
Overlap encodings

Hervé Pagès

Last modified: December 2016; Compiled: May 19, 2021

Contents

1 Introduction . 2

2 Load reads from a BAM file . 2

2.1 Load single-end reads from a BAM file 2

2.2 Load paired-end reads from a BAM file 4

3 Find all the overlaps between the reads and transcripts 6

3.1 Load the transcripts from a TxDb object 6

3.2 Single-end overlaps . 8
3.2.1 Find the single-end overlaps 8
3.2.2 Tabulate the single-end overlaps 8

3.3 Paired-end overlaps . 10
3.3.1 Find the paired-end overlaps 10
3.3.2 Tabulate the paired-end overlaps 10

4 Encode the overlaps between the reads and transcripts 12

4.1 Single-end encodings. 12

4.2 Paired-end encodings. 13

5 Detect “splice compatible” overlaps 14

5.1 Detect “splice compatible” single-end overlaps 14
5.1.1 “Splice compatible” single-end encodings 14
5.1.2 Tabulate the “splice compatible” single-end overlaps 15

5.2 Detect “splice compatible” paired-end overlaps 17
5.2.1 “Splice compatible” paired-end encodings 17
5.2.2 Tabulate the “splice compatible” paired-end overlaps 18

6 Compute the reference query sequences and project them on the
transcriptome . 20

6.1 Compute the reference query sequences 20

6.2 Project the single-end alignments on the transcriptome 21

6.3 Project the paired-end alignments on the transcriptome 22

7 Align the reads to the transcriptome 23

Overlap encodings

1http://samtools.
sourceforge.net/

7.1 Align the single-end reads to the transcriptome 24
7.1.1 Find the “hits” . 24
7.1.2 Tabulate the “hits” . 26
7.1.3 A closer look at the “hits” 26

7.2 Align the paired-end reads to the transcriptome 27

8 Detect “almost splice compatible” overlaps 27

8.1 Detect “almost splice compatible” single-end overlaps 27
8.1.1 “Almost splice compatible” single-end encodings 27
8.1.2 Tabulate the “almost splice compatible” single-end overlaps . . . 28

8.2 Detect “almost splice compatible” paired-end overlaps 29
8.2.1 “Almost splice compatible” paired-end encodings. 29
8.2.2 Tabulate the “almost splice compatible” paired-end overlaps . . . 30

9 Detect novel splice junctions . 31

9.1 By looking at single-end overlaps 31

9.2 By looking at paired-end overlaps 33

10 sessionInfo() . 33

1 Introduction
In the context of an RNA-seq experiment, encoding the overlaps between the aligned reads
and the transcripts can be used for detecting those overlaps that are “splice compatible”,
that is, compatible with the splicing of the transcript.
Various tools are provided in the GenomicAlignments package for working with overlap en-
codings. In this vignette, we illustrate the use of these tools on the single-end and paired-end
reads of an RNA-seq experiment.

2 Load reads from a BAM file

2.1 Load single-end reads from a BAM file
BAM file untreated1_chr4.bam (located in the pasillaBamSubset data package) contains
single-end reads from the “Pasilla” experiment and aligned against the dm3 genome (see ?un

treated1_chr4 in the pasillaBamSubset package for more information about those reads):
> library(pasillaBamSubset)

> untreated1_chr4()

[1] "/home/biocbuild/bbs-3.13-bioc/R/library/pasillaBamSubset/extdata/untreated1_chr4.bam"

We use the readGAlignments function defined in the GenomicAlignments package to load
the reads into a GAlignments object. It’s probably a good idea to get rid of the PCR or
optical duplicates (flag bit 0x400 in the SAM format, see the SAM Spec 1 for the details),
as well as reads not passing quality controls (flag bit 0x200 in the SAM format). We do this
by creating a ScanBamParam object that we pass to readGAlignments (see ?ScanBamParam

2

http://samtools.sourceforge.net/
http://samtools.sourceforge.net/

Overlap encodings

in the Rsamtools package for the details). Note that we also use use.names=TRUE in order to
load the query names (aka query template names, see QNAME field in the SAM Spec) from
the BAM file (readGAlignments will use them to set the names of the returned object):
> library(GenomicAlignments)

> flag0 <- scanBamFlag(isDuplicate=FALSE, isNotPassingQualityControls=FALSE)

> param0 <- ScanBamParam(flag=flag0)

> U1.GAL <- readGAlignments(untreated1_chr4(), use.names=TRUE, param=param0)

> head(U1.GAL)

GAlignments object with 6 alignments and 0 metadata columns:

seqnames strand cigar qwidth start end width njunc

<Rle> <Rle> <character> <integer> <integer> <integer> <integer> <integer>

SRR031729.3941844 chr4 - 75M 75 892 966 75 0

SRR031728.3674563 chr4 - 75M 75 919 993 75 0

SRR031729.8532600 chr4 + 75M 75 924 998 75 0

SRR031729.2779333 chr4 + 75M 75 936 1010 75 0

SRR031728.2826481 chr4 + 75M 75 949 1023 75 0

SRR031728.2919098 chr4 - 75M 75 967 1041 75 0

seqinfo: 8 sequences from an unspecified genome

Because the aligner used to align those reads can report more than 1 alignment per original
query (i.e. per read stored in the input file, typically a FASTQ file), we shouldn’t expect the
names of U1.GAL to be unique:
> U1.GAL_names_is_dup <- duplicated(names(U1.GAL))

> table(U1.GAL_names_is_dup)

U1.GAL_names_is_dup

FALSE TRUE

190770 13585

Storing the query names in a factor will be useful as we will see later in this document:
> U1.uqnames <- unique(names(U1.GAL))

> U1.GAL_qnames <- factor(names(U1.GAL), levels=U1.uqnames)

Note that we explicitely provide the levels of the factor to enforce their order. Otherwise
factor() would put them in lexicographic order which is not advisable because it depends
on the locale in use.
Another object that will be useful to keep near at hand is the mapping between each query
name and its first occurence in U1.GAL_qnames:
> U1.GAL_dup2unq <- match(U1.GAL_qnames, U1.GAL_qnames)

Our reads can have up to 2 skipped regions (a skipped region corresponds to an N operation
in the CIGAR):
> head(unique(cigar(U1.GAL)))

[1] "75M" "35M6727N40M" "22M6727N53M" "13M6727N62M" "26M292N49M" "62M21227N13M"

> table(njunc(U1.GAL))

3

Overlap encodings

0 1 2

184039 20169 147

Also, the following table indicates that indels were not allowed/supported during the align-
ment process (no I or D CIGAR operations):
> colSums(cigarOpTable(cigar(U1.GAL)))

M I D N S H P = X

15326625 0 0 21682582 0 0 0 0 0

2.2 Load paired-end reads from a BAM file
BAM file untreated3_chr4.bam (located in the pasillaBamSubset data package) contains
paired-end reads from the “Pasilla” experiment and aligned against the dm3 genome (see
?untreated3_chr4 in the pasillaBamSubset package for more information about those reads).
We use the readGAlignmentPairs function to load them into a GAlignmentPairs object:
> U3.galp <- readGAlignmentPairs(untreated3_chr4(), use.names=TRUE, param=param0)

> head(U3.galp)

GAlignmentPairs object with 6 pairs, strandMode=1, and 0 metadata columns:

seqnames strand : ranges -- ranges

<Rle> <Rle> : <IRanges> -- <IRanges>

SRR031715.1138209 chr4 + : 169-205 -- 326-362

SRR031714.756385 chr4 + : 943-979 -- 1086-1122

SRR031714.2355189 chr4 + : 944-980 -- 1119-1155

SRR031714.5054563 chr4 + : 946-982 -- 986-1022

SRR031715.1722593 chr4 + : 966-1002 -- 1108-1144

SRR031715.2202469 chr4 + : 966-1002 -- 1114-1150

seqinfo: 8 sequences from an unspecified genome

The show method for GAlignmentPairs objects displays two ranges columns, one for the first
alignment in the pair (the left column), and one for the last alignment in the pair (the right
column). The strand column corresponds to the strand of the first alignment.
> head(first(U3.galp))

GAlignments object with 6 alignments and 0 metadata columns:

seqnames strand cigar qwidth start end width njunc

<Rle> <Rle> <character> <integer> <integer> <integer> <integer> <integer>

SRR031715.1138209 chr4 + 37M 37 169 205 37 0

SRR031714.756385 chr4 + 37M 37 943 979 37 0

SRR031714.2355189 chr4 + 37M 37 944 980 37 0

SRR031714.5054563 chr4 + 37M 37 946 982 37 0

SRR031715.1722593 chr4 + 37M 37 966 1002 37 0

SRR031715.2202469 chr4 + 37M 37 966 1002 37 0

seqinfo: 8 sequences from an unspecified genome

> head(last(U3.galp))

GAlignments object with 6 alignments and 0 metadata columns:

4

Overlap encodings

seqnames strand cigar qwidth start end width njunc

<Rle> <Rle> <character> <integer> <integer> <integer> <integer> <integer>

SRR031715.1138209 chr4 - 37M 37 326 362 37 0

SRR031714.756385 chr4 - 37M 37 1086 1122 37 0

SRR031714.2355189 chr4 - 37M 37 1119 1155 37 0

SRR031714.5054563 chr4 - 37M 37 986 1022 37 0

SRR031715.1722593 chr4 - 37M 37 1108 1144 37 0

SRR031715.2202469 chr4 - 37M 37 1114 1150 37 0

seqinfo: 8 sequences from an unspecified genome

According to the SAM format specifications, the aligner is expected to mark each alignment
pair as proper or not (flag bit 0x2 in the SAM format). The SAM Spec only says that a pair
is proper if the first and last alignments in the pair are “properly aligned according to the
aligner”. So the exact criteria used for setting this flag is left to the aligner.
We use isProperPair to extract this flag from the GAlignmentPairs object:
> table(isProperPair(U3.galp))

FALSE TRUE

29581 45828

Even though we could do overlap encodings with the full object, we keep only the proper
pairs for our downstream analysis:
> U3.GALP <- U3.galp[isProperPair(U3.galp)]

Because the aligner used to align those reads can report more than 1 alignment per original
query template (i.e. per pair of sequences stored in the input files, typically 1 FASTQ file for
the first ends and 1 FASTQ file for the last ends), we shouldn’t expect the names of U3.GALP
to be unique:
> U3.GALP_names_is_dup <- duplicated(names(U3.GALP))

> table(U3.GALP_names_is_dup)

U3.GALP_names_is_dup

FALSE TRUE

43659 2169

Storing the query template names in a factor will be useful:
> U3.uqnames <- unique(names(U3.GALP))

> U3.GALP_qnames <- factor(names(U3.GALP), levels=U3.uqnames)

as well as having the mapping between each query template name and its first occurence in
U3.GALP_qnames:
> U3.GALP_dup2unq <- match(U3.GALP_qnames, U3.GALP_qnames)

Our reads can have up to 1 skipped region per end:
> head(unique(cigar(first(U3.GALP))))

[1] "37M" "6M58N31M" "25M56N12M" "19M62N18M" "29M222N8M" "9M222N28M"

5

Overlap encodings

2http://genome.ucsc.
edu/cgi-bin/hgGateway

3See http://genome.
ucsc.edu/cgi-bin/
hgTrackUi?hgsid=
276880911&g=ensGene
for a description of this
track.

> head(unique(cigar(last(U3.GALP))))

[1] "37M" "19M58N18M" "12M58N25M" "27M2339N10M" "29M2339N8M" "9M222N28M"

> table(njunc(first(U3.GALP)), njunc(last(U3.GALP)))

0 1

0 44510 596

1 637 85

Like for our single-end reads, the following tables indicate that indels were not allowed/supported
during the alignment process:
> colSums(cigarOpTable(cigar(first(U3.GALP))))

M I D N S H P = X

1695636 0 0 673919 0 0 0 0 0

> colSums(cigarOpTable(cigar(last(U3.GALP))))

M I D N S H P = X

1695636 0 0 630395 0 0 0 0 0

3 Find all the overlaps between the reads and tran-
scripts

3.1 Load the transcripts from a TxDb object
In order to compute overlaps between reads and transcripts, we need access to the genomic
positions of a set of known transcripts and their exons. It is essential that the reference
genome of this set of transcripts and exons be exactly the same as the reference genome
used to align the reads.
We could use the makeTxDbFromUCSC function defined in the GenomicFeatures package to
make a TxDb object containing the dm3 transcripts and their exons retrieved from the UCSC
Genome Browser2. The Bioconductor project however provides a few annotation packages
containing TxDb objects for the most commonly studied organisms (those data packages
are sometimes called the TxDb packages). One of them is the TxDb.Dmelanogaster.UCSC.-
dm3.ensGene package. It contains a TxDb object that was made by pointing the makeTxDbFro
mUCSC function to the dm3 genome and Ensembl Genes track 3. We can use it here:
> library(TxDb.Dmelanogaster.UCSC.dm3.ensGene)

> TxDb.Dmelanogaster.UCSC.dm3.ensGene

TxDb object:

Db type: TxDb

Supporting package: GenomicFeatures

Data source: UCSC

Genome: dm3

Organism: Drosophila melanogaster

Taxonomy ID: 7227

UCSC Table: ensGene

Resource URL: http://genome.ucsc.edu/

6

http://genome.ucsc.edu/cgi-bin/hgGateway
http://genome.ucsc.edu/cgi-bin/hgGateway
http://genome.ucsc.edu/cgi-bin/hgTrackUi?hgsid=276880911&g=ensGene
http://genome.ucsc.edu/cgi-bin/hgTrackUi?hgsid=276880911&g=ensGene
http://genome.ucsc.edu/cgi-bin/hgTrackUi?hgsid=276880911&g=ensGene
http://genome.ucsc.edu/cgi-bin/hgTrackUi?hgsid=276880911&g=ensGene

Overlap encodings

4Dealing with trans-
splicing events is not
covered in this docu-
ment.

Type of Gene ID: Ensembl gene ID

Full dataset: yes

miRBase build ID: NA

transcript_nrow: 29173

exon_nrow: 76920

cds_nrow: 62135

Db created by: GenomicFeatures package from Bioconductor

Creation time: 2015-10-07 18:15:53 +0000 (Wed, 07 Oct 2015)

GenomicFeatures version at creation time: 1.21.30

RSQLite version at creation time: 1.0.0

DBSCHEMAVERSION: 1.1

> txdb <- TxDb.Dmelanogaster.UCSC.dm3.ensGene

We extract the exons grouped by transcript in a GRangesList object:
> exbytx <- exonsBy(txdb, by="tx", use.names=TRUE)

> length(exbytx) # nb of transcripts

[1] 29173

We check that all the exons in any given transcript belong to the same chromosome and
strand. Knowing that our set of transcripts is free of this sort of trans-splicing events typically
allows some significant simplifications during the downstream analysis 4. A quick and easy
way to check this is to take advantage of the fact that seqnames and strand return RleList
objects. So we can extract the number of Rle runs for each transcript and make sure it’s
always 1:
> table(elementNROWS(runLength(seqnames(exbytx))))

1

29173

> table(elementNROWS(runLength(strand(exbytx))))

1

29173

Therefore the strand of any given transcript is unambiguously defined and can be extracted
with:
> exbytx_strand <- unlist(runValue(strand(exbytx)), use.names=FALSE)

We will also need the mapping between the transcripts and their gene. We start by using
transcripts to extract this information from our TxDb object txdb, and then we construct
a named factor that represents the mapping:
> tx <- transcripts(txdb, columns=c("tx_name", "gene_id"))

> head(tx)

GRanges object with 6 ranges and 2 metadata columns:

seqnames ranges strand | tx_name gene_id

<Rle> <IRanges> <Rle> | <character> <CharacterList>

[1] chr2L 7529-9484 + | FBtr0300689 FBgn0031208

[2] chr2L 7529-9484 + | FBtr0300690 FBgn0031208

7

Overlap encodings

[3] chr2L 7529-9484 + | FBtr0330654 FBgn0031208

[4] chr2L 21952-24237 + | FBtr0309810 FBgn0263584

[5] chr2L 66584-71390 + | FBtr0306539 FBgn0067779

[6] chr2L 67043-71081 + | FBtr0306536 FBgn0067779

seqinfo: 15 sequences (1 circular) from dm3 genome

> df <- mcols(tx)

> exbytx2gene <- as.character(df$gene_id)

> exbytx2gene <- factor(exbytx2gene, levels=unique(exbytx2gene))

> names(exbytx2gene) <- df$tx_name

> exbytx2gene <- exbytx2gene[names(exbytx)]

> head(exbytx2gene)

FBtr0300689 FBtr0300690 FBtr0330654 FBtr0309810 FBtr0306539 FBtr0306536

FBgn0031208 FBgn0031208 FBgn0031208 FBgn0263584 FBgn0067779 FBgn0067779

15682 Levels: FBgn0031208 FBgn0263584 FBgn0067779 FBgn0031213 FBgn0031214 FBgn0031216 ... FBgn0264003

> nlevels(exbytx2gene) # nb of genes

[1] 15682

3.2 Single-end overlaps

3.2.1 Find the single-end overlaps

We are ready to compute the overlaps with the findOverlaps function. Note that the
strand of the queries produced by the RNA-seq experiment is typically unknown so we use
ignore.strand=TRUE:
> U1.OV00 <- findOverlaps(U1.GAL, exbytx, ignore.strand=TRUE)

U1.OV00 is a Hits object that contains 1 element per overlap. Its length gives the number of
overlaps:
> length(U1.OV00)

[1] 563552

3.2.2 Tabulate the single-end overlaps

We will repeatedly use the 2 following little helper functions to “tabulate” the overlaps in a
given Hits object (e.g. U1.OV00), i.e. to count the number of overlaps for each element in
the query or for each element in the subject:
Number of transcripts for each alignment in U1.GAL:
> U1.GAL_ntx <- countQueryHits(U1.OV00)

> mcols(U1.GAL)$ntx <- U1.GAL_ntx

> head(U1.GAL)

GAlignments object with 6 alignments and 1 metadata column:

seqnames strand cigar qwidth start end width njunc |

<Rle> <Rle> <character> <integer> <integer> <integer> <integer> <integer> |

8

Overlap encodings

SRR031729.3941844 chr4 - 75M 75 892 966 75 0 |

SRR031728.3674563 chr4 - 75M 75 919 993 75 0 |

SRR031729.8532600 chr4 + 75M 75 924 998 75 0 |

SRR031729.2779333 chr4 + 75M 75 936 1010 75 0 |

SRR031728.2826481 chr4 + 75M 75 949 1023 75 0 |

SRR031728.2919098 chr4 - 75M 75 967 1041 75 0 |

ntx

<integer>

SRR031729.3941844 0

SRR031728.3674563 0

SRR031729.8532600 0

SRR031729.2779333 0

SRR031728.2826481 0

SRR031728.2919098 0

seqinfo: 8 sequences from an unspecified genome

> table(U1.GAL_ntx)

U1.GAL_ntx

0 1 2 3 4 5 6 7 8 9 10 11 12

47076 9493 26146 82427 5291 14530 8158 610 1952 2099 492 4945 1136

> mean(U1.GAL_ntx >= 1)

[1] 0.7696362

76% of the alignments in U1.GAL have an overlap with at least 1 transcript in exbytx.
Note that countOverlaps can be used directly on U1.GAL and exbytx for computing U1.GAL_ntx:
> U1.GAL_ntx_again <- countOverlaps(U1.GAL, exbytx, ignore.strand=TRUE)

> stopifnot(identical(unname(U1.GAL_ntx_again), U1.GAL_ntx))

Because U1.GAL can (and actually does) contain more than 1 alignment per original query
(aka read), we also count the number of transcripts for each read:
> U1.OV10 <- remapHits(U1.OV00, Lnodes.remapping=U1.GAL_qnames)

> U1.uqnames_ntx <- countQueryHits(U1.OV10)

> names(U1.uqnames_ntx) <- U1.uqnames

> table(U1.uqnames_ntx)

U1.uqnames_ntx

0 1 2 3 4 5 6 7 8 9 10 11 12

39503 9298 18394 82346 5278 14536 9208 610 2930 2099 488 4944 1136

> mean(U1.uqnames_ntx >= 1)

[1] 0.7929287

78.4% of the reads have an overlap with at least 1 transcript in exbytx.
Number of reads for each transcript:
> U1.exbytx_nOV10 <- countSubjectHits(U1.OV10)

> names(U1.exbytx_nOV10) <- names(exbytx)

9

Overlap encodings

> mean(U1.exbytx_nOV10 >= 50)

[1] 0.009015185

Only 0.869% of the transcripts in exbytx have an overlap with at least 50 reads.
Top 10 transcripts:
> head(sort(U1.exbytx_nOV10, decreasing=TRUE), n=10)

FBtr0308296 FBtr0089175 FBtr0089176 FBtr0112904 FBtr0289951 FBtr0089243 FBtr0333672 FBtr0089186

40654 40529 40529 11735 11661 11656 10087 10084

FBtr0089187 FBtr0089172

10084 6749

3.3 Paired-end overlaps

3.3.1 Find the paired-end overlaps

Like with our single-end overlaps, we call findOverlaps with ignore.strand=TRUE:
> U3.OV00 <- findOverlaps(U3.GALP, exbytx, ignore.strand=TRUE)

Like U1.OV00, U3.OV00 is a Hits object. Its length gives the number of paired-end overlaps:
> length(U3.OV00)

[1] 113827

3.3.2 Tabulate the paired-end overlaps

Number of transcripts for each alignment pair in U3.GALP:
> U3.GALP_ntx <- countQueryHits(U3.OV00)

> mcols(U3.GALP)$ntx <- U3.GALP_ntx

> head(U3.GALP)

GAlignmentPairs object with 6 pairs, strandMode=1, and 1 metadata column:

seqnames strand : ranges -- ranges | ntx

<Rle> <Rle> : <IRanges> -- <IRanges> | <integer>

SRR031715.1138209 chr4 + : 169-205 -- 326-362 | 0

SRR031714.756385 chr4 + : 943-979 -- 1086-1122 | 0

SRR031714.5054563 chr4 + : 946-982 -- 986-1022 | 0

SRR031715.1722593 chr4 + : 966-1002 -- 1108-1144 | 0

SRR031715.2202469 chr4 + : 966-1002 -- 1114-1150 | 0

SRR031714.3544437 chr4 - : 1087-1123 -- 963-999 | 0

seqinfo: 8 sequences from an unspecified genome

> table(U3.GALP_ntx)

U3.GALP_ntx

0 1 2 3 4 5 6 7 8 9 10 11 12

12950 2080 5854 17025 1078 3083 2021 70 338 370 59 803 97

10

Overlap encodings

> mean(U3.GALP_ntx >= 1)

[1] 0.7174217

71% of the alignment pairs in U3.GALP have an overlap with at least 1 transcript in exbytx.
Note that countOverlaps can be used directly on U3.GALP and exbytx for computing U3.GALP_ntx:
> U3.GALP_ntx_again <- countOverlaps(U3.GALP, exbytx, ignore.strand=TRUE)

> stopifnot(identical(unname(U3.GALP_ntx_again), U3.GALP_ntx))

Because U3.GALP can (and actually does) contain more than 1 alignment pair per original
query template, we also count the number of transcripts for each template:
> U3.OV10 <- remapHits(U3.OV00, Lnodes.remapping=U3.GALP_qnames)

> U3.uqnames_ntx <- countQueryHits(U3.OV10)

> names(U3.uqnames_ntx) <- U3.uqnames

> table(U3.uqnames_ntx)

U3.uqnames_ntx

0 1 2 3 4 5 6 7 8 9 10 11 12

11851 2061 4289 17025 1193 3084 2271 70 486 370 59 803 97

> mean(U3.uqnames_ntx >= 1)

[1] 0.7285554

72.3% of the templates have an overlap with at least 1 transcript in exbytx.
Number of templates for each transcript:
> U3.exbytx_nOV10 <- countSubjectHits(U3.OV10)

> names(U3.exbytx_nOV10) <- names(exbytx)

> mean(U3.exbytx_nOV10 >= 50)

[1] 0.00712988

Only 0.756% of the transcripts in exbytx have an overlap with at least 50 templates.
Top 10 transcripts:
> head(sort(U3.exbytx_nOV10, decreasing=TRUE), n=10)

FBtr0308296 FBtr0089175 FBtr0089176 FBtr0112904 FBtr0089243 FBtr0289951 FBtr0333672 FBtr0089186

7574 7573 7572 2750 2732 2732 2260 2260

FBtr0089187 FBtr0310542

2260 1698

11

Overlap encodings

4 Encode the overlaps between the reads and tran-
scripts

4.1 Single-end encodings
The overlap encodings are strand sensitive so we will compute them twice, once for the
“original alignments” (i.e. the alignments of the original queries), and once again for the
“flipped alignments” (i.e. the alignments of the “flipped original queries”). We extract the
ranges of the “original” and “flipped” alignments in 2 GRangesList objects with:
> U1.grl <- grglist(U1.GAL, order.as.in.query=TRUE)

> U1.grlf <- flipQuery(U1.grl) # flipped

and encode their overlaps with the transcripts:
> U1.ovencA <- encodeOverlaps(U1.grl, exbytx, hits=U1.OV00)

> U1.ovencB <- encodeOverlaps(U1.grlf, exbytx, hits=U1.OV00)

U1.ovencA and U1.ovencB are 2 OverlapsEncodings objects of the same length as Hits object
U1.OV00. For each hit in U1.OV00, we have 2 corresponding encodings, one in U1.ovencA

and one in U1.ovencB, but only one of them encodes a hit between alignment ranges and
exon ranges that are on the same strand. We use the selectEncodingWithCompatibleStrand
function to merge them into a single OverlapsEncodings of the same length. For each hit in
U1.OV00, this selects the encoding corresponding to alignment ranges and exon ranges with
compatible strand:
> U1.grl_strand <- unlist(runValue(strand(U1.grl)), use.names=FALSE)

> U1.ovenc <- selectEncodingWithCompatibleStrand(U1.ovencA, U1.ovencB,

+ U1.grl_strand, exbytx_strand,

+ hits=U1.OV00)

> U1.ovenc

OverlapEncodings object of length 563552 with 0 metadata columns:

Loffset Roffset encoding flippedQuery

<integer> <integer> <factor> <logical>

[1] 0 3 1:i: TRUE

[2] 4 0 1:k: FALSE

[3] 4 0 1:k: TRUE

[4] 4 0 1:k: TRUE

[5] 4 0 1:k: TRUE

...

[563548] 22 0 1:i: TRUE

[563549] 23 0 1:i: TRUE

[563550] 24 0 1:i: TRUE

[563551] 24 0 1:i: TRUE

[563552] 23 0 1:i: TRUE

As a convenience, the 2 above calls to encodeOverlaps + merging step can be replaced by a
single call to encodeOverlaps on U1.grl (or U1.grlf) with flip.query.if.wrong.strand=TRUE:
> U1.ovenc_again <- encodeOverlaps(U1.grl, exbytx, hits=U1.OV00, flip.query.if.wrong.strand=TRUE)

> stopifnot(identical(U1.ovenc_again, U1.ovenc))

12

Overlap encodings

Unique encodings in U1.ovenc:
> U1.unique_encodings <- levels(U1.ovenc)

> length(U1.unique_encodings)

[1] 120

> head(U1.unique_encodings)

[1] "1:c:" "1:e:" "1:f:" "1:h:" "1:i:" "1:j:"

> U1.ovenc_table <- table(encoding(U1.ovenc))

> tail(sort(U1.ovenc_table))

1:f: 1:k:c: 1:k: 1:c: 2:jm:af: 1:i:

1555 1889 8800 9523 72929 455176

Encodings are sort of cryptic but utilities are provided to extract specific meaning from them.
Use of these utilities is covered later in this document.

4.2 Paired-end encodings
Let’s encode the overlaps in U3.OV00:
> U3.grl <- grglist(U3.GALP)

> U3.ovenc <- encodeOverlaps(U3.grl, exbytx, hits=U3.OV00, flip.query.if.wrong.strand=TRUE)

> U3.ovenc

OverlapEncodings object of length 113827 with 0 metadata columns:

Loffset Roffset encoding flippedQuery

<integer> <integer> <factor> <logical>

[1] 4 0 1--1:i--k: TRUE

[2] 4 0 1--1:i--i: TRUE

[3] 4 0 1--1:i--k: FALSE

[4] 4 0 1--1:i--k: FALSE

[5] 4 0 1--1:a--c: TRUE

...

[113823] 22 0 1--1:i--i: TRUE

[113824] 23 0 1--1:i--i: TRUE

[113825] 24 0 1--1:i--i: TRUE

[113826] 24 0 1--1:i--i: TRUE

[113827] 23 0 1--1:i--i: TRUE

Unique encodings in U3.ovenc:
> U3.unique_encodings <- levels(U3.ovenc)

> length(U3.unique_encodings)

[1] 123

> head(U3.unique_encodings)

[1] "1--1:a--c:" "1--1:a--i:" "1--1:a--j:" "1--1:a--k:" "1--1:b--i:" "1--1:b--k:"

> U3.ovenc_table <- table(encoding(U3.ovenc))

> tail(sort(U3.ovenc_table))

13

Overlap encodings

1--1:i--m: 1--1:i--k: 1--1:c--i: 1--2:i--jm:a--af: 2--1:jm--m:af--i:

852 1485 1714 2480 2700

1--1:i--i:

100084

5 Detect “splice compatible” overlaps
We are interested in a particular type of overlap where the read overlaps the transcript in
a “splice compatible” way, that is, in a way that is compatible with the splicing of the
transcript. The isCompatibleWithSplicing function can be used on an OverlapEncodings
object to detect this type of overlap. Note that isCompatibleWithSplicing can also be used
on a character vector or factor.

5.1 Detect “splice compatible” single-end overlaps

5.1.1 “Splice compatible” single-end encodings

U1.ovenc contains 7 unique encodings compatible with the splicing of the transcript:
> sort(U1.ovenc_table[isCompatibleWithSplicing(U1.unique_encodings)])

2:jm:ag: 2:gm:af: 3:jmm:agm:aaf: 1:j: 1:f: 2:jm:af:

32 79 488 1538 1555 72929

1:i:

455176

Encodings "1:i:" (455176 occurences in U1.ovenc), "2:jm:af:" (72929 occurences in U1.ovenc),
and "3:jmm:agm:aaf:" (488 occurences in U1.ovenc), correspond to the following overlaps:

• "1:i:"

- read (no skipped region): oooooooo

- transcript: ... >>>>>>>>>>>>>> ...

• "2:jm:af:"

- read (1 skipped region): ooooo---ooo

- transcript: ... >>>>>>>>> >>>>>>>>> ...

• "3:jmm:agm:aaf:"

- read (2 skipped regions): oo---ooooo---o

- transcript: ... >>>>>>>> >>>>> >>>>>>> ...

For clarity, only the exons involved in the overlap are represented. The transcript can of
course have more upstream and downstream exons, which is denoted by the ... on the left
side (5’ end) and right side (3’ end) of each drawing. Note that the exons represented in the
2nd and 3rd drawings are consecutive and adjacent in the processed transcript.
Encodings "1:f:" and "1:j:" are variations of the situation described by encoding "1:i:".
For "1:f:", the first aligned base of the read (or “flipped” read) is aligned with the first base
of the exon. For "1:j:", the last aligned base of the read (or “flipped” read) is aligned with
the last base of the exon:

• "1:f:"

14

Overlap encodings

- read (no skipped region): oooooooo

- transcript: ... >>>>>>>>>>>>>> ...

• "1:j:"

- read (no skipped region): oooooooo

- transcript: ... >>>>>>>>>>>>>> ...

> U1.OV00_is_comp <- isCompatibleWithSplicing(U1.ovenc)

> table(U1.OV00_is_comp) # 531797 "splice compatible" overlaps

U1.OV00_is_comp

FALSE TRUE

31755 531797

Finally, let’s extract the “splice compatible” overlaps from U1.OV00:
> U1.compOV00 <- U1.OV00[U1.OV00_is_comp]

Note that high-level convenience wrapper findCompatibleOverlaps can be used for com-
puting the “splice compatible” overlaps directly between a GAlignments object (containing
reads) and a GRangesList object (containing transcripts):
> U1.compOV00_again <- findCompatibleOverlaps(U1.GAL, exbytx)

> stopifnot(identical(U1.compOV00_again, U1.compOV00))

5.1.2 Tabulate the “splice compatible” single-end overlaps

Number of “splice compatible” transcripts for each alignment in U1.GAL:
> U1.GAL_ncomptx <- countQueryHits(U1.compOV00)

> mcols(U1.GAL)$ncomptx <- U1.GAL_ncomptx

> head(U1.GAL)

GAlignments object with 6 alignments and 2 metadata columns:

seqnames strand cigar qwidth start end width njunc |

<Rle> <Rle> <character> <integer> <integer> <integer> <integer> <integer> |

SRR031729.3941844 chr4 - 75M 75 892 966 75 0 |

SRR031728.3674563 chr4 - 75M 75 919 993 75 0 |

SRR031729.8532600 chr4 + 75M 75 924 998 75 0 |

SRR031729.2779333 chr4 + 75M 75 936 1010 75 0 |

SRR031728.2826481 chr4 + 75M 75 949 1023 75 0 |

SRR031728.2919098 chr4 - 75M 75 967 1041 75 0 |

ntx ncomptx

<integer> <integer>

SRR031729.3941844 0 0

SRR031728.3674563 0 0

SRR031729.8532600 0 0

SRR031729.2779333 0 0

SRR031728.2826481 0 0

SRR031728.2919098 0 0

seqinfo: 8 sequences from an unspecified genome

> table(U1.GAL_ncomptx)

15

Overlap encodings

U1.GAL_ncomptx

0 1 2 3 4 5 6 7 8 9 10 11 12

51101 9848 33697 72987 5034 14021 7516 581 1789 2015 530 4389 847

> mean(U1.GAL_ncomptx >= 1)

[1] 0.7499401

75% of the alignments in U1.GAL are “splice compatible” with at least 1 transcript in exbytx.
Note that high-level convenience wrapper countCompatibleOverlaps can be used directly on
U1.GAL and exbytx for computing U1.GAL_ncomptx:
> U1.GAL_ncomptx_again <- countCompatibleOverlaps(U1.GAL, exbytx)

> stopifnot(identical(U1.GAL_ncomptx_again, U1.GAL_ncomptx))

Number of “splice compatible” transcripts for each read:
> U1.compOV10 <- remapHits(U1.compOV00, Lnodes.remapping=U1.GAL_qnames)

> U1.uqnames_ncomptx <- countQueryHits(U1.compOV10)

> names(U1.uqnames_ncomptx) <- U1.uqnames

> table(U1.uqnames_ncomptx)

U1.uqnames_ncomptx

0 1 2 3 4 5 6 7 8 9 10 11 12

42886 9711 26075 72989 5413 14044 8584 581 2706 2015 530 4389 847

> mean(U1.uqnames_ncomptx >= 1)

[1] 0.7751953

77.5% of the reads are “splice compatible” with at least 1 transcript in exbytx.
Number of “splice compatible” reads for each transcript:
> U1.exbytx_ncompOV10 <- countSubjectHits(U1.compOV10)

> names(U1.exbytx_ncompOV10) <- names(exbytx)

> mean(U1.exbytx_ncompOV10 >= 50)

[1] 0.008706681

Only 0.87% of the transcripts in exbytx are “splice compatible” with at least 50 reads.
Top 10 transcripts:
> head(sort(U1.exbytx_ncompOV10, decreasing=TRUE), n=10)

FBtr0308296 FBtr0089175 FBtr0089176 FBtr0089243 FBtr0289951 FBtr0112904 FBtr0089186 FBtr0089187

40309 40158 33490 11365 11332 11284 10018 9627

FBtr0333672 FBtr0089172

9568 6599

Note that this “top 10” is slightly different from the “top 10” we obtained earlier when we
counted all the overlaps.

16

Overlap encodings

5.2 Detect “splice compatible” paired-end overlaps

5.2.1 “Splice compatible” paired-end encodings

WARNING: For paired-end encodings, isCompatibleWithSplicing considers that the encod-
ing is “splice compatible” if its 2 halves are “splice compatible”. This can produce false
positives if for example the right end of the alignment is located upstream of the left end
in transcript space. The paired-end read could not come from this transcript. To eliminate
these false positives, one would need to look at the position of the left and right ends in
transcript space. This can be done with extractQueryStartInTranscript.
U3.ovenc contains 13 unique paired-end encodings compatible with the splicing of the tran-
script:
> sort(U3.ovenc_table[isCompatibleWithSplicing(U3.unique_encodings)])

1--2:f--jm:a--af: 1--1:f--j: 2--1:jm--m:af--j:

3 12 21

2--1:jm--m:af--f: 1--1:j--m:a--i: 2--2:jm--jm:af--af:

24 51 64

2--2:jm--mm:af--jm:aa--af: 1--1:i--m:a--i: 1--1:i--j:

153 287 403

1--1:f--i: 1--2:i--jm:a--af: 2--1:jm--m:af--i:

617 2480 2700

1--1:i--i:

100084

Paired-end encodings "1--1:i- (100084 occurences in U3.ovenc), "2--1:jm--m:a (2700 oc-
curences in U3.ovenc), "1--2:i--jm:a (2480 occurences in U3.ovenc), "1--1:i--m: (287
occurences in U3.ovenc), and "2--2:jm--mm:af--jm: (153 occurences in U3.ovenc), corre-
spond to the following paired-end overlaps:

• "1--1:i-

- paired-end read (no skipped region on the first end, no skipped region

on the last end): oooo oooo

- transcript: ... >>>>>>>>>>>>>>>> ...

• "2--1:jm--m:a

- paired-end read (1 skipped region on the first end, no skipped region

on the last end): ooo---o oooo

- transcript: ... >>>>>>>> >>>>>>>>>>> ...

• "1--2:i--jm:a

- paired-end read (no skipped region on the first end, 1 skipped region

on the last end): oooo oo---oo

- transcript: ... >>>>>>>>>>>>>> >>>>>>>>> ...

• "1--1:i--m:

- paired-end read (no skipped region on the first end, no skipped region

on the last end): oooo oooo

- transcript: ... >>>>>>>>> >>>>>>> ...

• "2--2:jm--mm:af--jm:

17

Overlap encodings

- paired-end read (1 skipped region on the first end, 1 skipped region

on the last end): ooo---o oo---oo

- transcript: ... >>>>>> >>>>>>> >>>>> ...

Note: switch use of “first” and “last” above if the read was “flipped”.
> U3.OV00_is_comp <- isCompatibleWithSplicing(U3.ovenc)

> table(U3.OV00_is_comp) # 106835 "splice compatible" paired-end overlaps

U3.OV00_is_comp

FALSE TRUE

6928 106899

Finally, let’s extract the “splice compatible” paired-end overlaps from U3.OV00:
> U3.compOV00 <- U3.OV00[U3.OV00_is_comp]

Note that, like with our single-end reads, high-level convenience wrapper findCompatibleOver
laps can be used for computing the “splice compatible” paired-end overlaps directly between a
GAlignmentPairs object (containing paired-end reads) and a GRangesList object (containing
transcripts):
> U3.compOV00_again <- findCompatibleOverlaps(U3.GALP, exbytx)

> stopifnot(identical(U3.compOV00_again, U3.compOV00))

5.2.2 Tabulate the “splice compatible” paired-end overlaps

Number of “splice compatible” transcripts for each alignment pair in U3.GALP:
> U3.GALP_ncomptx <- countQueryHits(U3.compOV00)

> mcols(U3.GALP)$ncomptx <- U3.GALP_ncomptx

> head(U3.GALP)

GAlignmentPairs object with 6 pairs, strandMode=1, and 2 metadata columns:

seqnames strand : ranges -- ranges | ntx ncomptx

<Rle> <Rle> : <IRanges> -- <IRanges> | <integer> <integer>

SRR031715.1138209 chr4 + : 169-205 -- 326-362 | 0 0

SRR031714.756385 chr4 + : 943-979 -- 1086-1122 | 0 0

SRR031714.5054563 chr4 + : 946-982 -- 986-1022 | 0 0

SRR031715.1722593 chr4 + : 966-1002 -- 1108-1144 | 0 0

SRR031715.2202469 chr4 + : 966-1002 -- 1114-1150 | 0 0

SRR031714.3544437 chr4 - : 1087-1123 -- 963-999 | 0 0

seqinfo: 8 sequences from an unspecified genome

> table(U3.GALP_ncomptx)

U3.GALP_ncomptx

0 1 2 3 4 5 6 7 8 9 10 11 12

13884 2029 8094 14337 1099 2954 1865 84 296 332 89 699 66

> mean(U3.GALP_ncomptx >= 1)

[1] 0.6970411

18

Overlap encodings

69.7% of the alignment pairs in U3.GALP are “splice compatible” with at least 1 transcript in
exbytx.
Note that high-level convenience wrapper countCompatibleOverlaps can be used directly on
U3.GALP and exbytx for computing U3.GALP_ncomptx:
> U3.GALP_ncomptx_again <- countCompatibleOverlaps(U3.GALP, exbytx)

> stopifnot(identical(U3.GALP_ncomptx_again, U3.GALP_ncomptx))

Number of “splice compatible” transcripts for each template:
> U3.compOV10 <- remapHits(U3.compOV00, Lnodes.remapping=U3.GALP_qnames)

> U3.uqnames_ncomptx <- countQueryHits(U3.compOV10)

> names(U3.uqnames_ncomptx) <- U3.uqnames

> table(U3.uqnames_ncomptx)

U3.uqnames_ncomptx

0 1 2 3 4 5 6 7 8 9 10 11 12

12769 2027 6534 14337 1210 2954 2114 84 444 332 89 699 66

> mean(U3.uqnames_ncomptx >= 1)

[1] 0.7075288

70.7% of the templates are “splice compatible” with at least 1 transcript in exbytx.
Number of “splice compatible” templates for each transcript:
> U3.exbytx_ncompOV10 <- countSubjectHits(U3.compOV10)

> names(U3.exbytx_ncompOV10) <- names(exbytx)

> mean(U3.exbytx_ncompOV10 >= 50)

[1] 0.007061324

Only 0.7% of the transcripts in exbytx are “splice compatible” with at least 50 templates.
Top 10 transcripts:
> head(sort(U3.exbytx_ncompOV10, decreasing=TRUE), n=10)

FBtr0308296 FBtr0089175 FBtr0089176 FBtr0289951 FBtr0089243 FBtr0112904 FBtr0089187 FBtr0089186

7425 7419 5227 2686 2684 2640 2257 2250

FBtr0333672 FBtr0310542

2206 1650

Note that this “top 10” is slightly different from the “top 10” we obtained earlier when we
counted all the paired-end overlaps.

19

Overlap encodings

5See http://
bioconductor.org/
packages/release/data/
annotation/ for the
full list of annotation
packages available in
the current release of
Bioconductor.

6 Compute the reference query sequences and project
them on the transcriptome

6.1 Compute the reference query sequences
The reference query sequences are the query sequences after alignment, by opposition to
the original query sequences (aka “true” or “real” query sequences) which are the query
sequences before alignment.
The reference query sequences can easily be computed by extracting the nucleotides mapped
to each read from the reference genome. This of course requires that we have access to the
reference genome used by the aligner. In Bioconductor, the full genome sequence for the
dm3 assembly is stored in the BSgenome.Dmelanogaster.UCSC.dm3 data package 5:
> library(BSgenome.Dmelanogaster.UCSC.dm3)

> Dmelanogaster

Fly genome:

organism: Drosophila melanogaster (Fly)

genome: dm3

provider: UCSC

release date: Apr. 2006

15 sequences:

chr2L chr2R chr3L chr3R chr4 chrX chrU chrM chr2LHet

chr2RHet chr3LHet chr3RHet chrXHet chrYHet chrUextra

(use 'seqnames()' to see all the sequence names, use the '$' or '[[' operator to access a given

sequence)

To extract the portions of the reference genome corresponding to the ranges in U1.grl, we
can use the extractTranscriptSeqs function defined in the GenomicFeatures package:
> library(GenomicFeatures)

> U1.GAL_rqseq <- extractTranscriptSeqs(Dmelanogaster, U1.grl)

> head(U1.GAL_rqseq)

DNAStringSet object of length 6:

width seq names

[1] 75 GGACAACCTAGCCAGGAAAGGGGCAGAGAACCC...GCCCGAACCATTCTGTGGTGTTGGTCACCACAG SRR031729.3941844

[2] 75 CAACAACATCCCGGGAAATGAGCTAGCGGACAA...GAAAGGGGCAGAGAACCCTCTAATTGGGCCCGA SRR031728.3674563

[3] 75 CCCAATTAGAGGGTTCTCTGCCCCTTTCCTGGC...CGCTAGCTCATTTCCCGGGATGTTGTTGTGTCC SRR031729.8532600

[4] 75 GTTCTCTGCCCCTTTCCTGGCTAGGTTGTCCGC...TCCCGGGATGTTGTTGTGTCCCGGGACCCACCT SRR031729.2779333

[5] 75 TTCCTGGCTAGGTTGTCCGCTAGCTCATTTCCC...TTGTGTCCCGGGACCCACCTTATTGTGAGTTTG SRR031728.2826481

[6] 75 CAAACTTGGAGCTGTCAACAAACTCACAATAAG...GGGACACAACAACATCCCGGGAAATGAGCTAGC SRR031728.2919098

When reads are paired-end, we need to extract separately the ranges corresponding to their
first ends (aka first segments in BAM jargon) and those corresponding to their last ends (aka
last segments in BAM jargon):
> U3.grl_first <- grglist(first(U3.GALP, real.strand=TRUE), order.as.in.query=TRUE)

> U3.grl_last <- grglist(last(U3.GALP, real.strand=TRUE), order.as.in.query=TRUE)

Then we extract the portions of the reference genome corresponding to the ranges in GRanges-
List objects U3.grl_first and U3.grl_last:

20

http://bioconductor.org/packages/release/data/annotation/
http://bioconductor.org/packages/release/data/annotation/
http://bioconductor.org/packages/release/data/annotation/
http://bioconductor.org/packages/release/data/annotation/

Overlap encodings

> U3.GALP_rqseq1 <- extractTranscriptSeqs(Dmelanogaster, U3.grl_first)

> U3.GALP_rqseq2 <- extractTranscriptSeqs(Dmelanogaster, U3.grl_last)

6.2 Project the single-end alignments on the transcriptome
The extractQueryStartInTranscript function computes for each overlap the position of the
query start in the transcript:
> U1.OV00_qstart <- extractQueryStartInTranscript(U1.grl, exbytx,

+ hits=U1.OV00, ovenc=U1.ovenc)

> head(subset(U1.OV00_qstart, U1.OV00_is_comp))

startInTranscript firstSpannedExonRank startInFirstSpannedExon

1 100 1 100

8 4229 5 137

9 4229 5 137

10 4207 5 115

11 4207 5 115

12 4187 5 95

U1.OV00_qstart is a data frame with 1 row per overlap and 3 columns:
1. startInTranscript: the 1-based start position of the read with respect to the tran-

script. Position 1 always corresponds to the first base on the 5’ end of the transcript
sequence.

2. firstSpannedExonRank: the rank of the first exon spanned by the read, that is, the
rank of the exon found at position startInTranscript in the transcript.

3. startInFirstSpannedExon: the 1-based start position of the read with respect to the
first exon spanned by the read.

Having this information allows us for example to compare the read and transcript nucleotide
sequences for each “splice compatible” overlap. If we use the reference query sequence instead
of the original query sequence for this comparison, then it should match exactly the sequence
found at the query start in the transcript.
Let’s start by using extractTranscriptSeqs again to extract the transcript sequences (aka
transcriptome) from the dm3 reference genome:
> txseq <- extractTranscriptSeqs(Dmelanogaster, exbytx)

For each “splice compatible” overlap, the read sequence in U1.GAL_rqseq must be an exact
substring of the transcript sequence in exbytx_seq:
> U1.OV00_rqseq <- U1.GAL_rqseq[queryHits(U1.OV00)]

> U1.OV00_rqseq[flippedQuery(U1.ovenc)] <- reverseComplement(U1.OV00_rqseq[flippedQuery(U1.ovenc)])

> U1.OV00_txseq <- txseq[subjectHits(U1.OV00)]

> stopifnot(all(

+ U1.OV00_rqseq[U1.OV00_is_comp] ==

+ narrow(U1.OV00_txseq[U1.OV00_is_comp],

+ start=U1.OV00_qstart$startInTranscript[U1.OV00_is_comp],

+ width=width(U1.OV00_rqseq)[U1.OV00_is_comp])

+))

21

Overlap encodings

Because of this relationship between the reference query sequence and the transcript sequence
of a “splice compatible” overlap, and because of the relationship between the original query
sequences and the reference query sequences, then the edit distance reported in the NM
tag is actually the edit distance between the original query and the transcript of a “splice
compatible” overlap.

6.3 Project the paired-end alignments on the transcriptome
For a paired-end read, the query start is the start of its “left end”.
> U3.OV00_Lqstart <- extractQueryStartInTranscript(U3.grl, exbytx,

+ hits=U3.OV00, ovenc=U3.ovenc)

> head(subset(U3.OV00_Lqstart, U3.OV00_is_comp))

startInTranscript firstSpannedExonRank startInFirstSpannedExon

2 4118 5 26

7 3940 4 31

8 3940 4 31

9 3692 3 320

10 3692 3 320

11 3690 3 318

Note that extractQueryStartInTranscript can be called with for.query.right.end=TRUE

if we want this information for the “right ends” of the reads:
> U3.OV00_Rqstart <- extractQueryStartInTranscript(U3.grl, exbytx,

+ hits=U3.OV00, ovenc=U3.ovenc,

+ for.query.right.end=TRUE)

> head(subset(U3.OV00_Rqstart, U3.OV00_is_comp))

startInTranscript firstSpannedExonRank startInFirstSpannedExon

2 4267 5 175

7 3948 4 39

8 3948 4 39

9 3849 3 477

10 3849 3 477

11 3831 3 459

Like with single-end reads, having this information allows us for example to compare the
read and transcript nucleotide sequences for each “splice compatible” overlap. If we use the
reference query sequence instead of the original query sequence for this comparison, then
it should match exactly the sequences of the “left” and “right” ends of the read in the
transcript.
Let’s assign the “left and right reference query sequences” to each overlap:
> U3.OV00_Lrqseq <- U3.GALP_rqseq1[queryHits(U3.OV00)]

> U3.OV00_Rrqseq <- U3.GALP_rqseq2[queryHits(U3.OV00)]

For the single-end reads, the sequence associated with a “flipped query” just needed to be
“reverse complemented”. For paired-end reads, we also need to swap the 2 sequences in the
pair:

22

Overlap encodings

> flip_idx <- which(flippedQuery(U3.ovenc))

> tmp <- U3.OV00_Lrqseq[flip_idx]

> U3.OV00_Lrqseq[flip_idx] <- reverseComplement(U3.OV00_Rrqseq[flip_idx])

> U3.OV00_Rrqseq[flip_idx] <- reverseComplement(tmp)

Let’s assign the transcript sequence to each overlap:
> U3.OV00_txseq <- txseq[subjectHits(U3.OV00)]

For each “splice compatible” overlap, we expect the “left and right reference query sequences”
of the read to be exact substrings of the transcript sequence. Let’s check the “left reference
query sequences”:
> stopifnot(all(

+ U3.OV00_Lrqseq[U3.OV00_is_comp] ==

+ narrow(U3.OV00_txseq[U3.OV00_is_comp],

+ start=U3.OV00_Lqstart$startInTranscript[U3.OV00_is_comp],

+ width=width(U3.OV00_Lrqseq)[U3.OV00_is_comp])

+))

and the “right reference query sequences”:
> stopifnot(all(

+ U3.OV00_Rrqseq[U3.OV00_is_comp] ==

+ narrow(U3.OV00_txseq[U3.OV00_is_comp],

+ start=U3.OV00_Rqstart$startInTranscript[U3.OV00_is_comp],

+ width=width(U3.OV00_Rrqseq)[U3.OV00_is_comp])

+))

7 Align the reads to the transcriptome
Aligning the reads to the reference genome is not the most efficient nor accurate way to
count the number of “splice compatible” overlaps per original query. Supporting junction
reads (i.e. reads that align with at least 1 skipped region in their CIGAR) introduces a
significant computational cost during the alignment process. Then, as we’ve seen in the
previous sections, each alignment produced by the aligner needs to be broken into a set of
ranges (based on its CIGAR) and those ranges compared to the ranges of the exons grouped
by transcript.
A more straightforward and accurate approach is to align the reads directly to the transcrip-
tome, and without allowing the typical skipped region that the aligner needs to introduce
when aligning a junction read to the reference genome. With this approach, a “hit” be-
tween a read and a transcript is necessarily compatible with the splicing of the transcript.
In case of a “hit”, we’ll say that the read and the transcript are “string-based compatible”
(to differentiate from our previous notion of “splice compatible” overlaps that we will call
“encoding-based compatible” in this section).

23

Overlap encodings

7.1 Align the single-end reads to the transcriptome

7.1.1 Find the “hits”

The single-end reads are in U1.oqseq, the transcriptome is in exbytx_seq.
Since indels were not allowed/supported during the alignment of the reads to the reference
genome, we don’t need to allow/support them either for aligning the reads to the transcrip-
tome. Also since our goal is to find (and count) “splice compatible” overlaps between reads
and transcripts, we don’t need to keep track of the details of the alignments between the
reads and the transcripts. Finally, since BAM file untreated1_chr4.bam is not the full output
of the aligner but the subset obtained by keeping only the alignments located on chr4, we
don’t need to align U1.oqseq to the full transcriptome, but only to the subset of exbytx_seq
made of the transcripts located on chr4.
With those simplifications in mind, we write the following function that we will use to find
the “hits” between the reads and the transcriptome:
> ### A wrapper to vwhichPDict() that supports IUPAC ambiguity codes in 'qseq'

> ### and 'txseq', and treats them as such.

> findSequenceHits <- function(qseq, txseq, which.txseq=NULL, max.mismatch=0)

+ {

+ .asHits <- function(x, pattern_length)

+ {

+ query_hits <- unlist(x)

+ if (is.null(query_hits))

+ query_hits <- integer(0)

+ subject_hits <- rep.int(seq_len(length(x)), elementNROWS(x))

+ Hits(query_hits, subject_hits, pattern_length, length(x),

+ sort.by.query=TRUE)

+ }

+

+ .isHitInTranscriptBounds <- function(hits, qseq, txseq)

+ {

+ sapply(seq_len(length(hits)),

+ function(i) {

+ pattern <- qseq[[queryHits(hits)[i]]]

+ subject <- txseq[[subjectHits(hits)[i]]]

+ v <- matchPattern(pattern, subject,

+ max.mismatch=max.mismatch, fixed=FALSE)

+ any(1L <= start(v) & end(v) <= length(subject))

+ })

+ }

+

+ if (!is.null(which.txseq)) {

+ txseq0 <- txseq

+ txseq <- txseq[which.txseq]

+ }

+

+ names(qseq) <- NULL

+ other <- alphabetFrequency(qseq, baseOnly=TRUE)[, "other"]

+ is_clean <- other == 0L # "clean" means "no IUPAC ambiguity code"

+

24

Overlap encodings

+ ## Find hits for "clean" original queries.

+ qseq0 <- qseq[is_clean]

+ pdict0 <- PDict(qseq0, max.mismatch=max.mismatch)

+ m0 <- vwhichPDict(pdict0, txseq,

+ max.mismatch=max.mismatch, fixed="pattern")

+ hits0 <- .asHits(m0, length(qseq0))

+ hits0@nLnode <- length(qseq)

+ hits0@from <- which(is_clean)[hits0@from]

+

+ ## Find hits for non "clean" original queries.

+ qseq1 <- qseq[!is_clean]

+ m1 <- vwhichPDict(qseq1, txseq,

+ max.mismatch=max.mismatch, fixed=FALSE)

+ hits1 <- .asHits(m1, length(qseq1))

+ hits1@nLnode <- length(qseq)

+ hits1@from <- which(!is_clean)[hits1@from]

+

+ ## Combine the hits.

+ query_hits <- c(queryHits(hits0), queryHits(hits1))

+ subject_hits <- c(subjectHits(hits0), subjectHits(hits1))

+

+ if (!is.null(which.txseq)) {

+ ## Remap the hits.

+ txseq <- txseq0

+ subject_hits <- which.txseq[subject_hits]

+ hits0@nRnode <- length(txseq)

+ }

+

+ ## Order the hits.

+ oo <- orderIntegerPairs(query_hits, subject_hits)

+ hits0@from <- query_hits[oo]

+ hits0@to <- subject_hits[oo]

+

+ if (max.mismatch != 0L) {

+ ## Keep only "in bounds" hits.

+ is_in_bounds <- .isHitInTranscriptBounds(hits0, qseq, txseq)

+ hits0 <- hits0[is_in_bounds]

+ }

+ hits0

+ }

Let’s compute the index of the transcripts in exbytx_seq located on chr4 (findSequenceHits
will restrict the search to those transcripts):
> chr4tx <- transcripts(txdb, vals=list(tx_chrom="chr4"))

> chr4txnames <- mcols(chr4tx)$tx_name

> which.txseq <- match(chr4txnames, names(txseq))

25

Overlap encodings

We know that the aligner tolerated up to 6 mismatches per read. The 3 following commands
find the “hits” for each original query, then find the “hits” for each “flipped original query”,
and finally merge all the “hits” (note that the 3 commands take about 1 hour to complete
on a modern laptop):
> U1.sbcompHITSa <- findSequenceHits(U1.oqseq, txseq,

+ which.txseq=which.txseq, max.mismatch=6)

> U1.sbcompHITSb <- findSequenceHits(reverseComplement(U1.oqseq), txseq,

+ which.txseq=which.txseq, max.mismatch=6)

> U1.sbcompHITS <- union(U1.sbcompHITSa, U1.sbcompHITSb)

7.1.2 Tabulate the “hits”

Number of “string-based compatible” transcripts for each read:
> U1.uqnames_nsbcomptx <- countQueryHits(U1.sbcompHITS)

> names(U1.uqnames_nsbcomptx) <- U1.uqnames

> table(U1.uqnames_nsbcomptx)

U1.uqnames_nsbcomptx

0 1 2 3 4 5 6 7 8 9 10 11 12

40555 10080 25299 74609 5207 14265 8643 610 3410 2056 534 4588 914

> mean(U1.uqnames_nsbcomptx >= 1)

[1] 0.7874142

77.7% of the reads are “string-based compatible” with at least 1 transcript in exbytx.
Number of “string-based compatible” reads for each transcript:
> U1.exbytx_nsbcompHITS <- countSubjectHits(U1.sbcompHITS)

> names(U1.exbytx_nsbcompHITS) <- names(exbytx)

> mean(U1.exbytx_nsbcompHITS >= 50)

[1] 0.008809516

Only 0.865% of the transcripts in exbytx are “string-based compatible” with at least 50
reads.
Top 10 transcripts:
> head(sort(U1.exbytx_nsbcompHITS, decreasing=TRUE), n=10)

FBtr0308296 FBtr0089175 FBtr0089176 FBtr0089243 FBtr0289951 FBtr0112904 FBtr0089186 FBtr0333672

40548 40389 34275 11605 11579 11548 10059 9742

FBtr0089187 FBtr0089172

9666 6704

7.1.3 A closer look at the “hits”

[WORK IN PROGRESS, might be removed or replaced soon...]
Any “encoding-based compatible” overlap is of course “string-based compatible”:
> stopifnot(length(setdiff(U1.compOV10, U1.sbcompHITS)) == 0)

26

Overlap encodings

but the reverse is not true:
> length(setdiff(U1.sbcompHITS, U1.compOV10))

[1] 13549

7.2 Align the paired-end reads to the transcriptome
[COMING SOON...]

8 Detect “almost splice compatible” overlaps
In many aspects, “splice compatible” overlaps can be seen as perfect. We are now insterested
in a less perfect type of overlap where the read overlaps the transcript in a way that would be
“splice compatible” if 1 or more exons were removed from the transcript. In that case we say
that the overlap is “almost splice compatible” with the transcript. The isCompatibleWith

SkippedExons function can be used on an OverlapEncodings object to detect this type of
overlap. Note that isCompatibleWithSkippedExons can also be used on a character vector
of factor.

8.1 Detect “almost splice compatible” single-end overlaps

8.1.1 “Almost splice compatible” single-end encodings

U1.ovenc contains 7 unique encodings “almost splice compatible” with the splicing of the
transcript:
> sort(U1.ovenc_table[isCompatibleWithSkippedExons(U1.unique_encodings)])

2:jm:am:am:am:am:af: 2:jm:am:am:am:am:am:af: 2:gm:am:af: 2:jm:am:am:am:af:

1 1 4 7

3:jmm:agm:aam:aam:aaf: 3:jmm:agm:aam:aaf: 2:jm:am:am:af: 2:jm:am:af:

9 21 144 1015

Encodings "2:jm:am:af:" (1015 occurences in U1.ovenc), "2:jm:am:am:af:" (144 occurences
in U1.ovenc), and "3:jmm:agm:aam:aaf:" (21 occurences in U1.ovenc), correspond to the
following overlaps:

• "2:jm:am:af:"

- read (1 skipped region): ooooo----------ooo

- transcript: ... >>>>>>> >>>> >>>>>>>> ...

• "2:jm:am:am:af:"

- read (1 skipped region): ooooo------------------ooo

- transcript: ... >>>>>>> >>>> >>>>> >>>>>>>> ...

• "3:jmm:agm:aam:aaf:"

- read (2 skipped regions): oo---oooo-----------oo

- transcript: ... >>>>>>> >>>> >>>>> >>>>>>>> ...

> U1.OV00_is_acomp <- isCompatibleWithSkippedExons(U1.ovenc)

> table(U1.OV00_is_acomp) # 1202 "almost splice compatible" overlaps

27

Overlap encodings

U1.OV00_is_acomp

FALSE TRUE

562350 1202

Finally, let’s extract the “almost splice compatible” overlaps from U1.OV00:
> U1.acompOV00 <- U1.OV00[U1.OV00_is_acomp]

8.1.2 Tabulate the “almost splice compatible” single-end overlaps

Number of “almost splice compatible” transcripts for each alignment in U1.GAL:
> U1.GAL_nacomptx <- countQueryHits(U1.acompOV00)

> mcols(U1.GAL)$nacomptx <- U1.GAL_nacomptx

> head(U1.GAL)

GAlignments object with 6 alignments and 3 metadata columns:

seqnames strand cigar qwidth start end width njunc |

<Rle> <Rle> <character> <integer> <integer> <integer> <integer> <integer> |

SRR031729.3941844 chr4 - 75M 75 892 966 75 0 |

SRR031728.3674563 chr4 - 75M 75 919 993 75 0 |

SRR031729.8532600 chr4 + 75M 75 924 998 75 0 |

SRR031729.2779333 chr4 + 75M 75 936 1010 75 0 |

SRR031728.2826481 chr4 + 75M 75 949 1023 75 0 |

SRR031728.2919098 chr4 - 75M 75 967 1041 75 0 |

ntx ncomptx nacomptx

<integer> <integer> <integer>

SRR031729.3941844 0 0 0

SRR031728.3674563 0 0 0

SRR031729.8532600 0 0 0

SRR031729.2779333 0 0 0

SRR031728.2826481 0 0 0

SRR031728.2919098 0 0 0

seqinfo: 8 sequences from an unspecified genome

> table(U1.GAL_nacomptx)

U1.GAL_nacomptx

0 1 2 3 4 5 6 7 8 9 10 11 12

203800 283 101 107 19 24 2 3 1 3 4 4 4

> mean(U1.GAL_nacomptx >= 1)

[1] 0.002715862

Only 0.27% of the alignments in U1.GAL are “almost splice compatible” with at least 1
transcript in exbytx.
Number of “almost splice compatible” alignments for each transcript:
> U1.exbytx_nacompOV00 <- countSubjectHits(U1.acompOV00)

> names(U1.exbytx_nacompOV00) <- names(exbytx)

> table(U1.exbytx_nacompOV00)

28

Overlap encodings

U1.exbytx_nacompOV00

0 1 2 3 4 5 6 7 8 9 10 12 13 14 17 18

29039 50 8 15 12 2 3 7 5 7 3 2 1 1 1 2

20 21 32 34 44 55 59 77 170

1 3 2 1 3 2 1 1 1

> mean(U1.exbytx_nacompOV00 >= 50)

[1] 0.0001713914

Only 0.017% of the transcripts in exbytx are “almost splice compatible” with at least 50
alignments in U1.GAL.
Finally note that the “query start in transcript” values returned by extractQueryStartInTran

script are also defined for “almost splice compatible” overlaps:
> head(subset(U1.OV00_qstart, U1.OV00_is_acomp))

startInTranscript firstSpannedExonRank startInFirstSpannedExon

144226 133 1 133

144227 133 1 133

144240 151 1 151

144241 151 1 151

146615 757 7 39

146616 689 8 39

8.2 Detect “almost splice compatible” paired-end overlaps

8.2.1 “Almost splice compatible” paired-end encodings

U3.ovenc contains 5 unique paired-end encodings “almost splice compatible” with the splicing
of the transcript:
> sort(U3.ovenc_table[isCompatibleWithSkippedExons(U3.unique_encodings)])

2--1:jm--m:am--m:am--m:af--i: 1--2:i--jm:a--am:a--am:a--af:

1 5

2--2:jm--mm:am--mm:af--jm:aa--af: 1--2:i--jm:a--am:a--af:

9 53

2--1:jm--m:am--m:af--i:

73

Paired-end encodings "2--1:jm--m:am--m (73 occurences in U3.ovenc), "1--2:i--jm:a--am
(53 occurences in U3.ovenc), and "2--2:jm--mm:am--mm:af--j (9 occurences in U3.ovenc),
correspond to the following paired-end overlaps:

• "2--1:jm--m:am--m

- paired-end read (1 skipped region on the first end, no skipped region

on the last end): ooo----------o oooo

- transcript: ... >>>>> >>>> >>>>>>>>> ...

• "1--2:i--jm:a--am

- paired-end read (no skipped region on the first end, 1 skipped region

on the last end): oooo oo---------oo

29

Overlap encodings

- transcript: ... >>>>>>>>>>> >>> >>>>>> ...

• "2--2:jm--mm:am--mm:af--j

- paired-end read (1 skipped region on the first end, 1 skipped region

on the last end): o----------ooo oo---oo

- transcript: ... >>>>> >>>> >>>>>>>> >>>>>> ...

Note: switch use of “first” and “last” above if the read was “flipped”.
> U3.OV00_is_acomp <- isCompatibleWithSkippedExons(U3.ovenc)

> table(U3.OV00_is_acomp) # 141 "almost splice compatible" paired-end overlaps

U3.OV00_is_acomp

FALSE TRUE

113686 141

Finally, let’s extract the “almost splice compatible” paired-end overlaps from U3.OV00:
> U3.acompOV00 <- U3.OV00[U3.OV00_is_acomp]

8.2.2 Tabulate the “almost splice compatible” paired-end overlaps

Number of “almost splice compatible” transcripts for each alignment pair in U3.GALP:
> U3.GALP_nacomptx <- countQueryHits(U3.acompOV00)

> mcols(U3.GALP)$nacomptx <- U3.GALP_nacomptx

> head(U3.GALP)

GAlignmentPairs object with 6 pairs, strandMode=1, and 3 metadata columns:

seqnames strand : ranges -- ranges | ntx ncomptx nacomptx

<Rle> <Rle> : <IRanges> -- <IRanges> | <integer> <integer> <integer>

SRR031715.1138209 chr4 + : 169-205 -- 326-362 | 0 0 0

SRR031714.756385 chr4 + : 943-979 -- 1086-1122 | 0 0 0

SRR031714.5054563 chr4 + : 946-982 -- 986-1022 | 0 0 0

SRR031715.1722593 chr4 + : 966-1002 -- 1108-1144 | 0 0 0

SRR031715.2202469 chr4 + : 966-1002 -- 1114-1150 | 0 0 0

SRR031714.3544437 chr4 - : 1087-1123 -- 963-999 | 0 0 0

seqinfo: 8 sequences from an unspecified genome

> table(U3.GALP_nacomptx)

U3.GALP_nacomptx

0 1 2 3 4 5 11

45734 74 4 13 1 1 1

> mean(U3.GALP_nacomptx >= 1)

[1] 0.002051148

Only 0.2% of the alignment pairs in U3.GALP are “almost splice compatible” with at least 1
transcript in exbytx.
Number of “almost splice compatible” alignment pairs for each transcript:

30

Overlap encodings

> U3.exbytx_nacompOV00 <- countSubjectHits(U3.acompOV00)

> names(U3.exbytx_nacompOV00) <- names(exbytx)

> table(U3.exbytx_nacompOV00)

U3.exbytx_nacompOV00

0 1 5 8 12 13 66

29143 22 4 1 1 1 1

> mean(U3.exbytx_nacompOV00 >= 50)

[1] 3.427827e-05

Only 0.0034% of the transcripts in exbytx are “almost splice compatible” with at least 50
alignment pairs in U3.GALP.
Finally note that the “query start in transcript” values returned by extractQueryStartInTran

script are also defined for “almost splice compatible” paired-end overlaps:
> head(subset(U3.OV00_Lqstart, U3.OV00_is_acomp))

startInTranscript firstSpannedExonRank startInFirstSpannedExon

27617 1549 12 45

27629 1562 12 58

27641 1562 12 58

27690 1567 12 63

27812 1549 12 45

42870 659 4 101

> head(subset(U3.OV00_Rqstart, U3.OV00_is_acomp))

startInTranscript firstSpannedExonRank startInFirstSpannedExon

27617 2135 14 115

27629 2135 14 115

27641 2141 14 121

27690 2048 14 28

27812 2136 14 116

42870 866 6 19

9 Detect novel splice junctions

9.1 By looking at single-end overlaps
An alignment in U1.GAL with “almost splice compatible” overlaps but no “splice compatible”
overlaps suggests the presence of one or more transcripts that are not in our annotations.
First we extract the index of those alignments (nsj here stands for “novel splice junction”):
> U1.GAL_is_nsj <- U1.GAL_nacomptx != 0L & U1.GAL_ncomptx == 0L

> head(which(U1.GAL_is_nsj))

[1] 57972 57974 58321 67251 67266 67267

We make this an index into U1.OV00:

31

Overlap encodings

> U1.OV00_is_nsj <- queryHits(U1.OV00) %in% which(U1.GAL_is_nsj)

We intersect with U1.OV00_is_acomp and then subset U1.OV00 to keep only the overlaps that
suggest novel splicing:
> U1.OV00_is_nsj <- U1.OV00_is_nsj & U1.OV00_is_acomp

> U1.nsjOV00 <- U1.OV00[U1.OV00_is_nsj]

For each overlap in U1.nsjOV00, we extract the ranks of the skipped exons (we use a list for
this as there might be more than 1 skipped exon per overlap):
> U1.nsjOV00_skippedex <- extractSkippedExonRanks(U1.ovenc)[U1.OV00_is_nsj]

> names(U1.nsjOV00_skippedex) <- queryHits(U1.nsjOV00)

> table(elementNROWS(U1.nsjOV00_skippedex))

1 2 3 4 5

234 116 7 1 1

Finally, we split U1.nsjOV00_skippedex by transcript names:
> f <- factor(names(exbytx)[subjectHits(U1.nsjOV00)], levels=names(exbytx))

> U1.exbytx_skippedex <- split(U1.nsjOV00_skippedex, f)

U1.exbytx_skippedex is a named list of named lists of integer vectors. The first level of
names (outer names) are transcript names and the second level of names (inner names) are
alignment indices into U1.GAL:
> head(names(U1.exbytx_skippedex)) # transcript names

[1] "FBtr0300689" "FBtr0300690" "FBtr0330654" "FBtr0309810" "FBtr0306539" "FBtr0306536"

Transcript FBtr0089124 receives 7 hits. All of them skip exons 9 and 10:
> U1.exbytx_skippedex$FBtr0089124

$`104549`

[1] 9 10

$`104550`

[1] 9 10

$`104553`

[1] 9 10

$`104557`

[1] 9 10

$`104560`

[1] 9 10

$`104572`

[1] 9 10

$`104577`

32

Overlap encodings

[1] 9 10

Transcript FBtr0089147 receives 4 hits. Two of them skip exon 2, one of them skips exons
2 to 6, and one of them skips exon 10:
> U1.exbytx_skippedex$FBtr0089147

$`72828`

[1] 10

$`74018`

[1] 2 3 4 5 6

$`74664`

[1] 2

$`74670`

[1] 2

A few words about the interpretation of U1.exbytx_skippedex: Because of how we’ve con-
ducted this analysis, the aligments reported in U1.exbytx_skippedex are guaranteed to not
have any “splice compatible” overlaps with other known transcripts. All we can say, for
example in the case of transcript FBtr0089124, is that the 7 reported hits that skip exons 9
and 10 show evidence of one or more unknown transcripts with a splice junction that cor-
responds to the gap between exons 8 and 11. But without further analysis, we can’t make
any assumption about the exons structure of those unknown transcripts. In particular, we
cannot assume the existence of an unknown transcript made of the same exons as transcript
FBtr0089124 minus exons 9 and 10!

9.2 By looking at paired-end overlaps
[COMING SOON...]

10 sessionInfo()

> sessionInfo()

R version 4.1.0 (2021-05-18)

Platform: x86_64-pc-linux-gnu (64-bit)

Running under: Ubuntu 20.04.2 LTS

Matrix products: default

BLAS: /home/biocbuild/bbs-3.13-bioc/R/lib/libRblas.so

LAPACK: /home/biocbuild/bbs-3.13-bioc/R/lib/libRlapack.so

locale:

[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C LC_TIME=en_GB

[4] LC_COLLATE=C LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8

[7] LC_PAPER=en_US.UTF-8 LC_NAME=C LC_ADDRESS=C

[10] LC_TELEPHONE=C LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C

33

Overlap encodings

attached base packages:

[1] stats4 parallel stats graphics grDevices utils datasets methods base

other attached packages:

[1] BSgenome.Dmelanogaster.UCSC.dm3_1.4.0 BSgenome_1.60.0

[3] rtracklayer_1.52.0 TxDb.Dmelanogaster.UCSC.dm3.ensGene_3.2.2

[5] GenomicFeatures_1.44.0 AnnotationDbi_1.54.0

[7] pasillaBamSubset_0.29.0 GenomicAlignments_1.28.0

[9] Rsamtools_2.8.0 Biostrings_2.60.0

[11] XVector_0.32.0 SummarizedExperiment_1.22.0

[13] Biobase_2.52.0 MatrixGenerics_1.4.0

[15] matrixStats_0.58.0 GenomicRanges_1.44.0

[17] GenomeInfoDb_1.28.0 IRanges_2.26.0

[19] S4Vectors_0.30.0 BiocGenerics_0.38.0

loaded via a namespace (and not attached):

[1] httr_1.4.2 bit64_4.0.5 assertthat_0.2.1 BiocManager_1.30.15

[5] BiocFileCache_2.0.0 blob_1.2.1 GenomeInfoDbData_1.2.6 yaml_2.2.1

[9] progress_1.2.2 pillar_1.6.1 RSQLite_2.2.7 lattice_0.20-44

[13] glue_1.4.2 digest_0.6.27 htmltools_0.5.1.1 Matrix_1.3-3

[17] XML_3.99-0.6 pkgconfig_2.0.3 biomaRt_2.48.0 zlibbioc_1.38.0

[21] purrr_0.3.4 BiocParallel_1.26.0 tibble_3.1.2 KEGGREST_1.32.0

[25] generics_0.1.0 ellipsis_0.3.2 cachem_1.0.5 magrittr_2.0.1

[29] crayon_1.4.1 memoise_2.0.0 evaluate_0.14 fansi_0.4.2

[33] tools_4.1.0 prettyunits_1.1.1 hms_1.1.0 BiocStyle_2.20.0

[37] BiocIO_1.2.0 lifecycle_1.0.0 stringr_1.4.0 DelayedArray_0.18.0

[41] compiler_4.1.0 rlang_0.4.11 grid_4.1.0 RCurl_1.98-1.3

[45] rstudioapi_0.13 rjson_0.2.20 rappdirs_0.3.3 bitops_1.0-7

[49] rmarkdown_2.8 restfulr_0.0.13 DBI_1.1.1 curl_4.3.1

[53] R6_2.5.0 knitr_1.33 dplyr_1.0.6 fastmap_1.1.0

[57] bit_4.0.4 utf8_1.2.1 filelock_1.0.2 stringi_1.6.2

[61] Rcpp_1.0.6 vctrs_0.3.8 png_0.1-7 dbplyr_2.1.1

[65] tidyselect_1.1.1 xfun_0.23

34

	1 Introduction
	2 Load reads from a BAM file
	2.1 Load single-end reads from a BAM file
	2.2 Load paired-end reads from a BAM file

	3 Find all the overlaps between the reads and transcripts
	3.1 Load the transcripts from a TxDb object
	3.2 Single-end overlaps
	3.2.1 Find the single-end overlaps
	3.2.2 Tabulate the single-end overlaps

	3.3 Paired-end overlaps
	3.3.1 Find the paired-end overlaps
	3.3.2 Tabulate the paired-end overlaps

	4 Encode the overlaps between the reads and transcripts
	4.1 Single-end encodings
	4.2 Paired-end encodings

	5 Detect ``splice compatible'' overlaps
	5.1 Detect ``splice compatible'' single-end overlaps
	5.1.1 ``Splice compatible'' single-end encodings
	5.1.2 Tabulate the ``splice compatible'' single-end overlaps

	5.2 Detect ``splice compatible'' paired-end overlaps
	5.2.1 ``Splice compatible'' paired-end encodings
	5.2.2 Tabulate the ``splice compatible'' paired-end overlaps

	6 Compute the reference query sequences and project them on the transcriptome
	6.1 Compute the reference query sequences
	6.2 Project the single-end alignments on the transcriptome
	6.3 Project the paired-end alignments on the transcriptome

	7 Align the reads to the transcriptome
	7.1 Align the single-end reads to the transcriptome
	7.1.1 Find the ``hits''
	7.1.2 Tabulate the ``hits''
	7.1.3 A closer look at the ``hits''

	7.2 Align the paired-end reads to the transcriptome

	8 Detect ``almost splice compatible'' overlaps
	8.1 Detect ``almost splice compatible'' single-end overlaps
	8.1.1 ``Almost splice compatible'' single-end encodings
	8.1.2 Tabulate the ``almost splice compatible'' single-end overlaps

	8.2 Detect ``almost splice compatible'' paired-end overlaps
	8.2.1 ``Almost splice compatible'' paired-end encodings
	8.2.2 Tabulate the ``almost splice compatible'' paired-end overlaps

	9 Detect novel splice junctions
	9.1 By looking at single-end overlaps
	9.2 By looking at paired-end overlaps

	10 sessionInfo()

