 0

chr5_random 0 0 0 0 0 0 0 0 0 0

chr7_random 0 0 0 0 0 0 0 0 0 0

chr8_random 0 0 0 0 0 0 0 0 0 0

chr9_random 0 0 0 0 0 0 0 0 0 0

chr13_random 0 0 0 0 0 0 0 0 0 0

chr16_random 0 0 0 0 0 0 0 0 0 0

chr17_random 0 0 0 0 0 0 0 0 0 0

chrX_random 0 0 0 0 0 0 0 0 0 0

chrY_random 0 0 0 0 0 0 0 0 0 0

chrUn_random 0 0 0 0 0 0 0 0 0 0

7

Processing multiple lanes

Although data from one lane is often a natural analytical unit, we typically want to apply any procedure
to all lanes. Here is a simple summary function that computes the frequency distribution of the number
of reads.

> islandReadSummary <- function(x)

+ {

+ g <- resize(x, 200)

+ s <- slice(coverage(g), lower = 1)

+ tab <- table(viewSums(s) / 200)

+ df <- DataFrame(tab)

+ colnames(df) <- c("chromosome", "nread", "count")

+ df$nread <- as.integer(df$nread)

+ df

+ }

Applying it to our test-case, we get

> head(islandReadSummary(cstest$ctcf))

DataFrame with 6 rows and 3 columns

chromosome nread count

<factor> <integer> <integer>

1 chr1 1 0

2 chr2 1 0

3 chr3 1 0

4 chr4 1 0

5 chr5 1 0

6 chr6 1 0

We can now use it to summarize the full dataset, flattening the returned DataFrameList with the stack

function.

> nread.islands <- DataFrameList(lapply(cstest, islandReadSummary))

> nread.islands <- stack(nread.islands, "sample")

> nread.islands

DataFrame with 4025 rows and 4 columns

sample chromosome nread count

<Rle> <factor> <integer> <integer>

1 ctcf chr1 1 0

2 ctcf chr2 1 0

3 ctcf chr3 1 0

4 ctcf chr4 1 0

5 ctcf chr5 1 0

...

4021 gfp chr16_random 34 0

4022 gfp chr17_random 34 0

4023 gfp chrX_random 34 0

4024 gfp chrY_random 34 0

4025 gfp chrUn_random 34 0

8

> xyplot(log(count) ~ nread | sample, as.data.frame(nread.islands),

+ subset = (chromosome == "chr10" & nread <= 40),

+ layout = c(1, 2), pch = 16, type = c("p", "g"))

nread

lo
g(

co
un

t)

0

2

4

6

8

10

0 10 20 30 40

ctcf

0

2

4

6

8

10

gfp

9

If reads were sampled randomly from the genome, then the null distribution number of reads per island
would have a geometric distribution; that is,

P (X = k) = pk−1(1 − p)

In other words, logP (X = k) is linear in k. Although our samples are not random, the islands with just
one or two reads may be representative of the null distribution.

> xyplot(log(count) ~ nread | sample, as.data.frame(nread.islands),

+ subset = (chromosome == "chr10" & nread <= 40),

+ layout = c(1, 2), pch = 16, type = c("p", "g"),

+ panel = function(x, y, ...) {

+ panel.lmline(x[1:2], y[1:2], col = "black")

+ panel.xyplot(x, y, ...)

+ })

nread

lo
g(

co
un

t)

0

2

4

6

8

10

0 10 20 30 40

ctcf

0

2

4

6

8

10

gfp

10

We can create a similar plot of the distribution of depths.

> islandDepthSummary <- function(x)

+ {

+ g <- resize(x, 200)

+ s <- slice(coverage(g), lower = 1)

+ tab <- table(viewMaxs(s) / 200)

+ df <- DataFrame(tab)

+ colnames(df) <- c("chromosome", "depth", "count")

+ df$depth <- as.integer(df$depth)

+ df

+ }

> depth.islands <- DataFrameList(lapply(cstest, islandDepthSummary))

> depth.islands <- stack(depth.islands, "sample")

> xyplot(log(count) ~ depth | sample, as.data.frame(depth.islands),

+ subset = (chromosome == "chr10" & depth <= 20),

+ layout = c(1, 2), pch = 16, type = c("p", "g"),

+ panel = function(x, y, ...) {

+ lambda <- 2 * exp(y[2]) / exp(y[1])

+ null.est <- function(xx) {

+ xx * log(lambda) - lambda - lgamma(xx + 1)

+ }

+ log.N.hat <- null.est(1) - y[1]

+ panel.lines(1:10, -log.N.hat + null.est(1:10), col = "black")

+ panel.xyplot(x, y, ...)

+ })

>

> ## depth.islands <- summarizeReads(cstest, summary.fun = islandDepthSummary)

>

11

depth

lo
g(

co
un

t)

0

2

4

6

8

10

5 10 15 20

ctcf

0

2

4

6

8

10

gfp

The above plot is very useful for detecting peaks, discussed in the next section. As a convenience, it can
be created for the coverage over all chromosomes for a single sample by calling the islandDepthPlot

function:

> islandDepthPlot(cov.ctcf)

12

Peaks

To obtain a set of putative binding sites, i.e., peaks, we need to find those regions that are significantly
above the noise level. Using the same Poisson-based approach for estimating the noise distribution as in
the plot above, the peakCutoff function returns a cutoff value for a specific FDR:

> peakCutoff(cov.ctcf, fdr = 0.0001)

[1] 6.959837

Considering the above calculation of 7 at an FDR of 0.0001, and looking at the above plot, we might
choose 8 as a conservative peak cutoff:

> peaks.ctcf <- slice(cov.ctcf, lower = 8)

> peaks.ctcf

RleViewsList object of length 35:

$chr1

Views on a 197195432-length Rle subject

views: NONE

$chr2

Views on a 181748087-length Rle subject

views: NONE

$chr3

Views on a 159599783-length Rle subject

views: NONE

...

<32 more elements>

To summarize the peaks for exploratory analysis, we call the peakSummary function:

> peaks <- peakSummary(peaks.ctcf)

The result is a GRanges object with two columns: the view maxs and the view sums. Beyond that, this
object is often useful as a scaffold for adding additional statistics.
It is meaningful to ask about the contribution of each strand to each peak, as the sequenced region of
pull-down fragments would be on opposite sides of a binding site depending on which strand it matched.
We can compute strand-specific coverage, and look at the individual coverages under the combined peaks
as follows:

> peak.depths <- viewMaxs(peaks.ctcf)

> cov.pos <- coverage(ctcf.ext[strand(ctcf.ext) == "+"])

> cov.neg <- coverage(ctcf.ext[strand(ctcf.ext) == "-"])

> peaks.pos <- Views(cov.pos, ranges(peaks.ctcf))

> peaks.neg <- Views(cov.neg, ranges(peaks.ctcf))

> wpeaks <- tail(order(peak.depths$chr10), 4)

> wpeaks

13

[1] 971 989 1079 922

>

Below, we plot the four highest peaks on chromosome 10.

14

> coverageplot(peaks.pos$chr10[wpeaks[1]], peaks.neg$chr10[wpeaks[1]])

Position

C
ov

er
ag

e

−20

0

20

79388100 79388200 79388300 79388400

> coverageplot(peaks.pos$chr10[wpeaks[2]], peaks.neg$chr10[wpeaks[2]])

Position

C
ov

er
ag

e

−20

0

20

79627800 79627900 79628000 79628100

15

> coverageplot(peaks.pos$chr10[wpeaks[3]], peaks.neg$chr10[wpeaks[3]])

Position

C
ov

er
ag

e

−20

0

20

40

80750500 80750600 80750700 80750800

> coverageplot(peaks.pos$chr10[wpeaks[4]], peaks.neg$chr10[wpeaks[4]])

Position

C
ov

er
ag

e

−20

0

20

40

77875700 77875800 77875900 77876000

16

Differential peaks

One common question is: which peaks are different in two samples? One simple strategy is the following:
combine the two peak sets, and compare the two samples by calculating summary statistics for the
combined peaks on top of each coverage vector.

> ## find peaks for GFP control

> cov.gfp <- coverage(resize(cstest$gfp, 200))

> peaks.gfp <- slice(cov.gfp, lower = 8)

> peakSummary <- diffPeakSummary(peaks.gfp, peaks.ctcf)

> xyplot(asinh(sums2) ~ asinh(sums1) | seqnames,

+ data = as.data.frame(peakSummary),

+ panel = function(x, y, ...) {

+ panel.xyplot(x, y, ...)

+ panel.abline(median(y - x), 1)

+ },

+ type = c("p", "g"), alpha = 0.5, aspect = "iso")

>

asinh(sums1)

as
in

h(
su

m
s2

)

4

6

8

10

0 2 4 6 8 10

chr10

0 2 4 6 8 10

chr11

0 2 4 6 8 10

chr12

We use a simple cutoff to flag peaks that are different.

> mcols(peakSummary) <-

+ within(mcols(peakSummary),

+ {

+ diffs <- asinh(sums2) - asinh(sums1)

+ resids <- (diffs - median(diffs)) / mad(diffs)

+ up <- resids > 2

+ down <- resids < -2

+ change <- ifelse(up, "up", ifelse(down, "down", "flat"))

+ })

17

Placing peaks in genomic context

Locations of individual peaks may be of interest. Alternatively, a global summary might look at
classifying the peaks of interest in the context of genomic features such as promoters, upstream regions,
etc. The GenomicFeatures package facilitates obtaining gene annotations from different data sources. We
could download the UCSC gene predictions for the mouse genome and generate a GRanges object with
the transcript regions (from the first to last exon, contiguous) using makeTxDbFromUCSC; here we use a
library containing a recent snapshot.

> library(TxDb.Mmusculus.UCSC.mm9.knownGene)

> gregions <- transcripts(TxDb.Mmusculus.UCSC.mm9.knownGene)

> gregions

GRanges object with 55419 ranges and 2 metadata columns:

seqnames ranges strand | tx_id tx_name

<Rle> <IRanges> <Rle> | <integer> <character>

[1] chr1 4797974-4832908 + | 1 uc007afg.1

[2] chr1 4797974-4836816 + | 2 uc007afh.1

[3] chr1 4847775-4887990 + | 3 uc007afi.2

[4] chr1 4847775-4887990 + | 4 uc011wht.1

[5] chr1 4848409-4887990 + | 5 uc011whu.1

...

[55415] chrUn_random 2204169-2216886 - | 55415 uc009sjw.2

[55416] chrUn_random 2674945-2678407 - | 55416 uc009skb.2

[55417] chrUn_random 2889607-2891056 - | 55417 uc009ske.1

[55418] chrUn_random 3830796-3837247 - | 55418 uc009skg.1

[55419] chrUn_random 4677114-4677187 - | 55419 uc009skh.1

seqinfo: 35 sequences (1 circular) from mm9 genome

We can now estimate the promoter for each transcript:

> promoters <- flank(gregions, 1000, both = TRUE)

And count the peaks that fall into a promoter:

> peakSummary$inPromoter <- peakSummary %over% promoters

> xtabs(~ inPromoter + change, peakSummary)

change

inPromoter down flat

FALSE 21 5158

TRUE 2 625

Or somewhere upstream or in a gene:

> peakSummary$inUpstream <- peakSummary %over% flank(gregions, 20000)

> peakSummary$inGene <- peakSummary %over% gregions

> sumtab <-

+ as.data.frame(rbind(total = xtabs(~ change, peakSummary),

18

+ promoter = xtabs(~ change,

+ subset(peakSummary, inPromoter)),

+ upstream = xtabs(~ change,

+ subset(peakSummary, inUpstream)),

+ gene = xtabs(~ change, subset(peakSummary, inGene))))

> ##cbind(sumtab, ratio = round(sumtab[, "down"] / sumtab[, "up"], 3))

Visualizing peaks in genomic context

While it is generally informative to calculate statistics incorporating the genomic context, eventually one
wants a picture. The traditional genome browser view is an effective method of visually integrating
multiple annotations with experimental data along the genome.
Using the rtracklayer package, we can upload our coverage and peaks for both samples to the UCSC
Genome Browser:

> library(rtracklayer)

> session <- browserSession()

> genome(session) <- "mm9"

> session$gfpCov <- cov.gfp

> session$gfpPeaks <- peaks.gfp

> session$ctcfCov <- cov.ctcf

> session$ctcfPeaks <- peaks.ctcf

Once the tracks are uploaded, we can choose a region to view, such as the tallest peak on chr10 in the
CTCF data:

> peak.ord <- order(unlist(peak.depths), decreasing=TRUE)

> peak.sort <- as(peaks.ctcf, "GRanges")[peak.ord]

> view <- browserView(session, peak.sort[1], full = c("gfpCov", "ctcfCov"))

We coerce to GRanges so that we can sort the ranges across chromosomes. By passing the full

parameter to browserView we instruct UCSC to display the coverage tracks as a bar chart. Next, we
might programmatically display a view for the top 5 tallest peaks:

> views <- browserView(session, head(peak.sort, 5), full = c("gfpCov", "ctcfCov"))

Version information

> sessionInfo()

R version 4.1.0 (2021-05-18)

Platform: x86_64-pc-linux-gnu (64-bit)

Running under: Ubuntu 20.04.2 LTS

Matrix products: default

BLAS: /home/biocbuild/bbs-3.13-bioc/R/lib/libRblas.so

LAPACK: /home/biocbuild/bbs-3.13-bioc/R/lib/libRlapack.so

locale:

19

[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C

[3] LC_TIME=en_GB LC_COLLATE=C

[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8

[7] LC_PAPER=en_US.UTF-8 LC_NAME=C

[9] LC_ADDRESS=C LC_TELEPHONE=C

[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C

attached base packages:

[1] stats4 parallel stats graphics grDevices utils datasets

[8] methods base

other attached packages:

[1] TxDb.Mmusculus.UCSC.mm9.knownGene_3.2.2

[2] lattice_0.20-44

[3] GenomicFeatures_1.44.0

[4] AnnotationDbi_1.54.0

[5] chipseq_1.42.0

[6] ShortRead_1.50.0

[7] GenomicAlignments_1.28.0

[8] SummarizedExperiment_1.22.0

[9] Biobase_2.52.0

[10] MatrixGenerics_1.4.0

[11] matrixStats_0.58.0

[12] Rsamtools_2.8.0

[13] Biostrings_2.60.0

[14] XVector_0.32.0

[15] BiocParallel_1.26.0

[16] GenomicRanges_1.44.0

[17] GenomeInfoDb_1.28.0

[18] IRanges_2.26.0

[19] S4Vectors_0.30.0

[20] BiocGenerics_0.38.0

loaded via a namespace (and not attached):

[1] httr_1.4.2 bit64_4.0.5 assertthat_0.2.1

[4] BiocFileCache_2.0.0 latticeExtra_0.6-29 blob_1.2.1

[7] GenomeInfoDbData_1.2.6 yaml_2.2.1 progress_1.2.2

[10] pillar_1.6.1 RSQLite_2.2.7 glue_1.4.2

[13] digest_0.6.27 RColorBrewer_1.1-2 Matrix_1.3-3

[16] XML_3.99-0.6 pkgconfig_2.0.3 biomaRt_2.48.0

[19] zlibbioc_1.38.0 purrr_0.3.4 jpeg_0.1-8.1

[22] tibble_3.1.2 KEGGREST_1.32.0 generics_0.1.0

[25] ellipsis_0.3.2 cachem_1.0.5 magrittr_2.0.1

[28] crayon_1.4.1 memoise_2.0.0 fansi_0.4.2

[31] hwriter_1.3.2 tools_4.1.0 prettyunits_1.1.1

[34] hms_1.1.0 BiocIO_1.2.0 lifecycle_1.0.0

[37] stringr_1.4.0 DelayedArray_0.18.0 compiler_4.1.0

[40] rlang_0.4.11 grid_4.1.0 RCurl_1.98-1.3

20

[43] rstudioapi_0.13 rjson_0.2.20 rappdirs_0.3.3

[46] bitops_1.0-7 restfulr_0.0.13 DBI_1.1.1

[49] curl_4.3.1 R6_2.5.0 dplyr_1.0.6

[52] rtracklayer_1.52.0 fastmap_1.1.0 bit_4.0.4

[55] utf8_1.2.1 filelock_1.0.2 stringi_1.6.2

[58] Rcpp_1.0.6 vctrs_0.3.8 png_0.1-7

[61] dbplyr_2.1.1 tidyselect_1.1.1

21

