
abseqR: reporting and data analysis func-
tionalities for Rep-Seq datasets of antibody
libraries

Jia Hong Fong and Monther Alhamdoosh

19 May 2021

Package

abseqR 1.10.0

Contents

1 Introduction . 3

1.1 AbSeq core analyses . 3

2 Installation . 4

2.1 Bioconductor . 4

2.2 GitHub . 4

2.3 System prerequisites . 4

2.4 R package dependencies . 4

3 Quick start . 6

3.1 Datasets . 6

3.2 Basic analysis . 7

3.3 HTML reports’ directory structure 7

3.4 Comparative analysis . 8

4 Advanced Examples . 10

4.1 Lazy loading . 10

4.2 Alternative reporting options 11

4.3 Parallelization . 11

5 Interpretation of report’s figures. 11

5.1 Sequence quality analysis . 12

5.2 Abundance and association analysis 13

5.3 Productivity analysis . 15

5.4 Diversity analysis . 17

abseqR: reporting and data analysis functionalities for Rep-Seq datasets of antibody libraries

5.5 Comparative analysis . 21

6 Appendices . 26

6.1 Datasets . 26

6.2 Session Info . 26

7 References . 28

2

abseqR: reporting and data analysis functionalities for Rep-Seq datasets of antibody libraries

1Repertoire sequencing.

1 Introduction
A plethora of high throughput sequencing (HTS) analysis pipelines are available as open
source tools to analyze and validate the quality of Rep-seq 1 datasets. OmicTools provides a
summary of repertoire sequencing tools that implements different techniques and algorithms
in analyzing and visualizing datasets from B-cell receptors (BCR) and T-cell receptors (TCR).
However, high throughput analysis pipelines of antibody library sequencing datasets are scarce.
AbSeq is a comprehensive bioinformatic pipeline for the analysis of sequencing datasets
generated from antibody libraries and abseqR is one of its packages. The AbSeq suite is
implemented as a set of functions in R and Python that can be used together to provide
insights into the quality of antibody libraries. abseqPy processes paired-end or single-end
FASTA/FASTQ files generated from NGS sequencers and converts them into CSV and HDF
files. abseqR visualizes the output of abseqPy and generates a self-contained HTML report.
Furthermore, abseqR provides additional functionalities to explicitly compare multiple samples
and perform further downstream analyses.
abseqR provides the following functionalities:

• Visualizations: the output from abseqPy is summarized succintly into static and inter-
active plots. The plots are also stored in Rdata object files that provide flexibility for
users to easily customize the aesthetics of any plot generated by abseqR.

• Interactive reports: the plots generated by abseqR can be collated and presented in a
self-contained HTML document for convenience and ease of sharing.

• Sample comparison: abseqR overloads the + operator via the S4 classes AbSeqCRep and
AbSeqRep to compare multiple samples with each other. The comparative reports

include additional plots, for example, sample similarity clustering, overlapping clonotypes,
etc. The usual plots are also generated for all the compared samples by adding an extra
layer of aesthetic.

1.1 AbSeq core analyses
AbSeq includes, but is not limited to, merging paired-end reads, annotating V-(D)-J germlines,
calculating unique clonotypes, analyzing primer specificity, facilitating the selection of best
restriction enzymes, predicting frameshifts, identifying functional clones, and calculating
diversity indices and estimations. These analyses are seamlessly extrapolated to analyze
multiple library repertoires simultaneously when multiple samples are present. Figure 1 depicts
the complete AbSeq workflow. Sequencing files are taken as input to be annotated and
analyzed by abseqPy before they are further analyzed and visualized by abseqR.

3

https://omictools.com/search?q=repertoire
https://bioconductor.org/packages/3.13/abseqR
https://github.com/malhamdoosh/abseqPy
https://portal.hdfgroup.org/display/support
https://bioconductor.org/packages/3.13/abseqR
https://github.com/malhamdoosh/abseqPy
https://bioconductor.org/packages/3.13/abseqR
https://bioconductor.org/packages/3.13/abseqR
https://github.com/malhamdoosh/abseqPy
https://bioconductor.org/packages/3.13/abseqR
https://bioconductor.org/packages/3.13/abseqR
https://bioconductor.org/packages/3.13/abseqR
https://github.com/malhamdoosh/abseqPy
https://bioconductor.org/packages/3.13/abseqR

abseqR: reporting and data analysis functionalities for Rep-Seq datasets of antibody libraries

Figure 1: AbSeq workflow
Comprehensive analyses and visualizations are generated from input sequencing files using abseqPy and abseqR.

2The performace of-
fered by BiocParallel
may differ across differ-
ent operating systems.

2 Installation
abseqR can be installed from bioconductor.org or its GitHub repository at https://github.
com/malhamdoosh/abseqR.

2.1 Bioconductor
To install abseqR via the BiocManager, type in R console:
if (!require("BiocManager"))

install.packages("BiocManager")

BiocManager::install("abseqR")

2.2 GitHub
To install the development version of abseqR from GitHub, type in R console:
if (!require("BiocManager"))

install.packages("BiocManager")

BiocManager::install("malhamdoosh/abseqR")

2.3 System prerequisites
abseqR requires pandoc version 1.19.2.1 or higher to render the HTML reports. If pandoc
cannot be detected while executing abseqR, the HTML report will not be generated. abseqR
is a cross-platform library and will work on any major operating system 2.

2.4 R package dependencies
abseqR depends on several packages from the CRAN and Bioconductor repositories:

4

https://bioconductor.org/packages/release/bioc/html/BiocParallel.html
https://bioconductor.org/packages/3.13/abseqR
http://bioconductor.org/
https://github.com/malhamdoosh/abseqR
https://github.com/malhamdoosh/abseqR
https://bioconductor.org/packages/3.13/abseqR
https://bioconductor.org/packages/3.13/abseqR
https://bioconductor.org/packages/3.13/abseqR
http://pandoc.org/
https://bioconductor.org/packages/3.13/abseqR
https://bioconductor.org/packages/3.13/abseqR
https://bioconductor.org/packages/3.13/abseqR
https://cran.r-project.org/
https://bioconductor.org/

abseqR: reporting and data analysis functionalities for Rep-Seq datasets of antibody libraries

• RColorBrewer provides colour schemes for maps and graphics. To install it, type in R
console install.packages("RColorBrewer")

• VennDiagram provides a set of functions to generate Venn diagrams. To install it, type
in R console install.packages("VennDiagram")

• circlize is a visualization tool used to summarize the distributions of associations between
V-J gene segments. To install it, type in R console install.packages("circlize")

• flexdashboard is a package that provides a template for RMarkdown that resembles a
grid oriented dashboard and is used to generate the HTML reports. To install it, type
in R console install.packages("flexdashboard")

• ggplot2 is an implementation of the “Grammar of Graphics” in R. It is used extensively
to generate plots. To install it, type in R console install.packages("ggplot2")

• ggcorrplot is used to visualize a correlation matrix using ggplot2. To install it, type in
R console install.packages("ggcorrplot")

• ggdendro provides a set of tools for drawing dendrograms and tree plots using ggplot2.
To install it, type install.packages("ggdendro")

• grid is used to arrange plots. It has been integrated into the base R package.
• gridExtra provides functions to work with “grid” graphics and used to arrange

grid-based plots in the HTML reports. To install it, type in R console in

stall.packages("gridExtra")

• knitr provides the capability to dynamically generate reports in R. To install it, type in
R console install.packages("knitr")

• plotly is used to translate ggplot2 graphs to interactive web-based plots. To install it,
type in R console install.packages("plotly")

• plyr offers a set of tools used in this package to apply operations on subsets of data in
manageable pieces. To install it, type in R console install.packages("plyr")

• png is used to read and display PNG images. To install it, type in R console in

stall.packages("png")

• reshape2 allows this package to restructure and aggregate dataframes. To install it,
type in R console install.packages("reshape2")

• rmarkdown converts R Markdown documents into a variety of formats. To install it,
type in R console install.packages("rmarkdown")

• vegan provides a suite of functions to calculate diversity and distance statistics between
repertoires. To install it, type in R console install.packages("vegan")

• BiocParallel is a package from Bioconductor used to enable parallel computing. To
install it, type in R console

if (!require("BiocManager"))

install.packages("BiocManager")

BiocManager::install("BiocParallel")

5

https://CRAN.R-project.org/package=RColorBrewer
https://CRAN.R-project.org/package=VennDiagram
https://CRAN.R-project.org/package=circlize
https://CRAN.R-project.org/package=flexdashboard
https://CRAN.R-project.org/package=ggplot2
https://CRAN.R-project.org/package=ggcorrplot
https://CRAN.R-project.org/package=ggplot2
https://CRAN.R-project.org/package=ggdendro
https://CRAN.R-project.org/package=ggplot2
https://CRAN.R-project.org/package=grid
https://CRAN.R-project.org/package=gridExtra
https://CRAN.R-project.org/package=knitr
https://CRAN.R-project.org/package=plotly
https://CRAN.R-project.org/package=ggplot2
https://CRAN.R-project.org/package=plyr
https://CRAN.R-project.org/package=png
https://CRAN.R-project.org/package=reshape2
https://CRAN.R-project.org/package=rmarkdown
https://CRAN.R-project.org/package=vegan
https://bioconductor.org/packages/3.13/BiocParallel
https://bioconductor.org

abseqR: reporting and data analysis functionalities for Rep-Seq datasets of antibody libraries

3 Quick start
To leverage all the functionalities provided by abseqR, the main functions to note are ab

seqR::abseqReport, abseqR::report, and +. This section uses a small simulated dataset to
walk through the use cases of each function.

3.1 Datasets
The example dataset is packaged with abseqR. For the sake of brevity, the dataset generation
is described under the Appendices section.
Briefly, the dataset includes three samples, namely PCR1, PCR2, and PCR3, that was
generated using in silico simulations. abseqPy was then used to analyze the datasets and
the output directory argument --outdir specified in abseqPy was initiated with the value
"./ex/".

Figure 2: Generation of the three simulated datasets
The flowchart on the left shows the generation of the datasets in ‘"./ex/"‘ while the folder structure on the right shows
the output generated by ‘abseqPy‘ on the three datasets.

3.1.1 Fetch data files

The output of abseqPy on the simulated datasets is first fetched into a local directory as
follows:
substitute with any directory that you have read/write access to

sandboxDirectory <- tempdir()

path to provided data (comes installed with abseqR)

exdata <- system.file("extdata", "ex", package = "abseqR")

copy the provided data to sandboxDirectory

file.copy(exdata, sandboxDirectory, recursive = TRUE)

Then, the following commands can be executed in R console to verify that the three PCR

datasets are fetched successfully:

6

https://bioconductor.org/packages/3.13/abseqR
https://bioconductor.org/packages/3.13/abseqR
https://github.com/malhamdoosh/abseqPy
https://github.com/malhamdoosh/abseqPy
https://github.com/malhamdoosh/abseqPy

abseqR: reporting and data analysis functionalities for Rep-Seq datasets of antibody libraries

dataPath now holds the path to a local copy of the data

dataPath <- file.path(sandboxDirectory, "ex")

the sample names can be found inside the auxiliary directory

list.files(path = file.path(dataPath, "auxiliary"))

[1] "PCR1" "PCR2" "PCR3"

3.2 Basic analysis
After obtaining the datasets, the abseqReport function from abseqR is invoked to visualize
the different analysis results as follows:
This section will visualize all the datasets individually

and compare PCR1 with PCR2 with PCR3

Interim solution

if (Sys.info()["sysname"] == "Darwin") {

BPPARAM <- BiocParallel::SerialParam()

} else {

BPPARAM <- BiocParallel::bpparam()

}

you should use report = 3 to generate a HTML report

samples <- abseqReport(dataPath,

compare = c("PCR1, PCR2, PCR3"),

report = 1,

BPPARAM = BPPARAM)

ignore the message:

"Sample output directory <path> is different from provided path

<path> assuming directory was moved"

This warning message tells us that the directory has

been moved (we copied the provided examples to "dataPath")

This creates plots for all samples included in dataPath. In addition, The compare = c("PCR1,

PCR2, PCR3") argument specifies that samples PCR1, PCR2, and PCR3 are explicitly compared
against each other. Other possible values for compare, report , and BPPARAM will be discussed
in detail in later sections (here, here, and here).

3.3 HTML reports’ directory structure
Figure 3 shows the folder structure of ./ex/ after abseqR completes.
Invoking abseqReport generates plots in the same folder as the corresponding data files within
the auxiliary directory. They are then collated together in an HTML document found in the
report directory.
The report directory is structured as follows:

• index.html file is the entry point to browse AbSeq’s HTML reports. It summarizes the
AbSeq analysis and provides a convenient way for navigating individual and comparative
analysis results. For example, within this file, there are links to the reports generated
for PCR1, PCR2, PCR3 and PCR1 vs PCR2 vs PCR3.

7

https://bioconductor.org/packages/3.13/abseqR
https://bioconductor.org/packages/3.13/abseqR

abseqR: reporting and data analysis functionalities for Rep-Seq datasets of antibody libraries

Figure 3: Folder structure after ‘abseqR‘ completes
The landing page ‘index.html‘ provides a convenient way to navigate around the standalone HTML reports in
‘html_files/‘.

• html_files directory contains HTML files that are used build the individual and
comparative reports. They can be accessed directly or via the main page index.html.

In conclusion, the individual sample reports in html_files can be shared as-is, but index.html
must be accompanied by the html_files directory and thus it is recommended to share the
entire report folder.

3.4 Comparative analysis

3.4.1 Comparative analysis using a single dataset

This section describes the possible values for abseqReport’s compare parameter. In the previous
section, abseqReport was called with compare = c("PCR1, PCR2, PCR3"). This compares the
three samples all together. However, it is also possible to compare only a subset of samples in
the dataPath folder, multiple subsets of samples, or none at all.

8

abseqR: reporting and data analysis functionalities for Rep-Seq datasets of antibody libraries

3Trailing and lead-
ing whitespace be-
tween sample names
are trimmed. That is,
“PCR1,PCR2” is identi-
cal to “PCR1 , PCR2”.

The compare parameter accepts a vector of one or more strings. Each string denotes a
comparison between samples separated by commas, for example, compare = c("PCR1, PCR2,

PCR3")3.
If sample comparison is not required, then the following can be simply invoked samples <-

abseqReport(dataPath).
Example of other combinations:
Example of 1 comparison

Analyze all samples, but only compare PCR1 with PCR2

pcr1.pcr2 <- abseqReport(dataPath,

compare = c("PCR1, PCR2"),

report = 0)

Example of 2 comparisons

Analyze all samples. In addition, compare:

* PCR1 with PCR2

* PCR2 with PCR3

multiComparison <- abseqReport(dataPath,

compare = c("PCR1, PCR2", "PCR2, PCR3"),

report = 0)

Note, abseqReport always returns S4 objects of the class AbSeqRep for each sample in the
dataPath directory regardless of the value of the compare argument as illustrated next:
compare = c("PCR1,PCR2")

names(pcr1.pcr2)

compare = c("PCR1, PCR2", "PCR2 ,PCR3")

names(multiComparison)

[1] "PCR1" "PCR2" "PCR3"

[1] "PCR1" "PCR2" "PCR3"

The next subsection explains the motivation behind this behaviour.

3.4.2 Comparative analysis using multiple datasets

When constructing antibody libraries, users might be interested in comparing Ab repertoires
from different stages of the construction process. Usually, each stage has its own sequencing
runs and thus would be analyzed indepedent of others. The report function in abseqR was
written to enable this behaviour as illustrated next.
Previously, the S4 objects of three samples of our toy example loaded into a variable named
samples. As a hypothetical example, if the reports show an interesting observation between
PCR1 and PCR3, it might be of interest to isolate the two samples from the rest.
This code shows how the + operator can be used to create customized comparisons as follows:
recall that samples is a named list where each element's name

is the sample's own name (see names(samples))

use report = 3 if the results should be collated in a HTML document

pcr1.pcr3 <- samples[["PCR1"]] + samples[["PCR3"]]

refinedComparison <- report(pcr1.pcr3,

9

https://bioconductor.org/packages/3.13/abseqR

abseqR: reporting and data analysis functionalities for Rep-Seq datasets of antibody libraries

outputDir = file.path(sandboxDirectory,

"refined_comparison"),

report = 1)

Here, the + operator creates a new comparison between PCR1 and PCR3 of class AbSeqCRep.
S4 objects of this class can be passed to the report function to generate a standalone HTML
report of this particular comparison. Similar to abseqReport, this function returns S4 objects
of the individual samples - PCR1 and PCR3.
names(refinedComparison)

[1] "PCR1" "PCR3"

Similarly, samples can be loaded from two different abseqPy’s directories as illustrated in the
following example:
first abseqPy run on SRR dataset from control group

abseq --file1 fasta/SRR_ACGT_CTRL.fasta --outdir SRR_CTRL

second abseqPy run on SRR dataset from experiment group

abseq --file1 fasta/SRR_ACGT_EXP.fasta --outdir SRR_EXP

analyzing these samples in abseqR:
SRRControl <- abseqReport("SRR_CTRL")

SRRExp <- abseqReport("SRR_EXP")

then comparing all samples in SRRControl with all samples in SRRExp can be done using +

and report.
short for SRRControl[[1]] + SRRControl[[2]] + ... + SRRExp[[1]] + ...

all.samples <- Reduce("+", c(SRRControl, SRRExp))

report(all.samples, outputDir = "SRRControl_vs_SRRExp")

Important: The sample names in SRR_CTRL and SRR_EXP must be unique.
In conclusion, the + operator along with the report function enables users to carry out a wide
range of customized downstream analyses on the output of abseqPy.

4 Advanced Examples

4.1 Lazy loading
In the previous section, the SRRControl dataset was loaded using SRRControl <- abseqRe

port("SRR_CTRL"), which will generate all plots and reports by default. However, this dataset
might have already been analyzed and users are interested in only loading the S4 objects of
the samples. This can be efficiently carried out by using the report=0 argument as follows:
in essence, this is identical to SRRControl <- abseqReport("SRR_CTRL"),

but will not regenerate plots and reports!

SRRControl.lazy <- abseqReport("SRR_CTRL", report = 0)

10

https://github.com/malhamdoosh/abseqPy
https://bioconductor.org/packages/3.13/abseqR
https://github.com/malhamdoosh/abseqPy

abseqR: reporting and data analysis functionalities for Rep-Seq datasets of antibody libraries

exactly the same return value

stopifnot(names(SRRControl.lazy) == names(SRRControl))

4.2 Alternative reporting options
In the previous section, the report parameter of abseqReport was used to load the samples
in SRRControl without actually plotting any data.
The report argument can accept one of four possible values as follows:

1. abseqReport("SRR_CTRL", report = 0) does not generate plots and HTLM reports
and only returns a named list of S4 objects.

2. abseqReport("SRR_CTRL", report = 1) generates static plots in PNG format but does
not generate HTML reports.

3. abseqReport("SRR_CTRL", report = 2) generates static plots in PNG format in addi-
tion to HTML reports.

4. abseqReport("SRR_CTRL", report = 3) generates static plots in PNG format and in-
teractive plots in the HTML reports using plotly. This is the default behaviour when
the report argument is not specified.

4.3 Parallelization
One of abseqReport’s parameters is BPPARAM, which is used to pass arguments into the
BiocParallel::bplapply function for customizing parallelization. More information regarding
the accepted values to BPPARAM can be found at BiocParallel’s page.
Below is a simplified example of using 4 cores and serializing the loop.

use 4 CPU cores

nproc <- 4

samples <- abseqReport(dataPath,

BPPARAM = BiocParallel::MulticoreParam(nproc))

run sequentially - no multiprocessing

samples <- abseqReport(dataPath,

BPPARAM = BiocParallel::SerialParam())

5 Interpretation of report’s figures
This section presents the plots generated by abseqR on the dataset discussed above and
provides some insights on how to interpret them.
The visualizations and analyses can be broken down into 5 categories:

1. Sequence quality analysis
2. Abundance analysis
3. Productivity analysis
4. Diversity analysis

11

https://cran.r-project.org/package=plotly
https://bioconductor.org/packages/release/bioc/html/BiocParallel.html
https://bioconductor.org/packages/3.13/abseqR

abseqR: reporting and data analysis functionalities for Rep-Seq datasets of antibody libraries

5. Comparative analysis

5.1 Sequence quality analysis
The plots described in this section can be found in the Summary and Quality tabs of the
HTML report.

5.1.1 Sequence length

The sequence length distribution is a simple way of validating the quality of a sequencing run.
The histogram is expected to show a large proportion of sequences falling within the expected
lengths.

Figure 4: Sequence length distribution of PCR1
Histogram of (merged) sequence lengths.

Figure 4 plots sequence length (x-axis) against proportion (y-axis). A similar plot with outliers
removed can be found in the Summary tab.

5.1.2 Alignment quality

abseqPy filters low quality sequences based on the quality of the sequence alignment against
germline sequence databases and thus the following parameters can be used:

1. Alignment bitscore
2. Subject start index
3. Query start index
4. Alignment length

However, setting the optimal cut-off thresholds for these parameters is challenging. Stringent
values could filter too many sequences while lenient values could retain low quality sequences.

12

https://github.com/malhamdoosh/abseqPy

abseqR: reporting and data analysis functionalities for Rep-Seq datasets of antibody libraries

The alignment quality heatmaps generated in the Quality tab of the HTML report shows the
relationship between alignment lengths and these alignment parameters to help determine the
percentage of sequences falling within a given range and thus inform the selection of cut-off
thresholds.
For example, Figure 5 shows one of the 5 heatmaps: bitscore against V germline alignment
length. abseqPy has some recommendations on the values of these parameters to retain good
quality sequences.

Figure 5: Bitscore vs V germline alignment length in PCR1
Heatmap of bitscore vs alignment length shows percentage of sequences in a given value range.

5.1.3 Insertions, deletions, and mismatches

Indels (Insertions or deletions) and mismatches can be used as an indicator of sequence quality.
Figure 6 shows the proportions of indels in PCR1. This graph plots the rate of indels (y-axis)
in the V germlines of PCR1 against the number of indels (x-axis). A similar plot for rate of
mismatches in V germlines can be found in the same directory. A high rate of indels in the
germline sequences might indicate a quality problem with the library because this would affect
the functionality of the sequenced clones. However, this could be due to the sequencing
quality depending on which sequencing technology is used. For example, long read sequencing
technologies tend to produce more indel errors than short read sequencing technologies.

5.2 Abundance and association analysis
The plots generated in this section can be found in the Abundance tab of the HTML report.

5.2.1 V-(D)-J germline abundance

The proportions of V-(D)-J germlines is essential in some experiment designs. For example, it
can be used to validate that the germline abundance of an in-house antibody library is in-line
with the donor antibody repertoire. Experiments that artificially amplify certain germline
families can also be validated similarly using this analysis.

13

https://github.com/malhamdoosh/abseqPy

abseqR: reporting and data analysis functionalities for Rep-Seq datasets of antibody libraries

Figure 6: Rate of insertions and deletions in PCR1
The percentage of indels found within the V germlines of PCR1.

Figure 7: V family germline distribution in PCR1
The percentage of IGHV families after germline annotation using IgBLAST.

Figure 7 shows the distribution of IGHV families in PCR1. Similar plots can be generated for
individual V germlines genes and for the D and J germlines.

5.2.2 V-J germline associations

This plot visualizes the recombination process of V and J germlines. Figure 8 summarizes the
associations between V and J family germlines in a plot generated using circlize.

14

https://CRAN.R-project.org/package=circlize

abseqR: reporting and data analysis functionalities for Rep-Seq datasets of antibody libraries

Figure 8: V-J family germline association in PCR1
Segment size represents germline proportion while the thickness of the arcs shows the proportion of associations be-
tween V and J germline families. This plot was heavily inspired by [VDJTools](https://github.com/mikessh/vdjtools/))

This plot can be used to check whether the Ab library is biased towards a particular combination
of germline genes due to cloning errors.

5.3 Productivity analysis
The plots described in this section can be found in the Productivity tab in PCR1’s HTML
report. The main factors affecting the productiveness of a clone by AbSeq’s interpretation are:

1. Concordance of the coding frames of V and J germline genes
2. Presence of stop codons
3. Presence of indels within a framework or complementarity-determining region

Any sequence that satisfies at least one of the above condition will be classified as unproductive
and thus it is unlikely that it will express a functional antibody.
Figure 9 summarizes the productivity analysis results of PCR1. Factors that cause sequences
to be non-functional are colour coded as follows:

1. Green – sequences without stop codons but have a frameshift
2. Cyan – sequences that are in-frame but contain at least one stop codon
3. Purple – sequences that contain at least one stop codon and have a frameshift

A good antibody library should have as low unproductive clones as possible. Cloning strategies
that are used to clone sequences from the donor libraries or used to construct the Ab library
play a key role in this aspect of the library quality.

15

abseqR: reporting and data analysis functionalities for Rep-Seq datasets of antibody libraries

Figure 9: Productivity rate of sequences in PCR1
This plot shows the percentage of productive and unproductive sequences, the reason for unproductive sequences are
colour coded.

5.3.1 V-J frameshifts

Figure 10 shows the percentage of clones that are out-of-frame due to either misaligned V-J
coding frames or to the presence of non-multiple of three-indels in one of the framework or
complementarity-determining regions.

Figure 10: Rate of in-frame and out-of-frame sequences in PCR1
Misaligned V-J frame or non-multiple of 3 indels in either one of the framework or complementarity-determining regions
causes a frameshift and therefore renders the sequence unproductive.

16

abseqR: reporting and data analysis functionalities for Rep-Seq datasets of antibody libraries

5.3.2 Stop codons

Figure 11 shows the hot spots for stop codons segregated by framework and complementarity-
determining regions.

Figure 11: Proportion of stop codons in any given CDR or FR of out-of-frame sequences in PCR1
The percentages show the frequency of stop codons in a given region relative to the total number of stop codons
present.

The figure above shows the percentage of stop codons in the FR and CDR regions of out-of-
frame sequences. As discussed earlier, these stop codons may be introduced due to cloning or
sequencing errors, hence a similar plot for in-frame sequences can also be found within the
same tab.

5.3.3 Indels and mismatches

Some sequences are productive despite having indels and mismatches. This occurs when
indels are multiple of three and mismatches do not introduce stop codons. The following
figures show the proportion of indels and mismatches for each germline, framework region,
and complementarity-determining region on productive sequences (unless specified otherwise).
Figure 12, Figure 13, and Figure 14 plots the proportion of mismatches in productive
sequences, indels in productive sequences, and indels in out-of-frame (unproductive) sequences
for framework region 3 (FR3). The motivation behind these plots is to quickly identify the
quality of productive sequences.
Ideally, the number of mismatches in framework regions and IGJ are expected to be low
because they are relatively conserved regions. Similarly, the number of indels in productive
sequences are expected to be low or some multiple of 3.
Similar plots are generated for other FR and CDR regions, IGV, IGD, and IGJ.

5.4 Diversity analysis
The plots described in this section can be found in the Diversity tab of the HTML report.
AbSeq only conducts diversity analysis on clones that are productive.

17

abseqR: reporting and data analysis functionalities for Rep-Seq datasets of antibody libraries

Figure 12: Proportion of mismatches in productive sequences of PCR1

Figure 13: Proportion of indels in productive sequences of PCR1

5.4.1 Clonotype-based analysis

To estimate repertoire diversity, abseqR employs three commonly used techniques:
Duplication-level analysis in which the number of times a clone appears in the sequenced
sample is calculated. Figure 15 plots the proportion of sequences (y-axis) that appear once
(singletons), twice (doubletons), and at higher-orders (x-axis). The higher the percentage of
singletones and doubletones, the more diverse the library would likely be.
Rarefaction analysis in which bootstrapping is used to estimate the richness of a library by
calculating the proportion of unique sequences at different sample sizes. Figure 16 plots the
number of deduplicated clonotypes (y-axis) againse sample sizes (x-axis). For each sample

18

https://bioconductor.org/packages/3.13/abseqR

abseqR: reporting and data analysis functionalities for Rep-Seq datasets of antibody libraries

Figure 14: Proportion of indels in out-of-frame sequences of PCR1

size, five samples are drawn and the mean with confidence intervals are calculated. In a highly
diverse library, the percentage of unique clones should significantly increase as the sample size
increases.
Capture-recapture analysis in Figure 17 plots the percentage of clonotypes recaptured
(y-axis) in a capture-recapture experiment at different sample sizes (x-axis). For each sample
size, the percentage of recaptured clonotypes is calculated for five repeated capture-recapture
experiments and the mean and confidence intervals are reported.
In below figures, the complementarity-determining regions (CDRs) are used to define a
“clonotype”. Similar plots can be generated for the framework regions (FRs) and the entire
variable domain sequences.

5.4.2 Spectratype analysis

Spectratypes are histograms of the clonotype lengths calculated based on the amino acid
sequences. Figure 18 shows a CDR3 spectratype. Spectratypes for other FRs and CDRs are
available in the same tab. In a good quality library, the framework regions would have quite
conserved lengths while CDRs show high length diversity. CDR3 spectratype tends to follow a
normal distribution in libraries cloned from naive repertoires.

5.4.3 Position-specific analysis

This analysis examines the diversity of Ab library at each amino acid position of the variable
domain by estimating the utilization of each of the 20 amino acids at each position. Position-
specific frequency matrices (PSFMs) are calculated by aligning all the sequences of a region of
interest to anchor at the first position and then the frequency of each amino acid is calculated
accordingly. Two PSFMs are calculated: (1) the unscaled PSFM, in which the frequencies are
calculated based on the total number of observed sequences per sample at each position and
(2) the sacled PSFM, in which the frequencies are calculated based on the total number of
observed sequences per sample.

19

abseqR: reporting and data analysis functionalities for Rep-Seq datasets of antibody libraries

Figure 15: Proportion of duplicated clonotypes in PCR1
Higher-order duplication levels starting from 10 are binned.

Figure 16: Rarefaction curve of clonotypes in PCR1
The number of deduplicated sequences are taken over the mean of 5 resampling rounds, where the shaded areas indi-
cate 95% confidence interval.

Figure 19 shows the PSFM of CDR3 in PCR1. Amino acids are coloured based on their
physiochemical properties. The left plot shows the unscaled composition logo and the right
plot shows the scaled composition logo. Similar plots for other FRs and CDRs are available in
the same tab.

20

abseqR: reporting and data analysis functionalities for Rep-Seq datasets of antibody libraries

Figure 17: Capture-recapture of clonotypes in PCR1
The number of recaptured sequences are taken over the mean of 5 resampling rounds, where the shaded areas indicate
95% confidence interval.

Figure 18: CDR3 amino acid spectratype for PCR1 with outliers removed

5.5 Comparative analysis
The plots described in this section can be found in the Clonotypes tab of PCR1 vs PCR2 vs

PCR3’s HTML report.
Since comparative analysis deals with overlapping clonotypes, this analysis only applies when
compare was supplied with at least one sample comparison. Earlier, the call to abseqRe

port had compare = c("PCR1, PCR2, PCR3"), therefore PCR1, PCR2, and PCR3 are compared
against each other.

21

abseqR: reporting and data analysis functionalities for Rep-Seq datasets of antibody libraries

Figure 19: Amino acid composition logo for PCR1’s CDR3
The unscaled (left) and the scaled (right) composition logos are colour coded and grouped by
their physicochemical properties.

Throughout this analysis, a clonotype is synonymous to its CDR3 amino acid sequence.

5.5.1 Over-representation analysis

Figure 20 offers a simple overview of the top 10 over-represented clones found in each sample.
Since the clonotypes are colour coded, overlapping clonotypes can easily be identified within
the top 10 of each samples. Note that the proportions are scaled relative to the top 10 clones
in the respective samples.
This plot complements the scatter plot mentioned above. It displays the most abundant
clonotypes in each sample with the amino acid sequence in the legend.

Figure 20: Top 10 clonotypes from PCR1, PCR2, and PCR3
The clonotype proportions displayed are scaled relative to the top 10 clones in each sample.

22

abseqR: reporting and data analysis functionalities for Rep-Seq datasets of antibody libraries

5.5.2 Overlapping analysis

5.5.2.1 Multi-sample analysis While Figure 20 is capable of showing overlapping clones,
it is restricted to the top 10 over-represented clones from each sample. Figure 21 aims to
overcome the restriction by using a venn diagram to visualize the number of overlapping (and
non-overlapping) clones from each sample. Each number within the venn diagram shows the
number of unique clonotypes that are overlapping (in an intersection) or are non-overlapping
(not in any intersection). That is, by taking the sum of all the numbers in a sample segment,
it becomes the number of unique clonotypes found in that sample.

Figure 21: Number of unique overlapping clones found in PCR1, PCR2, and PCR3
The numbers in an intersection denotes the number of unique clones that are shared between the samples involved in
the said intersection.

Note that this venn diagram will not be plotted if there are more than 5 samples.

5.5.2.2 Two-sample analysis In order to visualize the correlation between any pair of
samples, abseqR plots a scatter plot of every possible combination. Figure 22 shows one of
them, plotting the clonotype frequencies in PCR2 against PCR1.
The scatter plot:

• has log10-scaled clonotype frequencies
• has a point for each clonotype

• the coordinate of each point denotes the log10(frequency) in the sample on the
x and y axis respectively

• point sizes are mapped to the mean frequency of a clonotype
• has marginal density plots colour coded as such:

23

https://bioconductor.org/packages/3.13/abseqR

abseqR: reporting and data analysis functionalities for Rep-Seq datasets of antibody libraries

• blue: density of overlapping clonotypes
• purple: density of non-overlapping clonotypes
• grey: density of all clonotypes

Figure 22: Log-scaled scatter plot of clonotype frequencies in PCR1 and PCR2
Point size denotes mean frequency of the 2 samples and marginal density plots are colour coded by overlapping (blue),
non-overlapping (purple), and all (grey) clonotypes.

This plot is heavily inspired by VDJTools.

5.5.3 Correlation analysis

In addition to Figure 22, the linear correlation of clonotype frequencies between samples
can be directly quantified using Pearson’s correlation coefficient. Figure 23 shows the plot
generated by ggcorrplot used to visualize pearson coefficients. A similar plot using Spearman’s
correlation coefficient (rank-based) is also available in the same directory.

5.5.4 Clustering analysis

The vegan package was used to calculate distances between samples. The distances between
samples are calculated using its clonotype frequencies by applying methods from Morisita-
Horn’s overlap index, Jaccard index, and Dice’s coefficient.

24

https://github.com/mikessh/vdjtools/
https://CRAN.R-project.org/package=ggcorrplot
https://CRAN.R-project.org/package=vegan

abseqR: reporting and data analysis functionalities for Rep-Seq datasets of antibody libraries

Figure 23: Pearson correlation between PCR1, PCR2, and PCR3
Values denote the pearson correlation coefficient of the clonotypes frequencies between the samples. These values will
appear with a cross ’x’ to signify an insignificant coefficient if the p-value of the coefficient is larger than 0.05.

Figure 24 shows a dendrogram plotted using Morisita-Horn’s overlap index. The length of
each line denotes the distance between the 2 samples or clusters it is connected to. Other
dendrograms using Jaccard and Dice’s formula are available in the same directory.

Figure 24: Morisita-Horn distances of PCR1, PCR2, and PCR3
The distances are calculated using clonotype frequencies and are visualized as the length of the lines connecting sam-
ples or clusters.

25

abseqR: reporting and data analysis functionalities for Rep-Seq datasets of antibody libraries

6 Appendices

6.1 Datasets
The datasets used in the above examples was obtained from a combination of synthetic
sample datasets generated using MiXCR’s program here. Firstly, three distinct samples were
generated, each simulated with the following parameters in MiXCR:

Parameter sample 1 sample 2 sample 3
reads 10000 10000 10000
clones 5000 5000 2000
seed 4228 2428 2842
conf MiSeq-300-300 MiSeq-300-300 MiSeq-300-300
loci IGH IGH IGH
species hsa hsa hsa

Following that, an arbitrary number of sequences were randomly drawn from each of the
three samples and randomly amplified. This process was repeated 3 times, resulting in a final
repertoire of three samples, named PCR1, PCR2, and PCR3.
Finally, these three samples were analyzed by abseqPy. The command used to analyze these
samples are as follows:
abseq -y params.yml

where the contents of params.yml is:
params.yml

defaults:

bitscore: 300

sstart: 1-3

alignlen: 250

outdir: ex

task: all

threads: 1

file1: PCR1.fasta

name: PCR1

file1: PCR2.fasta

name: PCR2

file1: PCR3.fasta

name: PCR3

abseqPy’s analysis output on these three samples are contained within the dataset described
in this vignette.

6.2 Session Info
This vignette was rendered in the following environment:

26

https://github.com/milaboratory/mixcr
http://files.milaboratory.com/mixcr/paper/mixcr-test-1.2-SNAPSHOT.jar
https://github.com/malhamdoosh/abseqPy
https://github.com/malhamdoosh/abseqPy

abseqR: reporting and data analysis functionalities for Rep-Seq datasets of antibody libraries

R version 4.1.0 (2021-05-18)

Platform: x86_64-pc-linux-gnu (64-bit)

Running under: Ubuntu 20.04.2 LTS

##

Matrix products: default

BLAS: /home/biocbuild/bbs-3.13-bioc/R/lib/libRblas.so

LAPACK: /home/biocbuild/bbs-3.13-bioc/R/lib/libRlapack.so

##

locale:

[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C

[3] LC_TIME=en_GB LC_COLLATE=C

[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8

[7] LC_PAPER=en_US.UTF-8 LC_NAME=C

[9] LC_ADDRESS=C LC_TELEPHONE=C

[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C

##

attached base packages:

[1] grid stats graphics grDevices utils datasets methods

[8] base

##

other attached packages:

[1] gridExtra_2.3 plotly_4.9.3 ggplot2_3.3.3 png_0.1-7

[5] abseqR_1.10.0 BiocStyle_2.20.0

##

loaded via a namespace (and not attached):

[1] Rcpp_1.0.6 lattice_0.20-44 circlize_0.4.12

[4] tidyr_1.1.3 assertthat_0.2.1 digest_0.6.27

[7] utf8_1.2.1 R6_2.5.0 plyr_1.8.6

[10] futile.options_1.0.1 ggcorrplot_0.1.3 evaluate_0.14

[13] httr_1.4.2 pillar_1.6.1 GlobalOptions_0.1.2

[16] rlang_0.4.11 lazyeval_0.2.2 VennDiagram_1.6.20

[19] data.table_1.14.0 vegan_2.5-7 Matrix_1.3-3

[22] rmarkdown_2.8 labeling_0.4.2 splines_4.1.0

[25] flexdashboard_0.5.2 BiocParallel_1.26.0 stringr_1.4.0

[28] htmlwidgets_1.5.3 munsell_0.5.0 compiler_4.1.0

[31] xfun_0.23 pkgconfig_2.0.3 shape_1.4.6

[34] mgcv_1.8-35 htmltools_0.5.1.1 tidyselect_1.1.1

[37] tibble_3.1.2 bookdown_0.22 viridisLite_0.4.0

[40] fansi_0.4.2 permute_0.9-5 withr_2.4.2

[43] crayon_1.4.1 dplyr_1.0.6 MASS_7.3-54

[46] nlme_3.1-152 jsonlite_1.7.2 gtable_0.3.0

[49] lifecycle_1.0.0 DBI_1.1.1 magrittr_2.0.1

[52] formatR_1.9 scales_1.1.1 stringi_1.6.2

[55] farver_2.1.0 reshape2_1.4.4 futile.logger_1.4.3

[58] ellipsis_0.3.2 ggdendro_0.1.22 generics_0.1.0

[61] vctrs_0.3.8 lambda.r_1.2.4 RColorBrewer_1.1-2

[64] tools_4.1.0 glue_1.4.2 purrr_0.3.4

[67] parallel_4.1.0 yaml_2.2.1 colorspace_2.0-1

[70] cluster_2.1.2 BiocManager_1.30.15 knitr_1.33

27

abseqR: reporting and data analysis functionalities for Rep-Seq datasets of antibody libraries

7 References

28

	1 Introduction
	1.1 AbSeq core analyses

	2 Installation
	2.1 Bioconductor
	2.2 GitHub
	2.3 System prerequisites
	2.4 R package dependencies

	3 Quick start
	3.1 Datasets
	3.2 Basic analysis
	3.3 HTML reports' directory structure
	3.4 Comparative analysis

	4 Advanced Examples
	4.1 Lazy loading
	4.2 Alternative reporting options
	4.3 Parallelization

	5 Interpretation of report's figures
	5.1 Sequence quality analysis
	5.2 Abundance and association analysis
	5.3 Productivity analysis
	5.4 Diversity analysis
	5.5 Comparative analysis

	6 Appendices
	6.1 Datasets
	6.2 Session Info

	7 References

