
Pigengene: Computing and using eigengenes

Habil Zare

Modified: 26 April, 2016. Compiled: September 28, 2021

Contents

1 Introduction . 1

2 How to run Pigengene ? . 2

2.1 Installation . 2

2.2 A quick overview . 2

2.3 What is an eigengene?. 3

2.4 A toy example . 3

2.5 Running the Pigengene pipeline step by step 7

2.6 Citation . 12

3 Session Information . 13

1 Introduction
Gene expression profiling technologies such as microarray or RNA Seq provide
valuable datasets, however, inferring biological information from these data re-
mains cumbersome. Pigengene address two challenges:

1. Curse of dimensionality: The number of features in an expression pro-
file is usually very high. For instance, there are about 20,000 genes in
human. In contrast, the number of samples (patients) is often very lim-
ited in practice, and may not exceed a few hundreds. Yeung et al. have
shown that standard data reduction methods such as principal component
analysis (PCA) are not appropriate to directly apply on gene expression
data [1]. Instead, Pigengene addresses this challenge by applying PCA
on gene modules.

http://bioconductor.org/packages/Pigengene
http://bioconductor.org/packages/Pigengene
http://bioconductor.org/packages/Pigengene
http://bioconductor.org/packages/Pigengene
http://bioconductor.org/packages/Pigengene

Pigengene: Computing and using eigengenes

2. Normalization: Data produced using different technologies, or in dif-
ferent labs, are not easily comparable. Pigengene identifies eigengenes,
informative biological signatures that are robust with respect to the pro-
filing platform. For instance, it can identify the signatures (compute the
eigengenes) on microarray data, and infer them on biologically-related
RNA Seq data. The resulting signatures are directly comparable even
if the set of samples (patients) are independent and disjoint in the two
analyzed datasets.

2 How to run Pigengene ?

2.1 Installation
Pigengene is an R package that can be downloaded and installed from Biocon-
ductor by the followig commands in R:

if (!requireNamespace("BiocManager", quietly=TRUE)) install.packages("BiocManager")

BiocManager::install("Pigengene")

Alternatively, if the source code is already available, the package can be installed
by the following command in Linux:

R CMD INSTALL Pigengene_x.y.z.tar.gz

where x.y.z. determines the version. The second approach requires all the
dependencies be installed manually, therefore, the first approach is preferred.

2.2 A quick overview
Pigengene identifies gene modules (clusters), computes an eigengene for each
module, and uses these biological signatures as features for classification. The
main function is one.step.pigengene which requires a gene expression profile
and the corresponding conditions (types). Individual functions are also provided
to facilitate running the pipeline in a customized way. The inferred biological
signatures (eigengenes) are useful for supervised or unsupervised analyses.

2

http://bioconductor.org/packages/Pigengene
http://bioconductor.org/packages/Pigengene
http://bioconductor.org/packages/Pigengene
http://bioconductor.org/packages/Pigengene
http://bioconductor.org/packages/Pigengene

Pigengene: Computing and using eigengenes

2.3 What is an eigengene?
In most functions of this package, eigenegenes are computed or used as robust
biological signatures. Briefly, each eigengene E is a weighted average of the
expression of all genes in a given set of n genes (also known as a gene module
or a cluster of genes).

E = α1g1 + α2g2 + · · ·+ αngn, 1

where αi represents the weight corresponding to gene gi. The weights are
adjusted in a way that the explained variance is maximized. This guarantees
that the loss in the biological information in minimized.

2.4 A toy example
For a quick start, the application of Pigengene pipeline on some leukemia
dataset is demonstrated below [2]. The first step is to load the package and
data in R :

library(Pigengene)

Loading required package: graph

Loading required package: BiocGenerics

Loading required package: parallel

##

Attaching package: ’BiocGenerics’

The following objects are masked from ’package:parallel’:

##

clusterApply, clusterApplyLB, clusterCall, clusterEvalQ,

clusterExport, clusterMap, parApply, parCapply, parLapply,

parLapplyLB, parRapply, parSapply, parSapplyLB

The following objects are masked from ’package:stats’:

##

IQR, mad, sd, var, xtabs

The following objects are masked from ’package:base’:

##

Filter, Find, Map, Position, Reduce, anyDuplicated, append,

as.data.frame, basename, cbind, colnames, dirname, do.call,

duplicated, eval, evalq, get, grep, grepl, intersect,

is.unsorted, lapply, mapply, match, mget, order, paste, pmax,

3

http://bioconductor.org/packages/Pigengene
http://bioconductor.org/packages/Pigengene

Pigengene: Computing and using eigengenes

pmax.int, pmin, pmin.int, rank, rbind, rownames, sapply,

setdiff, sort, table, tapply, union, unique, unsplit, which.max,

which.min

Loading required package: BiocStyle

##

data(aml)

data(mds)

d1 <- rbind(aml,mds)

Labels <- c(rep("AML",nrow(aml)),rep("MDS",nrow(mds)))

names(Labels) <- rownames(d1)

Disease <- as.data.frame(Labels)

h1 <- pheatmap.type(d1[,1:20],annRow=Disease,show_rownames=FALSE)

2769_at

4267_at

11221_at

23564_at

272_at

10625_at

25801_at

2745_at

10321_at

10562_at

634_at

5004_at

118932_at

4973_at

79183_at

55062_at

154664_at

7180_at

23345_at

660_at

Labels

Labels
AML
MDS

0

0.2

0.4

0.6

0.8

Please note that the provided data in the package is sub-sampled for a quicker
demonstration. For real applications, the expression of thousands of genes
should be provided in order to the co-expression network analysis to be appro-

4

http://bioconductor.org/packages/Pigengene

Pigengene: Computing and using eigengenes

priate. It is common to first perform differential expression analysis, sort all
the genes based on p-values, and use the top-third as the input [3]. Analyzing
such input with Pigengene can take a few hours and may require 5-10 GB of
memory. The following command runs Pigengene pipeline on the toy data:

p1 <- one.step.pigengene(Data=d1,saveDir='pigengene', bnNum=0, verbose=1,

seed=1, Labels=Labels, toCompact=FALSE, doHeat=FALSE)

Pigengene started analizing 366 samples using 1000 genes...

Warning: executing %dopar% sequentially: no parallel backend registered

Pigengenes...

Pigengene plots in:

/tmp/Rtmpze4Xfe/Rbuild351da150a622d/Pigengene/vignettes/pigengene/plots

Making decision trees...

minPerLeaf: 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,

22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37

costs:

AML MDS

AML 0 1

MDS 1 0

toCompact: FALSE

Results and figures are saved in pigengene folder under the current directory.
For more advanced applications, the user is encouraged to analyze the data step-
by-step and customize the individual functions such as compute.pigenegene and
make.decision.tree.
In addition to the provided decision trees, the user can also take alternative ap-
proaches to perform classification, clustering, survival analysis, etc. using eigen-
genes as robust biological signatures (informative features). Eigengenes and
other useful objects can be retrieved from the output. For instance, c5treeRes
is a list containing the results of fitting decision trees to the eigengenes. As
shown above, a couple of trees were fitted, one per a value for minPerLeaf.
The following command plots the tree corresponding to 34, i.e., it was fitted
requiring the minimum number of samples per every leaf to be at least 34.

plot(p1$c5treeRes$c5Trees[["34"]])

5

http://bioconductor.org/packages/Pigengene
http://bioconductor.org/packages/Pigengene

Pigengene: Computing and using eigengenes

ME1

1

≤ − 0.002 > − 0.002

Node 2 (n = 178)

M
D

S
A

M
L

0

0.2

0.4

0.6

0.8

1

ME2

3

≤ 0 > 0

Node 4 (n = 34)

M
D

S
A

M
L

0

0.2

0.4

0.6

0.8

1
Node 5 (n = 154)

M
D

S
A

M
L

0

0.2

0.4

0.6

0.8

1

The tree corresponding to other values are saved in pigengene folder. Of note,
is the pigenegene object that contains the matrix of inferred eigenegenes. Each
row corresponds to a sample, and each column represents an eigengene.

dim(p1$pigengene$eigengenes)

[1] 366 4

p1 <- pheatmap.type(p1$pigengene$eigengenes,annRow=Disease,show_rownames=FALSE)

6

http://bioconductor.org/packages/Pigengene

Pigengene: Computing and using eigengenes

M
E

0

M
E

3

M
E

1

M
E

2

Labels

Labels
AML
MDS

0

0.1

0.2

0.3

0.4

0.5

0.6

2.5 Running the Pigengene pipeline step by step
If you are curious about the specific steps in the Pigengene pipeline, or you
need to run some steps with different settings, you can follow the steps below.
The results will be similar to the output of the one.step.pigengene function.
The first step is quality control to make sure that the matrices have row and
column names, and do not include too many NA values:

QC:

checked <- check.pigengene.input(Data=d1, Labels=Labels)

DataI <- checked$Data

LabelsI <- checked$Labels

We oversample the data such that the number of cases in each condition is
almost balanced.

wData <- balance(Data=DataI, Labels=LabelsI, verbose=1)$balanced

7

http://bioconductor.org/packages/Pigengene
http://bioconductor.org/packages/Pigengene
http://bioconductor.org/packages/Pigengene

Pigengene: Computing and using eigengenes

Balancing...

Oversampling to: 1818 of type AML , 1804 of type MDS ,

Weighted gene co-expression network analysis (WGCNA) [4] does not assume
any cutoff (i.e., hard threshold) on the correlation values. Instead, it raises the
correlation values to a power so that the correlation values that are close to
zero diminish. This hyperparameter is called β, and can be estimated using as
follows:

betaI <- calculate.beta(RsquaredCut=0.8, Data=wData, verbose=1)$power

Calculating beta...

beta: 9

saveDir <- "steps" ## Results will be saved in this folder.

dir.create(saveDir)

Once we have an estimate for β, WGCNA can be done in one step using the
following function to identify gene modules (i.e., clusters):

WGCNA

wgRes <- wgcna.one.step(Data=wData, seed=1, power=betaI,

saveDir=saveDir, verbose=1)

Identifying the modules (WGCNA)...

power= 9

4 modules were identified with the following sizes:

modules

0 1 2 3

1 441 333 225

save(net, file=’steps/net.RData’)

save(wgOneStep, file=’steps/wgOneStep.RData’)

The output of wgcna.one.step is a list of objects including modules, which is a
numeric vector named with genes. Genes that map to the same numeric value
are considered to be in the same module. We use this information to compute
an eigengene for every module.

Eigengenes:

pigengene <- compute.pigengene(Data=DataI, Labels=LabelsI,

saveFile=file.path(saveDir, 'pigengene.RData'),

8

http://bioconductor.org/packages/Pigengene

Pigengene: Computing and using eigengenes

modules=wgRes$modules, verbose=1)

Pigengenes...

Pigengene plots in:

steps/plots

class(pigengene)

[1] "pigengene"

print(dim(pigengene$eigengenes)) ##This is the eigengenes matrix.

[1] 366 4

print(pigengene$eigengenes[1:3,1:4])

ME1 ME2 ME3 ME0

GSM376049 -0.006958185 -0.002890136 -0.006020223 0.4557040

GSM376050 -0.003067442 -0.017728108 0.017231152 0.4298970

GSM376051 -0.004466249 0.008799329 0.003679651 0.4251949

The number of columns in the eigengene matrix is equal to the number of
modules, and the number of rows is equal to the number of samples.
Eigengenes can be used as robust biological signatures (i.e., features in machine
learning terms) for classification, clustering, exploratory analysis, etc. For ex-
ample, we can use them as random variables to fit a Bayesian network to data
[5].

Learning the BN structure:

library(bnlearn)

learnt <- learn.bn(pigengene=pigengene, bnPath=file.path(saveDir, "bn"),

bnNum=10, ## In real applications, at least 100-1000.

seed=1, verbose=1)

learn.bn() with bnNum= 10 started at:

2021-09-28 08:00:49

Warning in discretize(as.data.frame(d), method = "interval", breaks

= length(unique(Disease))): at least one variable should be continuous

learn.bn() took:

11.54669 secs

9

http://bioconductor.org/packages/Pigengene

Pigengene: Computing and using eigengenes

ME1 ME2

ME3

Disease

BN <- learnt$consensus1$BN

The learn.bn function has many arguments. See the corresponding documen-
tation and publication [5] for technical details. Because usually thousands of
individual networks are needed, it is wise to train many models in parallel on
a cluster, which can be done with appropriate settings for the learn.bn input
arguments. We can replot the consensus Bayesian network, which is already
saved on disk, using the draw.bn function.

drawn <- draw.bn(BN)

By construction, the Disease node can have no parents.

The learn.bn function tries to find the best structure for the optimum Bayesian
network. The conditional probability tables are yet to be inferred from the data.

Fit the parameters of the Bayesian network:

fit <- bn.fit(x=BN, data=learnt$consensus1$Data, method="bayes", iss=10)

##where learnt$consensus1$Data is the discretized data matrix.

The conditional probability table for one of the children of the Disease node:

selectedFeatures <- children("Disease", x=BN)

print(fit[[selectedFeatures[1]]])

10

http://bioconductor.org/packages/Pigengene

Pigengene: Computing and using eigengenes

##

Parameters of node ME1 (multinomial distribution)

##

Conditional probability table:

##

, , Disease = AML

##

ME3

ME1 [-0.029534,-0.00131458] (-0.00131458,0.0151399]

[-0.0361341,-0.0184773] 0.136904762 0.149032992

(-0.0184773,0.00862247] 0.619047619 0.824800910

(0.00862247,0.0308412] 0.244047619 0.026166098

ME3

ME1 (0.0151399,0.0336717]

[-0.0361341,-0.0184773] 0.645833333

(-0.0184773,0.00862247] 0.348039216

(0.00862247,0.0308412] 0.006127451

##

, , Disease = MDS

##

ME3

ME1 [-0.029534,-0.00131458] (-0.00131458,0.0151399]

[-0.0361341,-0.0184773] 0.004219409 0.017006803

(-0.0184773,0.00862247] 0.163713080 0.598639456

(0.00862247,0.0308412] 0.832067511 0.384353741

ME3

ME1 (0.0151399,0.0336717]

[-0.0361341,-0.0184773] 0.119047619

(-0.0184773,0.00862247] 0.547619048

(0.00862247,0.0308412] 0.333333333

The fitted Bayesian network can be used for predicting the labels (i.e., values
of the Disease node).

l2 <- predict(object=fit, node="Disease", data=learnt$consensus1$Data, method="bayes-lw")

table(LabelsI, l2)

l2

LabelsI AML MDS

AML 196 6

MDS 29 135

11

http://bioconductor.org/packages/Pigengene

Pigengene: Computing and using eigengenes

Eigengenes can also be used in predictive models simpler than a Bayesian net-
work. For example, a decision tree can be fitted using the make.decision.tree
function [6].

Decision trees:

treePath <- file.path(saveDir, 'C5Trees')

dir.create(path=treePath)

treeRes <- make.decision.tree(pigengene=pigengene, Data=DataI,

selectedFeatures=selectedFeatures, saveDir=treePath,

verbose=1, toCompact=FALSE)

Making decision trees...

minPerLeaf: 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,

22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37

costs:

AML MDS

AML 0 1

MDS 1 0

toCompact: FALSE

Warning in normalizePath(dir): path[1]="/tmp/Rtmpze4Xfe/Rbuild351da150a622d/Pigengene/vignettes/steps/C5Trees/heatmaps":

No such file or directory

Warning in normalizePath(dir): path[1]="/tmp/Rtmpze4Xfe/Rbuild351da150a622d/Pigengene/vignettes/steps/C5Trees/heatmaps":

No such file or directory

Warning in normalizePath(dir): path[1]="/tmp/Rtmpze4Xfe/Rbuild351da150a622d/Pigengene/vignettes/steps/C5Trees/heatmaps":

No such file or directory

If selectedFeatures="All", the make.decision.tree function automatically
selects a “minimal” subset of eigengenes in order to prevent overfitting.

2.6 Citation
The methodology and an interesting application of Pigengene on studying hema-
tological malignancies is presented in the following reference [6].

citation("Pigengene")

To cite package ’Pigengene’ in publications use:

12

http://bioconductor.org/packages/Pigengene
http://bioconductor.org/packages/Pigengene

Pigengene: Computing and using eigengenes

Amir Foroushani et al.(2016) Large-scale gene network analysis reveals the sig-
nificance of extracellular matrix pathway and homeobox genes in acute myeloid
leukemia: an introduction to the Pigengene package and its applications, Foroushani
et al., BMCMedical Genomics. URL: https://bmcmedgenomics.biomedcentral.com/articles/10.1186/s12920-
017-0253-6.
A BibTeX entry for LaTeX users is
@Article, author = Amir Foroushani and et al., title = Large-scale gene network
analysis reveals the significance of extracellular matrix pathway and homeobox
genes in acute myeloid leukemia: an introduction to the Pigengene package and
its applications, journal = BMC Medical Genomics, year = 2017, volume = 10,
number = 1, pages = 16, month = 3,

3 Session Information
The output of sessionInfo on the system that compiled this document is as
follows:

toLatex(sessionInfo())

• R version 4.1.1 (2021-08-10), x86_64-pc-linux-gnu
• Locale: LC_CTYPE=en_US.UTF-8, LC_NUMERIC=C, LC_TIME=en_GB,

LC_COLLATE=C, LC_MONETARY=en_US.UTF-8, LC_MESSAGES=en_US.UTF-8,
LC_PAPER=en_US.UTF-8, LC_NAME=C, LC_ADDRESS=C, LC_TELEPHONE=C,
LC_MEASUREMENT=en_US.UTF-8, LC_IDENTIFICATION=C

• Running under: Ubuntu 20.04.3 LTS

• Matrix products: default
• BLAS: /home/biocbuild/bbs-3.13-bioc/R/lib/libRblas.so
• LAPACK: /home/biocbuild/bbs-3.13-bioc/R/lib/libRlapack.so
• Base packages: base, datasets, grDevices, graphics, methods, parallel,

stats, utils
• Other packages: BiocGenerics 0.38.0, BiocStyle 2.20.2,

Pigengene 1.18.10, bnlearn 4.7, graph 1.70.0
• Loaded via a namespace (and not attached): AnnotationDbi 1.54.1,

Biobase 2.52.0, BiocManager 1.30.16, Biostrings 2.60.2, C50 0.1.5,
Cubist 0.3.0, DBI 1.1.1, Formula 1.2-4, GO.db 3.13.0,
GenomeInfoDb 1.28.4, GenomeInfoDbData 1.2.6, Hmisc 4.5-0,
IRanges 2.26.0, KEGGREST 1.32.0, MASS 7.3-54, Matrix 1.3-4,

13

http://bioconductor.org/packages/Pigengene

Pigengene: Computing and using eigengenes

R6 2.5.1, RColorBrewer 1.1-2, RCurl 1.98-1.5, RSQLite 2.2.8,
Rcpp 1.0.7, Rgraphviz 2.36.0, S4Vectors 0.30.1, WGCNA 1.70-3,
XVector 0.32.0, assertthat 0.2.1, backports 1.2.1, base64enc 0.1-3,
bit 4.0.4, bit64 4.0.5, bitops 1.0-7, blob 1.2.2, cachem 1.0.6,
checkmate 2.0.0, cluster 2.1.2, codetools 0.2-18, colorspace 2.0-2,
compiler 4.1.1, crayon 1.4.1, data.table 1.14.2, digest 0.6.28,
doParallel 1.0.16, dplyr 1.0.7, dynamicTreeCut 1.63-1, ellipsis 0.3.2,
evaluate 0.14, fansi 0.5.0, farver 2.1.0, fastcluster 1.2.3, fastmap 1.1.0,
foreach 1.5.1, foreign 0.8-81, gdata 2.18.0, generics 0.1.0, ggplot2 3.3.5,
glue 1.4.2, grid 4.1.1, gridExtra 2.3, gtable 0.3.0, gtools 3.9.2, highr 0.9,
htmlTable 2.2.1, htmltools 0.5.2, htmlwidgets 1.5.4, httr 1.4.2,
impute 1.66.0, inum 1.0-4, iterators 1.0.13, jpeg 0.1-9, knitr 1.34,
lattice 0.20-45, latticeExtra 0.6-29, libcoin 1.0-9, lifecycle 1.0.1,
magrittr 2.0.1, matrixStats 0.61.0, memoise 2.0.0, munsell 0.5.0,
mvtnorm 1.1-2, nnet 7.3-16, partykit 1.2-15, pheatmap 1.0.12,
pillar 1.6.3, pkgconfig 2.0.3, plyr 1.8.6, png 0.1-7, preprocessCore 1.54.0,
purrr 0.3.4, reshape2 1.4.4, rlang 0.4.11, rmarkdown 2.11, rpart 4.1-15,
rstudioapi 0.13, scales 1.1.1, splines 4.1.1, stats4 4.1.1, stringi 1.7.4,
stringr 1.4.0, survival 3.2-13, tibble 3.1.4, tidyselect 1.1.1, tools 4.1.1,
utf8 1.2.2, vctrs 0.3.8, xfun 0.26, yaml 2.2.1, zlibbioc 1.38.0

References
[1] Ka Yee Yeung and Walter L. Ruzzo. Principal component analysis for

clustering gene expression data. Bioinformatics, 17(9):763–774, 2001.
[2] Ken I Mills, Alexander Kohlmann, P Mickey Williams, Lothar Wieczorek,

Wei-min Liu, Rachel Li, Wen Wei, David T Bowen, Helmut Loeffler,
Jesus M Hernandez, et al. Microarray-based classifiers and prognosis
models identify subgroups with distinct clinical outcomes and high risk of
aml transformation of myelodysplastic syndrome. Blood,
114(5):1063–1072, 2009.

[3] Bin Zhang, Chris Gaiteri, Liviu-Gabriel Bodea, Zhi Wang, Joshua
McElwee, Alexei A Podtelezhnikov, Chunsheng Zhang, Tao Xie, Linh Tran,
Radu Dobrin, et al. Integrated systems approach identifies genetic nodes
and networks in late-onset alzheimer’s disease. Cell, 153(3):707–720, 2013.

[4] Peter Langfelder and Steve Horvath. Wgcna: an r package for weighted
correlation network analysis. BMC bioinformatics, 9(1):559, 2008.

14

http://bioconductor.org/packages/Pigengene

Pigengene: Computing and using eigengenes

[5] Rupesh Agrahari, Amir Foroushani, T Roderick Docking, Linda Chang,
Gerben Duns, Monika Hudoba, Aly Karsan, and Habil Zare. Applications
of bayesian network models in predicting types of hematological
malignancies. Scientific reports, 8(1):6951, 2018.

[6] A Foroushani, R Agrahari, R Docking, A Karsan, and H Zare. Large-scale
gene network analysis reveals the significance of extracellular matrix
pathway and homeobox genes in acute myeloid leukemia. In preparation.

15

http://bioconductor.org/packages/Pigengene

	1 Introduction
	2 How to run Pigengene ?
	2.1 Installation
	2.2 A quick overview
	2.3 What is an eigengene?
	2.4 A toy example
	2.5 Running the Pigengene pipeline step by step
	2.6 Citation

	3 Session Information

