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1 Introduction

TheGOstats package has extensive facilities for testing the association of Gene Ontology (GO) The
Gene Ontology Consortium (2000) terms to genes in a gene list. You can test for both over
and under representation of GO terms using either the standard Hypergeometric test or a con-
ditional Hypergeometric test that uses the relationships among the GO terms for conditioning
(similar to that presented in Alexa et al. (2006)).

In this vignette we describe the preprocessing required to construct inputs for the main
testing function, hyperGTest, the algorithms used, and the structure of the return value. We
use a microarray data set (Chiaretti et al., 2004) from a clinical trial in acute lymphoblastic
leukemia (ALL) to work an example analysis. In the ALL data, we focus on the patients with
B-cell derived ALL, and in particular on comparing the group with ALL1/AF4 to those with
no observed cytogenetic abnormalities.

To get started, load the packages needed for this analysis:

> library("ALL")

> library("hgu95av2.db")

> library("GO.db")

> library("annotate")

> library("genefilter")

> library("GOstats")

> library("RColorBrewer")

> library("xtable")

> library("Rgraphviz")

2 Preprocessing and Inputs

To perform an analysis using the Hypergeometric-based tests, one needs to define a gene
universe (usually conceptualized as the number of balls in an urn) and a list of selected genes
from the universe. While it is clear that the selected gene list determines to a large degree
the results of the analysis, the fact that the universe has a large effect on the conclusions is,
perhaps, less obvious.

1



For microarray data, one can use the unique gene identifiers assayed in the experiment as
the gene universe. However, the presence of a gene on the array does not necessarily mean
much. Some arrays, such as those from Affymetrix, attempt to include probes for as much of
the genome as possible. Since not all genes will be expressed under all conditions (a widely
held belief is that about 40% of the genome is expressed in any tissue), it may be sensible to
reduce the universe to those that are expressed.

To identify the set of expressed genes from a microarray experiment, we propose that a
non-specific filter be applied and that the genes that pass the filter be used to form the universe
for any subsequent functional analyses. Below, we outline the non-specific filtering procedure
used for the example analysis.

Once a gene universe has been established, one can apply any number of methods to select
genes. For the example analysis we use a simple t-test to identify differentially expressed genes
among the two subgroups in the sample population.

It is worth noting that the effect of increasing the universe size with genes that are irrelevant
to the questions at hand, in general, has the effect of making the resultant p-values look more
significant. For example, in a universe of 1000 genes where 400 have been selected, suppose
that a GO term has 40 gene annotations from the universe of 1000. If 10 of the genes in the
selected gene list are among the 40 genes annotated at this category, then the Hypergeometric
p-value is 0.99. However, if the gene universe contained 5000 genes, the p-value would drop to
0.001.

2.1 Non-specific filtering

First we load the ALL data object and extract the subset of the data we wish to analyze:
subjects with either no cytogenetic abnormality (“NEG”) or those with ”ALL1/AF4”.

> data(ALL, package="ALL")

> ## For this data we can have ALL1/AF4 or BCR/ABL

> subsetType <- "ALL1/AF4"

> ## Subset of interest: 37BRC/ABL + 42NEG = 79 samples

> Bcell <- grep("^B", as.character(ALL$BT))

> bcrAblOrNegIdx <- which(as.character(ALL$mol) %in% c("NEG", subsetType))

> bcrAblOrNeg <- ALL[, intersect(Bcell, bcrAblOrNegIdx)]

> bcrAblOrNeg$mol.biol = factor(bcrAblOrNeg$mol.biol)

We begin our non-specific filtering by removing probe sets that have no Entrez Gene iden-
tifier in our annotation data.

> ## Remove genes that have no entrezGene id

> entrezIds <- mget(featureNames(bcrAblOrNeg), envir=hgu95av2ENTREZID)

> haveEntrezId <- names(entrezIds)[sapply(entrezIds, function(x) !is.na(x))]

> numNoEntrezId <- length(featureNames(bcrAblOrNeg)) - length(haveEntrezId)

> bcrAblOrNeg <- bcrAblOrNeg[haveEntrezId, ]

Similarly, we remove probe sets for which we have no GO annotation.
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> ## Remove genes with no GO mapping

> haveGo <- sapply(mget(featureNames(bcrAblOrNeg), hgu95av2GO),

+ function(x) {

+ if (length(x) == 1 && is.na(x))

+ FALSE

+ else TRUE

+ })

> numNoGO <- sum(!haveGo)

> bcrAblOrNeg <- bcrAblOrNeg[haveGo, ]

Now use the IQR of each probe set across samples to remove those probe sets that have
little variation across samples. Also, since there is an imbalance of men and women by group,
we remove probe sets that measure genes on the Y chromosome.

> ## Non-specific filtering based on IQR

> iqrCutoff <- 0.5

> bcrAblOrNegIqr <- apply(exprs(bcrAblOrNeg), 1, IQR)

> selected <- bcrAblOrNegIqr > iqrCutoff

> ## Drop those that are on the Y chromosome

> ## because there is an imbalance of men and women by group

> chrN <- mget(featureNames(bcrAblOrNeg), envir=hgu95av2CHR)

> onY <- sapply(chrN, function(x) any(x=="Y"))

> onY[is.na(onY)] <- FALSE

> selected <- selected & !onY

> nsFiltered <- bcrAblOrNeg[selected, ]

Here we ensure that each probe set maps to exactly one Entrez Gene ID. If multiple probes
are found to map to the same Entrez Gene ID, we select the probe with largest IQR (from the
computation above).

> numNsWithDups <- length(featureNames(nsFiltered))

> nsFilteredIqr <- bcrAblOrNegIqr[selected]

> uniqGenes <- findLargest(featureNames(nsFiltered), nsFilteredIqr,

+ "hgu95av2")

> nsFiltered <- nsFiltered[uniqGenes, ]

> numSelected <- length(featureNames(nsFiltered))

> ##set up some colors

> BCRcols = ifelse(nsFiltered$mol == subsetType, "goldenrod", "skyblue")

> cols = brewer.pal(10, "RdBu")

Finally, we can define the gene universe we will use for the Hypergeometric tests.

> ## Define gene universe based on results of non-specific filtering

> affyUniverse <- featureNames(nsFiltered)

> entrezUniverse <- unlist(mget(affyUniverse, hgu95av2ENTREZID))

> if (any(duplicated(entrezUniverse)))
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+ stop("error in gene universe: can't have duplicate Entrez Gene Ids")

> ## Also define an alternate universe based on the entire chip

> chipAffyUniverse <- featureNames(bcrAblOrNeg)

> chipEntrezUniverse <- mget(chipAffyUniverse, hgu95av2ENTREZID)

> chipEntrezUniverse <- unique(unlist(chipEntrezUniverse))

Summary of non-specific filtering: Our non-specific filtering procedure removed probes
missing either Entrez Gene identifies or mappings to GO terms. Because of an imbalance of
men and women by group, probes measuring genes on the Y chromosome were dropped. The
inter-quartile range was used with a cutoff of 0.5 to select probes with sufficient variability
across samples to be informative; probes with little variability across all samples are inherently
uninteresting. Finally, the set of remaining probes was refined by ensuring that each probe
maps to exactly one Entrez Gene identifier. For those probes mapping to the same Entrez
Gene ID, the probe with largest IQR was selected.

Producing a set of Entrez Gene identifiers that map to a unique set of probes at the non-
specific filtering stage is important because genes are mapped to GO categories using Entrez
Gene IDs and we want to avoid double counting any GO categories. In all, the filtering left
3323 genes.

2.2 Gene selection via t-test

We apply a standard t-test to identify a set of genes with differential expression between the
ALL1/AF4 and NEG groups.

> ttestCutoff <- 0.05

> ttests = rowttests(nsFiltered, "mol.biol")

> smPV = ttests$p.value < ttestCutoff

> pvalFiltered <- nsFiltered[smPV, ]

> selectedEntrezIds <- unlist(mget(featureNames(pvalFiltered),

+ hgu95av2ENTREZID))

There are 664 genes with p-values less than 0.05. We do not make use of any p-value
correction methods since we are interested in a relatively long gene list.

A detail often omitted from GO association analyses is the fact that the t-test, and most
similar statistics, are directional. For a given gene, average expression might be higher in
the ALL1/AF4 group than in the NEG group, whereas for a different gene it might be the
NEG group that shows the increased expression. By only looking at the p-values for the test
statistics, the directionality is lost. The danger is that an association with a GO category may
be found where the genes are not differentially expressed in the same direction. One way to
tackle this problem is by separating the selected gene list into two lists according to direction
and running two analyses. A more elegant approach is the subject of further research.

2.3 Inputs

Often one wishes to perform many similar analyses using slightly different sets of parameters
and to facilitate this pattern of usage the main interface to the Hypergeometric tests, hyper-
GTest, takes a single parameter object as its argument. This argument is an instance of class
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GOHyperGParams. There are also parameter classes KEGGHyperGParams and PFAMHyper-
GParams defined in the Category package that allow for testing for association with KEGG
pathways and PFAM protein domains, respectively.

Using a parameter class instead of individual arguments makes it easier to organize and
execute a series of related analyses. For example, one can create a list of GOHyperGParams
instances and perform the Hypergeometric test on each using R’s lapply function:

resultList <- lapply(lisOfParamObjs, hyperGTest)

In the absence of a parameter class, this could be achieved using mapply, but the result
would be less readable. Because parameter objects can be copied and modified, they tend to
reduce duplication of code. We’ll demonstrate this in the following example.

Below, we create a parameter instance by specifying the gene list, the universe, the name
of the annotation data package, and the GO ontology we wish to interrogate. For the example
analysis, we have stored the vector of Entrez Gene identifiers making up the gene universe in
entrezUniverse. The selected genes are stored in selectedEntrezIds. If you are following
along with your own data and have an ExpressionSet instance resulting from a non-specific
filtering procedure, you can create the entrezUniverse and selectedEntrezIds vectors using
code similar to that shown here:

> entrezUniverse <- unlist(mget(featureNames(yourData),

+ hgu95av2ENTREZID))

> if (any(duplicated(entrezUniverse)))

+ stop("error in gene universe: can't have duplicate Entrez Gene Ids")

> pvalFiltered <- yourData[hasSmallPvalue, ]

> selectedEntrezIds <- unlist(mget(featureNames(pvalFiltered),

+ hgu95av2ENTREZID))

Here is a description of all the arguments needed to construct a GOHyperGParams instance.

geneIds A vector of gene identifiers that defines the selected list of genes. This is often the
output of a test for differential expression among two sample groups. For experiments
using Affymetrix expression arrays, this should be a vector of Entrez Gene IDs. If you are
using the YEAST annotation package, the vector will consist of yeast systematic names.

universeGeneIds A vector of gene identifiers that defines the universe of possible genes. We
recommend using the set of gene IDs that result from non-specific filtering. The identifiers
should be of the same type as the geneIds; for Affymetrix arrays, these will be Entrez
Gene IDs.

annotation A string giving the name of the annotation data package that corresponds to the
chip used in the experiment.

ontology A two-letter string specifying one of the three GO ontologies: BP, CC, or MF. The
hyperGTest function only tests a single GO ontology at one time.
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pvalueCutoff A numeric values between zero and one used as a p-value cutoff for p-values
generated by the Hypergeometric test. When the test being performed is non-conditional,
this is only used as a default value for printing and summarizing the results. For a
conditional analysis, the cutoff is used during the computation to determine perform the
conditioning: child terms with a p-value less than pvalueCutoff are conditioned out of
the test for their parent term.

conditional A logical value. If TRUE, the test performed uses the conditional algorithm.
Otherwise, a standard Hypergeometric test is performed. When ’conditional(p) ==
TRUE’, the ’hyperGTest’ function uses the structure of the GO graph to estimate for each
term whether or not there is evidence beyond that which is provided by the term’s children
to call the term in question statistically overrepresented. The algorithm conditions on
all child terms that are themselves significant at the specified p-value cutoff. Given a
subgraph of one of the three GO ontologies, the terms with no child categories are tested
first. Next the nodes whose children have already been tested are tested. If any of a
given node’s children tested significant, the appropriate conditioning is performed.

testDirection A string which can be either “over” or “under”. This determines whether the
test performed detects over or under represented GO terms.

> hgCutoff <- 0.001

> params <- new("GOHyperGParams",

+ geneIds=selectedEntrezIds,

+ universeGeneIds=entrezUniverse,

+ annotation="hgu95av2.db",

+ ontology="BP",

+ pvalueCutoff=hgCutoff,

+ conditional=FALSE,

+ testDirection="over")

>

We would also like to perform a conditional test. Instead of having to define a new GO-
HyperGParams instance by hand, we can create a copy and update just the parameter of
interest.

> paramsCond <- params

> conditional(paramsCond) <- TRUE

A similar approach would work to create a parameter object for testing a different GO
ontology or to create an object for testing under representation.

3 Outputs and Result Summarization

The hyperGTest function returns an instance of class GOHyperGResult . When the input pa-
rameter object is a KEGGHyperGParams or PFAMHyperGParams instance, the result will
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instead be a HyperGResult object. Most of the reporting and summarization methods demon-
strated here will work the same, except for those that deal specifically with GO or the GO
graph.

As shown below, printing the result at the R prompt provides a brief summary of the test
performed and the number of significant terms found. Depending on how you pre-processed
your gene list and gene universe, The hyperGTest function may have to do even more filtering
on both of these for you. Genes that are not marked with a GO term from the ontology that
you specified will have to be discarded, and so you might notice that your gene list and gene
universe had shrank somewhat when you print the results.

> hgOver <- hyperGTest(params)

> hgCondOver <- hyperGTest(paramsCond)

>

> hgOver

Gene to GO BP test for over-representation

6935 GO BP ids tested (125 have p < 0.001)

Selected gene set size: 652

Gene universe size: 3246

Annotation package: hgu95av2

> hgCondOver

Gene to GO BP Conditional test for over-representation

6935 GO BP ids tested (65 have p < 0.001)

Selected gene set size: 652

Gene universe size: 3246

Annotation package: hgu95av2

The summary function returns a data.frame summarizing the result. By default, only the
results for terms with a p-value less than the cutoff specified in the parameter instance will
be shown. However, you can set a new cutoff using the pvalue argument. You can also set a
minimum number of genes for each term using the categorySize argument. For GOHyper-
GResult objects, the summary method also has a htmlLinks argument. When TRUE, the GO
term names are printed as HTML links to the GO website.

> df <- summary(hgOver)

> names(df) # the columns

[1] "GOBPID" "Pvalue" "OddsRatio" "ExpCount" "Count" "Size"

[7] "Term"

> dim(summary(hgOver, pvalue=0.1))

[1] 1088 7

> dim(summary(hgOver, categorySize=10))

7



[1] 120 7

Now we demonstrate some of the accessor functions that can be used to extract detail from
a result object. These functions are all detailed in their respective manual pages.

> pvalues(hgOver)[1:3]

GO:0098609 GO:0006955 GO:0007154

1.063880e-08 2.431142e-08 2.446814e-08

> oddsRatios(hgOver)[1:3]

GO:0098609 GO:0006955 GO:0007154

2.343516 1.762997 1.621302

> expectedCounts(hgOver)[1:3]

GO:0098609 GO:0006955 GO:0007154

47.20271 131.96673 290.44732

> geneCounts(hgOver)[1:3]

GO:0098609 GO:0006955 GO:0007154

83 184 353

> universeCounts(hgOver)[1:3]

GO:0098609 GO:0006955 GO:0007154

235 657 1446

> length(geneIds(hgOver))

[1] 652

> length(geneIdUniverse(hgOver)[[3]])

[1] 1446

> ## GOHyperGResult _only_

> ## (NB: edges go from parent to child)

> goDag(hgOver)

A graphNEL graph with directed edges

Number of Nodes = 6935

Number of Edges = 15577

> geneMappedCount(hgOver)

[1] 652
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> universeMappedCount(hgOver)

[1] 3246

> conditional(hgOver)

[1] FALSE

> testDirection(hgOver)

[1] "over"

> testName(hgOver)

[1] "GO" "BP"

>

To make it easy for non-technical users to review the results, the htmlReport function
generates an HTML file that can be viewed in any web browser. The output generated by
htmlReport as called below is output to your current working directory.

> htmlReport(hgCondOver, file="ALL_hgco.html")

4 GOstats Capabilities

In the Hypergeometric model, each term is treated as an independent classification. Each
gene is cross-classified according to whether or not it has been selected and whether or not it
is annotated, not necessarily specifically annotated, at a particular term. A Hypergeometric
probability is computed to assess whether the number of selected genes associated with the
term is larger than expected.

The hyperGTest function provides an implementation of the commonly applied Hyperge-
ometric calculation for over or under-representation of GO terms in a specified gene list. This
computation ignores the structure of the GO terms, treating each term as independent from
all other terms.

Often an analysis for GO term associations results in the identification of directly related
GO terms with considerable overlap of genes. This is because each GO term inherits all
annotations from its more specific descendants. To alleviate this problem, we have implemented
a method which conditions on all child terms that are themselves significant at a specified p-
value cutoff. Given a subgraph of one of the three GO ontologies, we test the leaves of the
graph, that is, those terms with no child terms. Before testing the terms whose children have
already been tested, we remove all genes annotated at significant children from the parent’s
gene list. This continues until all terms have been tested.

> toLatex(sessionInfo())

� R version 4.1.0 (2021-05-18), x86_64-pc-linux-gnu
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� Locale: LC_CTYPE=en_US.UTF-8, LC_NUMERIC=C, LC_TIME=en_GB, LC_COLLATE=C,
LC_MONETARY=en_US.UTF-8, LC_MESSAGES=en_US.UTF-8, LC_PAPER=en_US.UTF-8,
LC_NAME=C, LC_ADDRESS=C, LC_TELEPHONE=C, LC_MEASUREMENT=en_US.UTF-8,
LC_IDENTIFICATION=C

� Running under: Ubuntu 20.04.2 LTS

� Matrix products: default

� BLAS: /home/biocbuild/bbs-3.13-bioc/R/lib/libRblas.so

� LAPACK: /home/biocbuild/bbs-3.13-bioc/R/lib/libRlapack.so

� Base packages: base, datasets, grDevices, graphics, grid, methods, parallel, stats, stats4,
utils

� Other packages: ALL 1.33.0, AnnotationDbi 1.54.0, AnnotationForge 1.34.0,
Biobase 2.52.0, BiocGenerics 0.38.0, Category 2.58.0, GO.db 3.13.0, GOstats 2.58.0,
GSEABase 1.54.0, IRanges 2.26.0, Matrix 1.3-3, RColorBrewer 1.1-2, Rgraphviz 2.36.0,
S4Vectors 0.30.0, XML 3.99-0.6, annotate 1.70.0, genefilter 1.74.0, graph 1.70.0,
hgu95av2.db 3.2.3, org.Hs.eg.db 3.13.0, xtable 1.8-4

� Loaded via a namespace (and not attached): Biostrings 2.60.0, DBI 1.1.1,
GenomeInfoDb 1.28.0, GenomeInfoDbData 1.2.6, KEGGREST 1.32.0, R6 2.5.0,
RBGL 1.68.0, RCurl 1.98-1.3, RSQLite 2.2.7, Rcpp 1.0.6, XVector 0.32.0, bit 4.0.4,
bit64 4.0.5, bitops 1.0-7, blob 1.2.1, cachem 1.0.5, compiler 4.1.0, crayon 1.4.1,
curl 4.3.1, fastmap 1.1.0, httr 1.4.2, lattice 0.20-44, memoise 2.0.0, pkgconfig 2.0.3,
png 0.1-7, rlang 0.4.11, rstudioapi 0.13, splines 4.1.0, survival 3.2-11, tools 4.1.0,
vctrs 0.3.8, zlibbioc 1.38.0
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