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Abstract

The EnrichmentBrowser package implements an analysis pipeline for high-throughput gene
expression data as measured with microarrays and RNA-seq. In a workflow-like manner, the
package brings together a selection of established Bioconductor packages for gene expression
data analysis. It integrates a wide range of gene set and network enrichment analysis methods
and facilitates combination and exploration of results across methods.
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1 Introduction

The EnrichmentBrowser package implements essential functionality for the enrichment anal-
ysis of gene expression data. The analysis combines the advantages of set-based and network-
based enrichment analysis to derive high-confidence gene sets and biological pathways that
are differentially regulated in the expression data under investigation. Besides, the package
facilitates the visualization and exploration of such sets and pathways.

The following instructions will guide you through an end-to-end expression data analysis
workflow including:

1. Preparing the data
. Preprocessing of the data

. Differential expression (DE) analysis

. Executing individual enrichment methods
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4. Defining gene sets of interest

5

6. Combining the results of different methods
7

. Visualize and explore the results

All of these steps are modular, i.e. each step can be executed individually and fine-tuned with
several parameters. In case you are interested in a particular step, you can directly move on
to the respective section. For example, if you have differential expression already calculated
for each gene, and your are now interested whether certain gene functions are enriched for
differential expression, section Set-based enrichment analysis would be the one you should
go for. The last section Putting it all together also demonstrates how to wrap the whole
workflow into a single function, making use of suitably chosen defaults.

2 Reading expression data from file

Typically, the expression data is not already available in R but rather has to be read in from
file. This can be done using the function readSE, which reads the expression data (exprs)
along with the phenotype data (colData) and feature data (rowData) into a SummarizedEx-
periment.

library(EnrichmentBrowser)

data.dir <- system.file("extdata", package = "EnrichmentBrowser")
exprs.file <- file.path(data.dir, "exprs.tab")

cdat.file <- file.path(data.dir, "colData.tab")

rdat.file <- file.path(data.dir, "rowData.tab")

se <- readSE(exprs.file, cdat.file, rdat.file)

The man pages provide details on file format and the SummarizedExperiment data structure.

?readSE
?SummarizedExperiment
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Note: Previous versions of the EnrichmentBrowser used the ExpressionSet data structure.
The migration to SummarizedExperiment in the current release of the EnrichmentBrowser is
done to reflect recent developments in Bioconductor, which discourage use of ExpressionSet
in favor of SummarizedExperiment. Major reasons are the compatibility of SummarizedEx-
periment with operations on genomic regions as well as efficient dealing with big data.

To enable a smooth transition, all functions of the EnrichmentBrowser are still accepting
also an ExpressionSet as input, but are consistently returning a SummarizedExperiment as
output.

Furthermore, users can always coerce from SummarizedExperiment to ExpressionSet via

eset <- as(se, "ExpressionSet")

and vice versa

se <- as(eset, "SummarizedExperiment")

Types of expression data

3.1

The two major data types processed by the EnrichmentBrowser are microarray (intensity
measurements) and RNA-seq (read counts) data.

Although RNA-seq has become the de facto standard for transcriptomic profiling, it is impor-
tant to know that many methods for differential expression and gene set enrichment analysis
have been originally developed for microarray data.

However, differences in data distribution assumptions (microarray: quasi-normal, RNA-seq:
negative binomial) made adaptations in differential expression analysis and, to some extent,
also in gene set enrichment analysis necessary.

Thus, we consider two example datasets — a microarray and a RNA-seq dataset, and discuss
similarities and differences of the respective analysis steps.

Microarray data

To demonstrate the functionality of the package for microarray data, we consider expression
measurements of patients with acute lymphoblastic leukemia [1]. A frequent chromosomal
defect found among these patients is a translocation, in which parts of chromosome 9 and
22 swap places. This results in the oncogenic fusion gene BCR/ABL created by positioning
the ABL1 gene on chromosome 9 to a part of the BCR gene on chromosome 22.

We load the ALL dataset

library (ALL)
data(ALL)

and select B-cell ALL patients with and without the BCR/ABL fusion as described previously
[2]-

ind.bs <- grep("”B", ALL$BT)

ind.mut <- which(ALL$mol.biol %in% c("BCR/ABL", "NEG"))

sset <- intersect(ind.bs, ind.mut)

all.eset <- ALL[, sset]
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3.2

We can now access the expression values, which are intensity measurements on a log-scale
for 12,625 probes (rows) across 79 patients (columns).

dim(all.eset)

## Features Samples
## 12625 79

exprs(all.eset)[1:4,1:4]

## 01005 01010 03002 04007
## 1000_at  7.597323 7.479445 7.567593 7.905312
## 1001_at  5.046194 4.932537 4.799294 4.844565
## 1002_f_at 3.900466 4.208155 3.886169 3.416923
## 1003_s_at 5.903856 6.169024 5.860459 5.687997

As we often have more than one probe per gene, we summarize gene expression values as the
average of the corresponding probe values.

allSE <- probe2gene(all.eset)
head (rownames (allSE))

## [1] "5595" "7075" "1557" "643" "1843" "4319"
Note, that the mapping from probe to gene is done automatically as long as as you have the

corresponding annotation package, here the hgu95av2.db package, installed. Otherwise, the
mapping can be manually defined in the rowData slot.

rowData(se)

## DataFrame with 1000 rows and 1 column

## ENTREZID
#i# <character>
## 3075 3075
## 572 572
## 4267 4267
## 26 26
## 51384 51384
## ... -
## 5295 5295
## 2966 2966
## 9140 9140
## 5558 5558
## 1956 1956

RNA-seq data

To demonstrate the functionality of the package for RNA-seq data, we consider transcriptome
profiles of four primary human airway smooth muscle cell lines in two conditions: control and
treatment with dexamethasone [3].

We load the airway dataset

library(airway)
data(airway)
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For further analysis, we remove genes with very low read counts and measurements that are
not mapped to an ENSEMBL gene ID.

airSE <- airway[grep("~ENSG", rownames(airway)), ]
airSE <- airSE[rowSums(assay(airSE)) > 4,]
dim(airSE)

## [1] 25133 8

assay(airSE)[1:4,1:4]

## SRR1039508 SRR1039509 SRR1039512 SRR1039513
## ENSGOOO00000003 679 448 873 408
## ENSGOOO00000419 467 515 621 365
## ENSGOOO00000457 260 211 263 164
## ENSGOOO00000460 60 55 40 35

4 Normalization

Normalization of high-throughput expression data is essential to make results within and
between experiments comparable. Microarray (intensity measurements) and RNA-seq (read
counts) data typically show distinct features that need to be normalized for. The function
wraps commonly used functionality from /imma for microarray normalization and
from EDASeq for RNA-seq normalization. For specific needs that deviate from these standard
normalizations, the user should always refer to more specific functions/packages.

Microarray data is expected to be single-channel. For two-color arrays, it is expected that
normalization within arrays has been already carried out, e.g. using
from limma.

A default quantile normalization based on from limma can be car-
ried out via
allSE <- normalize(allSE, norm.method = "quantile")

par(mfrow=c(1,2))
boxplot(assay(allSE, "raw"))
boxplot(assay(allSE, "norm"))
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Note that this is only done for demonstration, as the ALL data has been already RMA-
normalized by the authors of the ALL dataset.
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RNA-seq data is expected to be raw read counts. Note that normalization for downstream DE
analysis, e.g. with edgeR and DESeq2, is not ultimately necessary (and in some cases even
discouraged) as many of these tools implement specific normalization approaches themselves.
See the vignette of EDASeq, edgeR, and DESeq?2 for details.

In case normalization is desired, between-lane normalization to adjust for sequencing depth
can be carried out as demonstrated for microarray data.

airSE <- normalize(airSE, norm.method = "quantile")
Within-lane normalization to adjust for gene-specific effects such as gene length and GC-
content requires to retrieve this information first, e.g. from BioMart or specific Bioconduc-

torannotation packages. Both modes are implemented in the EDASeq function getGene
LengthAndGCContent.

3 Differential expression

The EnrichmentBrowser incorporates established functionality from the /imma package for
differential expression analysis between sample groups. This involves the voom-transformation
when applied to RNA-seq data. Alternatively, differential expression analysis for RNA-seq data
can also be carried out based on the negative binomial distribution with edgeR and DESeq?2.

This can be performed using the function deAna and assumes some standardized variable
names:

= GROUP defines the sample groups being contrasted,
= BLOCK defines paired samples or sample blocks, as e.g. for batch effects.
For more information on experimental design, see the limma user's guide, chapter 9.

For the ALL dataset, the GROUP variable indicates whether the BCR-ABL gene fusion is
present (1) or not (0).

allSE$GROUP <- ifelse(allSE$mol.biol == "BCR/ABL", 1, 0)
table (allSE$GROUP)

##

# 0 1

## 42 37

For the airway dataset, it indicates whether the cell lines have been treated with dexametha-
sone (1) or not (0).

airSE$GROUP <- ifelse(airway$dex == "trt", 1, 0)
table(airSE$GROUP)

##

## 0 1

## 4 4

Paired samples, or in general sample batches/blocks, can be defined via a BLOCK column in
the colData slot. For the airway dataset, the sample blocks correspond to the four different
cell lines.
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airSE$BLOCK <- airway$cell

table(airSE$BLOCK)

##

## NO52611 NO61011 NO80611 N61311
## 2 2 2 2

For microarray expression data, the deAna function carries out a differential expression analysis
between the two groups based on functionality from the /imma package. Resulting fold
changes and t-test derived p-values for each gene are appended to the rowData slot.

allSE <- deAna(allSE, padj.method = "BH")

rowData(allSE)

## DataFrame with 9055 rows and 4 columns

## FC limma.STAT PVAL ADJ.PVAL
## <numeric> <numeric> <numeric> <numeric>
## 5595 0.0391658 0.664683 0.5081697 0.859148
## 7075 0.0165406 0.234769 0.8149894 0.957699
## 1557 -0.0502378 -1.267361 0.2087126 0.687003
## 643 -0.0306036 -0.663973 0.5086218 0.859148
## 1843 -0.4139849 -1.764745 0.0814332 0.512159
#H ... A - . -
## 6300 -0.0450580 -0.946756 0.346621 0.781953
## 7297 -0.1341458 -1.233249 0.221104 0.699965
## 2246 0.0309975 0.799853 0.426171 0.819849
## 7850 -0.0214281 -0.245020 0.807070 0.957306
## 1593 -0.0127170 -0.255010 ©0.799371 0.955881

Nominal p-values (PVAL) are corrected for multiple testing (ADJ.PVAL) using the method from
Benjamini and Hochberg implemented in the function p.adjust from the stats package.

To get a first overview, we inspect the p-value distribution and the volcano plot (fold change
against p-value).

par(mfrow = c(1,2))
pdistr(rowData(allSE)$PVAL)
volcano(rowData(allSE)$FC, rowData(allSE)$ADJ.PVAL)

P-Value Distribution Volcano Plot

Frequency
-log10(p)

P-Value log2(foldChange)
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The expression change of highest statistical significance is observed for the ENTREZ gene
7525.

ind.min <- which.min(rowData(allSE)$ADJ.PVAL)
rowData(allSE) [ind.min, ]

## DataFrame with 1 row and 4 columns

## FC limma.STAT PVAL ADJ.PVAL
## <numeric> <numeric> <numeric>  <numeric>
## 7525 1.4218 7.01984 6.56984e-10 5.94899¢e-06

This turns out to be the YES proto-oncogene 1 (hsa:7525@KEGG).

For RNA-seq data, the deAna function carries out a differential expression analysis between the
two groups either based on functionality from /imma (that includes the voom transformation),
or alternatively, the popular edgeR or DESeq2 package.

Here, we use the analysis based on edgeR for demonstration.

airSE <- deAna(airSE, de.method = "edgeR")
rowData(airSE)

## DataFrame with 15926 rows and 4 columns

#i# FC edgeR.STAT PVAL  ADJ.PVAL
#i# <numeric> <numeric> <numeric> <numeric>
## ENSGOO000000003 -0.3901002 31.0558140 0.000232422 0.00217355
## ENSGO0000000419 0.1978022 6.6454709 0.027419893 0.07560513
## ENSGO0000000457 0.0291609 0.0929623 0.766666551 0.84808859
## ENSGOO000000460 -0.1243820 0.3832263 0.549659194 0.67996523
## ENSGOO000000971 0.4172901 28.7686093 0.000312276 0.00272063

## ... 200
## ENSGO0000273373 -0.0438722
## ENSGO0000273382 -0.8597567
## ENSGO0000273448 0.0281667
## ENSGO0000273472 -0.4642705
## ENSGO0000273486 -0.1109445

.0397087  0.8460260 0.901607
.7869742  0.0190219  0.057267
.0103270  0.9752405  0.984888
.9010366 0.1978818  0.328963
.1536285  0.7032766  0.802377

o H O N o

6 ID mapping

Using genomic information from different resources often requires mapping between different
types of gene identifiers. Although primary analysis steps such as normalization and differ-
ential expression analysis can be carried out independent of the gene ID type, downstream
exploration functionality of the EnrichmentBrowser is consistently based on NCBI Entrez
Gene IDs. It is thus, in this regard, beneficial to initially map gene IDs of a different type to
NCBI Entrez IDs.

The function idTypes lists the available ID types for the mapping depending on the organism
under investigation.

idTypes("hsa")

## [1] "ACCNUM" "ALIAS" "ENSEMBL" "ENSEMBLPROT"
## [5] "ENSEMBLTRANS" "ENTREZID" "ENZYME" "EVIDENCE"
## [9] "EVIDENCEALL" "GENENAME" "GENETYPE" "GO"
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## [13] "GOALL" "IPI" "MAP" "OMIM"
## [17] "ONTOLOGY" "ONTOLOGYALL" "PATH" "PFAM"
## [21] "PMID" "PROSITE" "REFSEQ" "SYMBOL"
## [25] "UCSCKG" "UNIPROT"

ID mapping for the airway dataset (from ENSEMBL to ENTREZ gene ids) can then be
carried out using the function idMap.

head (rownames (airSE))

## [1] "ENSGOO0O0000003" "ENSGOOO00000419" "ENSGOOO00000457" "ENSGOOOOO000460"
## [5] "ENSGOO000000971" "ENSGOOO00001036"

airSE <- idMap(airSE, org = "hsa", from = "ENSEMBL", to = "ENTREZID")
head (rownames (airSE))

## [1] "7105" "8813" "57147" "55732" "3075" "2519"

Now, we subject the ALL and the airway gene expression data to the enrichment analysis.
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Enrichment analysis

7.1

In the following, we introduce how the EnrichmentBrowser package can be used to perform
state-of-the-art enrichment analysis of gene sets. We consider the ALL and the airway gene
expression data as processed in the previous sections. We are now interested in whether pre-
defined sets of genes that are known to work together, e.g. as defined in the Gene Ontology
(GO) or the KEGG pathway annotation, are coordinately differentially expressed.

Obtaining gene sets

The function getGenesets can be used to download gene sets from databases such as GO
and KEGG. We can use the function to download all KEGG pathways for a chosen organism
(here: Homo sapiens) as gene sets.

kegg.gs <- getGenesets(org = "hsa", db = "kegg")

Analogously, the function getGenesets can be used to retrieve GO terms of a selected ontol-
ogy (here: biological process, BP) as defined in the GO.db annotation package.

go.gs <- getGenesets(org = "hsa", db = "go", onto = "BP", mode = "GO.db")

If provided a file, the function parses user-defined gene sets from GMT file format. Here,

we use this functionality for reading a list of already downloaded KEGG gene sets for Homo
sapiens containing NCBI Entrez Gene IDs.

gmt.file <- file.path(data.dir, "hsa_kegg_gs.gmt")
hsa.gs <- getGenesets(gmt.file)
length(hsa.gs)

## [1] 39

hsa.gs[1:2]

## $hsa05416_Viral_myocarditis

## [1] "100509457" "101060835" "1525" "1604" "1605" "1756"
## [7] "1981" "1982" "25" "2534" "27" "3105"
## [13] "3106" "3107" "3108" "3109" "3111" "3112"
## [19] "3113" "3115" "3117" "3118" "3119" "3122"
## [25] "3123" "3125" "3126" "3127" "3133" "3134"
## [31] "3135" "3383" "3683" "3689" "3908" "4624"
## [37] "4625" "54205" "5551" "5879" "5880" "5881"
## [43] "595" "60" "637" "6442" "6443" "6444"
## [49] "6445" "71" "836" "841" "842" "857"

## [55] "8672" "940" "941" 942" "958" "959"

#i#

## $ hsa04622 RIG-I-like_receptor_signaling_pathway”

## [1] "10016" "1147" "1432" "1540" "1654" "23586" "26007" "29110"
## [9] "338376" "340061" "3439" "3440" "3441" "3442" "3443" "3444"
## [17] "3445" "3446" "3447" "3448" "3449" "3451" "3452" "3456"
## [25] "3467" "3551" "3576" "3592" "3593" "3627" "3661" "3665"
## [33] "4214" "4790" "4792" "4793" "5300" "54941" "55593" "5599"
## [41] "5600" "5601" "5602" "5603" "56832" "57506" "5970" "6300"
## [49] "64135" "64343" "6885" "7124" "7186" "7187" "7189" "7706"
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## [57] "79132" "79671" "80143" "841" "843" "8517" "8717" "8737"
## [65] "8772" "9140" "9474" "9636" "9641" "9755"

Note #1: Use getGenesets with db = "msigdb" to obtain gene set collections for 11 different
species from the Molecular Signatures Database (MSigDB). Analogously, getGenesets with
db = "enrichr" allows to obtain gene set libraries from the comprehensive Enrichr collection
for 5 different species.

Note #2: The idMap function can be used to map gene sets from NCBI Entrez Gene IDs to
other common gene ID types such as ENSEMBL gene IDs or HGNC symbols as described in
Section 6.

Set-based enrichment analysis

Currently, the following set-based enrichment analysis methods are supported

sbeaMethods ()

## [1] Ilorall Ilsafell Ilgseall Ilgsall Ilpadogll
## [6] "globaltest" "roast" "camera" "gsva" "samgs"
## [11] "ebm" "mgsa"

= ORA: Overrepresentation Analysis (simple and frequently used test based on the hy-
pergeometric distribution, see [4] for a critical review),

= SAFE: Significance Analysis of Function and Expression (resampling version of ORA,
implements additional test statistics, e.g. Wilcoxon’s rank sum, and allows to estimate
the significance of gene sets by sample permutation; implemented in the safe package),

= GSEA: Gene Set Enrichment Analysis (frequently used and widely accepted, uses a
Kolmogorov—Smirnov statistic to test whether the ranks of the p-values of genes in a
gene set resemble a uniform distribution [5]),

= PADOG: Pathway Analysis with Down-weighting of Overlapping Genes (incorporates
gene weights to favor genes appearing in few pathways versus genes that appear in
many pathways; implemented in the PADOG package),

= ROAST: ROtAtion gene Set Test (uses rotation instead of permutation for assessment
of gene set significance; implemented in the /imma and edgeR packages for microarray
and RNA-seq data, respectively),

= CAMERA: Correlation Adjusted MEan RAnk gene set test (accounts for inter-gene
correlations as implemented in the /imma and edgeR packages for microarray and
RNA-seq data, respectively),

= GSA: Gene Set Analysis (differs from GSEA by using the maxmean statistic, i.e. the
mean of the positive or negative part of gene scores in the gene set; implemented in
the GSA package),

= GSVA: Gene Set Variation Analysis (transforms the data from a gene by sample matrix
to a gene set by sample matrix, thereby allowing the evaluation of gene set enrichment
for each sample; implemented in the GSVA package)

= GLOBALTEST: Global testing of groups of genes (general test of groups of genes for
association with a response variable; implemented in the globaltest package),

12
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7.3

= SAMGS: Significance Analysis of Microarrays on Gene Sets (extending the SAM method
for single genes to gene set analysis [6]),

= EBM: Empirical Brown's Method (combines p-values of genes in a gene set using
Brown's method to combine p-values from dependent tests; implemented in Empirical-
BrownsMethod),

= MGSA: Model-based Gene Set Analysis (Bayesian modeling approach taking set overlap
into account by working on all sets simultaneously, thereby reducing the number of
redundant sets; implemented in mgsa).

See also Appendix A for a comprehensive introduction on underlying statistical concepts.

Guidelines for input and method selection

We recently performed a comprehensive assessment of the availabe set-based enrichment
methods, and identified significant differences in runtime and applicability to RNA-seq data,
fraction of enriched gene sets depending on the null hypothesis tested, and detection of
relevant processes [7]. Based on these results, we make practical recommendations on how
methods originally developed for microarray data can efficiently be applied to RNA-seq data,
how to interpret results depending on the type of gene set test conducted and which methods
are best suited to effectively prioritize gene sets with high phenotype relevance:

= for the exploratory analysis of simple gene lists, we recommend ORA given its ease of
applicability, fast runtime and evident relevance of resulting gene set rankings, provided
that input gene list and reference gene list are chosen carefully and remembering ORA's
propensity for type | error rate inflation when genes tend to be co-expressed within sets.

= for the analysis of pre-ranked gene lists accompanied by gene scores such as fold
changes, alternatives to ORA such as pre-ranked GSEA or pre-ranked CAMERA exist.

= for expression-based enrichment analysis on the full expression matrix, we recommend
providing normalized log2 intensities for microarray data, and logTPMs (or logRPKMs
/ logFPKMs) for RNA-seq data. When given raw read counts, we recommend to apply
a variance-stabilizing transformation such as voom to arrive at library-size normalized
logCPMs.

= if the question of interest is to test for association of any gene in the set with the
phenotype (self-contained null hypothesis), we recommend ROAST or GSVA that
both test a directional hypothesis (genes in the set tend to be either predominantly up-
or down-regulated). Both methods can be applied for simple or extended experimental
designs, where ROAST is the more natural choice for the comparison of sample groups
and also allows one to test a mixed hypothesis (genes in the set tend to be differentially
expressed, regardless of the direction). The main strength of GSVA lies in its capabilities
for analyzing single samples.

= if the question of interest is to test for excess of differential expression in a gene set
relative to genes outside the set (competitive null hypothesis), which we believe comes
closest to the expectations and intuition of most end users when performing GSEA, we
recommend PADOG, which is slower to run but resolves major shortcomings of ORA,
and has desirable properties for the analyzed criteria and when compared to other com-
petitive methods. However, PADOG is limited to testing a mixed hypothesis in a com-
parison of two sample groups, optionally including paired samples or sample batches.
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7.3.1

7.3.2

7.4

Therefore, we recommend the highly customizable SAFE for testing a directional hy-
pothesis or in situations of more complex experimental designs such as comparisons
between multiple groups, continuous phenotypes or the presence of covariates.

See also Reference [7] for the results of the benchmarking study and the GSEABenchmarkeR
package for a general framework for reproducible benchmarking of gene set enrichment meth-
ods.

Microarray data

Given normalized log?2 intensities for the ALL microarray dataset, a basic ORA can be carried
out via

sbea.res <- sbea(method = "ora", se = allSE, gs = hsa.gs, perm = 0, alpha = 0.1)
gsRanking(sbea.res)

## DataFrame with 4 rows and 4 columns

## GENE.SET NR.GENES NR.SIG.GENES PVAL
## <character> <numeric> <numeric> <numeric>
## 1 hsa05130_Pathogenic_.. 44 5 0.0298
## 2 hsa05206_MicroRNAs_i.. 133 10 0.0371
## 3 hsa04622_RIG-I-like_.. 55 5 0.0681
## 4 hsa04670_Leukocyte_ t.. 94 7 0.0810

Note that we set perm = 0 to invoke the classical hypergeometric test without sample per-
mutation, and that we chose a significance level a of 0.1 for demonstration purposes.

RNA-seq data

When analyzing RNA-seq datasets with expression values given as logTPMs (or logRPKMs
/ logFPKMs), the available set-based enrichment methods can be applied as for microarray
data. However, when given raw read counts as for the airway dataset, we recommend to first
apply a variance-stabilizing transformation such as voom to arrive at library-size normalized
logCPMs.

airSE <- normalize(airSE, norm.method = "vst")
The mean-variance relationship of the transformed data is similar to what is observed for

microarray data, simplifying the application of legacy enrichment methods such as GSEA and
PADOG to RNA-seq data, and enable the use of fast and established methods.

air.res <- sbhea(method = "gsea", se = airSE, gs = hsa.gs)
gsRanking(sbea.res)

Result exploration

The result of every enrichment analysis is a ranking of gene sets by the corresponding p-
value. The gsRanking function displays by default only those gene sets satisfying the chosen
significance level a, but we can use

gsRanking(sbea.res, signif.only = FALSE)

## DataFrame with 39 rows and 4 columns
## GENE.SET NR.GENES NR.SIG.GENES PVAL
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## <character> <numeric> <numeric> <numeric>
## 1 hsa05130_Pathogenic_.. 44 5 0.0298
## 2 hsa®05206_MicroRNAs_i.. 133 10 0.0371
## 3  hsa04622 RIG-I-like_.. 55 5 0.0681
## 4  hsa04670_Leukocyte t.. 94 7 0.0810
## 5 hsa05100_Bacterial i.. 64 5 0.1130
## ... .

## 35 hsa05218_Melanoma 58 0 1
## 36 hsa05150_Staphylococ.. 46 0 1
## 37 hsa03420_Nucleotide_.. 41 0 1
## 38 hsa03030_DNA_replica.. 33 0 1
## 39 hsa03410_Base_excisi.. 27 0 1

to obtain the full ranking.

While such a ranked list is the standard output of existing enrichment tools, the Enrichment-
Browser package provides visualization and interactive exploration of resulting gene sets far
beyond that point. Using the eaBrowse function creates a HTML summary from which each
gene set can be inspected in detail (this builds on functionality from the ReportingTools
package).

The various options are described in Figure 1.

eaBrowse(sbea.res)

ORA - Table of Results

10 j records per page Search all columns:
From to

GENE.SET TITLE NR.GENES P.VALUE SET.VIEW PATH.VIEW
hsa04622 RIG-I-like receptor signaling pathway 54 0.00888

hsa05130 Pathogenic Escherichia coli infection 43 0.01400

hsa04520 Adherens junction 68 0.02610

hsa05208 MicroRNAs in cancer 133 0.03310

hsa05416 Viral myocarditis 55 0.03720

Showing 1 to 5 of 5 entries « Previous | 1 Next

Figure 1: ORA result view

For each significant gene set in the ranking, the user can select to view (1) a gene report, that
lists all genes of a set along with fold change and DE p-value, (2) interactive overview plots
such as heatmap, p-value distribution, and volcano plot, (3) the pathway in KEGG with differ-
entially expressed genes highlighted in red.
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7.5

Network-based enrichment analysis

Having found sets of genes that are differentially regulated in the ALL data, we are now
interested whether these findings can be supported by known regulatory interactions.

For example, we want to know whether transcription factors and their target genes are ex-
pressed in accordance to the connecting regulations (activation/inhibition). Such information
is usually given in a gene regulatory network derived from specific experiments or compiled
from the literature ([8] for an example).

There are well-studied processes and organisms for which comprehensive and well-annotated
regulatory networks are available, e.g. the RegulonDB for E. coli and Yeastract for S. cere-
visiae. However, there are also cases where such a network is missing. A basic workaround is
to compile a network from regulations in pathway databases such as KEGG.

hsa.grn <- compileGRN(org="hsa", db="kegg")
head(hsa.grn)

## FROM TO TYPE
## [1,] "10000" "100132074" "-"
## [2,] "10000" "1026" gt

## [3,] "10000" "1026" "o
## [4,] "10000" "1027" "
## [5,] "10000" "10488" "y
## [6,] "10000" "107" "y

Now, we are able to perform enrichment analysis using the compiled network. Currently, the
following network-based enrichment analysis methods are supported

nbeaMethods ()

## [1] "ggea" "spia" "pathnet" "degraph" "ganpa"
## [6] "cepa" "topologygsa" "netgsa" "neat"

= GGEA: Gene Graph Enrichment Analysis (evaluates consistency of known regulatory
interactions with the observed expression data [9]),

= SPIA: Signaling Pathway Impact Analysis (combines ORA with the probability that
expression changes are propagated across the pathway topology; implemented in the
SPIA package),

= PathNet: Pathway Analysis using Network Information (applies ORA on combined
evidence for the observed signal for gene nodes and the signal implied by connected
neighbors in the network; implemented in the PathNet package),

= DEGraph: Differential expression testing for gene graphs (multivariate testing of differ-
ences in mean incorporating underlying graph structure; implemented in the DEGraph
package),

= TopologyGSA: Topology-based Gene Set Analysis (uses Gaussian graphical models to
incorporate the dependence structure among genes as implied by pathway topology;
implemented in the topologyGSA package),

= GANPA: Gene Association Network-based Pathway Analysis (incorporates network-
derived gene weights in the enrichment analysis; implemented in the GANPA package),
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For demonstration, we perform GGEA using the compiled KEGG regulatory network.

= CePa: Centrality-based Pathway enrichment (incorporates network centralities as node
weights mapped from differentially expressed genes in pathways; implemented in the

CePa package),

NetGSA: Network-based Gene Set Analysis (incorporates external information about
interactions among genes as well as novel interactions learned from data; implemented

in the NetGSA package),

nbea.res <- nbea(method="ggea", se=allSE, gs=hsa.gs, grn=hsa.grn)
gsRanking(nbea.res)

## DataFrame with 9 rows and 5 columns
GENE.SET

##
##
##
##
##
##
##
##
##
##
##

The resulting ranking lists, for each statistically significant gene set, the number of relations
of the network involving a member of the gene set under study (NR.RELS), the sum of
consistencies over the relations of the set (RAW.SCORE), the score normalized by induced
network size (NORM.SCORE = RAW.SCORE / NR.RELS), and the statistical significance of each
gene set based on a permutation approach.

A GGEA graph for a gene set depicts the consistency of each interaction in the set. Nodes
(genes) are colored according to expression (up-/down-regulated) and edges (interactions)
are colored according to consistency, i.e. how well the interaction type (activation/inhibition)
is reflected in the correlation of the observed expression of both interaction partners.

© 00N O Ul B WN =

NR.RELS RAW.SCORE NORM.SCORE
<numeric> <numeric>

<character> <numeric> <numeric>

hsa05416_Viral_myoca. .
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hsa05134_Legionellosis
hsa05412_Arrhythmoge. .

hsa04210_Apoptosis
hsa04621_NOD-like_re..
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7.6
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User-defined enrichment methods

The goal of the EnrichmentBrowser package is to provide frequently used enrichment meth-
ods. However, it is also possible to exploit its visualization capabilities with user-defined
set-based enrichment methods.

This requires to implement a function that takes the characteristic arguments se (expression
data) and gs (gene sets).

In addition, it must return a numeric vector ps storing the resulting p-value for each gene set
in gs. The p-value vector must also be named accordingly (i.e. names (ps) == names(gs)).

Let us consider the following dummy enrichment method, which randomly renders five gene
sets significant and the remaining insignificant.

dummySBEA <- function(se, gs)

{
sig.ps <- sample(seq(0, 0.05, length = 100 ), 5)
insig.ps <- sample(seq(0.1, 1, length = 1000), length(gs) - 5)
ps <- sample(c(sig.ps, insig.ps), length( s))
names (ps) <- names(gs)
return(ps)
)

We can plug this method into sbea as before.

sbea.res2 <- sbea(method = dummySBEA, se = allSE, gs = hsa.gs)
gsRanking(sbea.res2)

## DataFrame with 5 rows and 2 columns

## GENE.SET PVAL
#i# <character> <numeric>
## 1 hsa03410_Base_excisi.. 0.0026
## 2 hsa00340_Histidine_m.. 0.0206
## 3 hsa04350_TGF-beta_ si.. 0.0296
## 4 hsa05206_MicroRNAs_i.. 0.0312
## 5 hsa04550_Signaling_p.. 0.0405
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As described in the previous section, it is also possible to analogously plug in user-defined
network-based enrichment methods into
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8 Combining results

Different enrichment analysis methods usually result in different gene set rankings for the same
dataset. To compare results and detect gene sets that are supported by different methods,
the EnrichmentBrowser package allows to combine results from the different set-based and
network-based enrichment analysis methods. The combination of results yields a new ranking
of the gene sets under investigation by specified ranking criteria, e.g. the average rank across
methods. We consider the ORA result and the GGEA result from the previous sections and
use the function combResults.

res.list <- list(sbea.res, nbea.res)

comb.res <- combResults(res.list)

The combined result can be detailedly inspected as before and interactively ranked as depicted
in Figure 2.

eaBrowse(comb.res, graph.view=hsa.grn, nr.show=5)

COMB - Table of Results

10 j records per page Search all columns:
From to From to From to From to From to

GENE.SET TITLE NR.GENES ORA.RANK GGEA.RANK AVG.RANK ORA.PVAL GGEA.PVAL SET.VIEW PATH.VIEW GRAPH.VIEW
hsa05416  Viral myocarditis 55 5 2 3 0.0372 0.008

hsa05130  Pathogenic Escherichia coli infection 43 2 14 8 0.0140 0.243

hsa04514  Cell adhesion molecules (CAMs) 107 18 4 11 0.3050 0.010

hsa04520  Adherens junction 68 3 19 11 0.0261 0.498

hsa05144 Malaria 45 15 7 11 0.1990 0.067

Showing 1 to 5 of 5 entries

Figure 2: Combined result view
By clicking on one of the columns (ORA.RANK, ..., GGEA.PVAL) the result can be interac-
tively ranked according to the selected criterion.
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Putting it all together

10

There are cases where it is necessary to perform certain steps of the demonstrated enrichment
analysis pipeline individually. However, it is often more convenient to run the complete
standardized pipeline. This can be done using the all-in-one wrapper function ebrowser. For
example, the result page displayed in Figure 2 can also be produced from scratch via

ebrowser ( meth=c("ora", "ggea"),
exprs=exprs.file, cdat=cdat.file, rdat=rdat.file,
org="hsa", gs=hsa.gs, grn=hsa.grn, comb=TRUE, nr.show=5)

Advanced: configuration parameters

11

Similar to R's options settings, the EnrichmentBrowser uses certain package-wide config-
uration parameters, which affect the way in which analysis is carried out and how results
are displayed. The settings of these parameters can be examined and, to some extent, also
changed using the function configEBrowser. For instance, the default directory where the
EnrichmentBrowser writes results to can be updated via

configEBrowser(key="0OUTDIR.DEFAULT", value="/my/out/dir")

and examined via

configEBrowser("OUTDIR.DEFAULT")

## [1] "/my/out/dir"

Note that changing these defaults should be done with care, as inappropriate settings might

impair the package's functionality. The complete list of incorporated configuration parameters
along with their default settings can be inspected via

?configEBrowser

For non-R users: command line invocation

The package source contains two scripts in inst/scripts to invoke the EnrichmentBrowser
from the command line using Rscript.

The de_rseq.R script is a lightweight wrapper script to carry out differential expression
analysis of RNA-seq data either based on /imma (using the voon-transformation), edgeR, or
DESeq?2.

The eBrowserCMD.R implements the full functionality and allows to carry out the various
enrichment methods and to produce HTML reports for interactive exploration of results.

The inst/scripts folder also contains a README file that comprehensively documents the
usage of both scripts.
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A primer on terminology and statistical theory

Where does it all come from?

Test whether known biological functions or processes are over-represented (= enriched) in an
experimentally-derived gene list, e.g. a list of differentially expressed (DE) genes. See [4] for
a critical review.

Example: Transcriptomic study, in which 12,671 genes have been tested for differential ex-
pression between two sample conditions and 529 genes were found DE.

Among the DE genes, 28 are annotated to a specific functional gene set, which contains in
total 170 genes. This setup corresponds to a 2 x 2 contingency table,

deTable <-
matrix(c(28, 142, 501, 12000),
nrow = 2,
dimnames = list(c("DE", "Not.DE"),
c("In.gene.set", "Not.in.gene.set")))

deTable
## In.gene.set Not.in.gene.set
## DE 28 501
## Not.DE 142 12000

where the overlap of 28 genes can be assessed based on the hypergeometric distribution.
This corresponds to a one-sided version of Fisher's exact test, yielding here a significant
enrichment.

fisher.test(deTable, alternative = "greater")
##

## Fisher's Exact Test for Count Data

##

## data: deTable

## p-value = 4.088e-10

## alternative hypothesis: true odds ratio is greater than 1
## 95 percent confidence interval:

## 3.226736 Inf

## sample estimates:

## odds ratio

#i# 4.721744

This basic principle is at the foundation of major public and commercial enrichment tools such

as DAVID (https://david.ncifcrf.gov) and Pathway Studio (https://www.pathwaystudio.com).

Although gene set enrichment methods have been primarily developed and applied on tran-
scriptomic data, they have recently been modified, extended and applied also in other fields
of genomic and biomedical research. This includes novel approaches for functional enrich-
ment analysis of proteomic and metabolomic data as well as genomic regions and disease
phenotypes [10, 11, 12, 13].
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A2

A.3

A.4

Gene sets, pathways & regulatory networks

Gene sets are simple lists of usually functionally related genes without further specification
of relationships between genes.

Pathways can be interpreted as specific gene sets, typically representing a group of genes
that work together in a biological process. Pathways are commonly divided in metabolic and
signaling pathways. Metabolic pathways such as glycolysis represent biochemical substrate
conversions by specific enzymes. Signaling pathways such as the MAPK signaling pathway
describe signal transduction cascades from receptor proteins to transcription factors, resulting
in activation or inhibition of specific target genes.

Gene regulatory networks describe the interplay and effects of regulatory factors (such as
transcription factors and microRNAs) on the expression of their target genes.

Resources

GO (http://www.geneontology.org) and KEGG (http://www.genome.jp/kegg) annotations
are most frequently used for the enrichment analysis of functional gene sets. Despite an
increasing number of gene set and pathway databases, they are typically the first choice due
to their long-standing curation and availability for a wide range of species.

The Gene Ontology (GO) consists of three major sub-ontologies that classify gene products
according to molecular function (MF), biological process (BP) and cellular component (CC).
Each ontology consists of GO terms that define MFs, BPs or CCs to which specific genes are
annotated. The terms are organized in a directed acyclic graph, where edges between the
terms represent relationships of different types. They relate the terms according to a parent-
child scheme, i.e. parent terms denote more general entities, whereas child terms represent
more specific entities.

The Kyoto Encyclopedia of Genes and Genomes (KEGG) is a collection of manually drawn
pathway maps representing molecular interaction and reaction networks. These pathways
cover a wide range of biochemical processes that can be divided in 7 broad categories:
metabolism, genetic and environmental information processing, cellular processes, organis-
mal systems, human diseases, and drug development. Metabolism and drug development
pathways differ from pathways of the other 5 categories by illustrating reactions between
chemical compounds. Pathways of the other 5 categories illustrate molecular interactions
between genes and gene products.

Gene set analysis vs. gene set enrichment analysis

The two predominantly used enrichment methods are:

= Overrepresentation analysis (ORA), testing whether a gene set contains disproportional
many genes of significant expression change, based on the procedure outlined in sec-
tion A.1,

= Gene set enrichment analysis (GSEA), testing whether genes of a gene set accumulate
at the top or bottom of the full gene vector ordered by direction and magnitude of
expression change [5].

However, the term gene set enrichment analysis nowadays subsumes a general strategy im-
plemented by a wide range of methods [14]. Those methods have in common the same goal,
although approach and statistical model can vary substantially [4, 15].
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A.5

A.6

To better distinguish from the specific method, some authors use the term gene set analysis
to denote the general strategy. However, there is also a specific method of this name [16].

Underlying null: competitive vs. self-contained

Goeman and Buehlmann, 2007, classified existing enrichment methods into competitive and
self-contained based on the underlying null hypothesis [4].

= Competitive null hypothesis: the genes in the set of interest are at most as often DE
as the genes not in the set,

= Self-contained null hypothesis: no genes in the set of interest are DE.

Although the authors argue that a self-contained null is closer to the actual question of
interest, the vast majority of enrichment methods is competitive.

Goeman and Buehlmann further raise several critical issues concerning the 2 x 2 ORA:
= rather arbitrary classification of genes in DE / not DE,
= based on gene sampling, although sampling of subjects is appropriate,

= unrealistic independence assumption between genes, resulting in highly anti-conservative
p-values.

With regard to these statistical concerns, GSEA is considered superior:
= takes all measured genes into account,
= subject sampling via permutation of class labels,

= the incorporated permutation procedure implicitly accounts for correlations between
genes.

However, the simplicity and general applicability of ORA is unmet by subsequent methods
improving on these issues. For instance, GSEA requires the expression data as input, which
is not available for gene lists derived from other experiment types. On the other hand, the
involved sample permutation procedure has been proven inaccurate and time-consuming [16,
17, 18].

Generations: ora, fcs & topology-based

Khatri et al., 2012, have taken a slightly different approach by classifying methods along the
timeline of development into three generations [15]:

1. Generation: ORA methods based on the 2 x 2 contingency table test,

2. Generation: functional class scoring (FCS) methods such as GSEA, which compute
gene set (= functional class) scores by summarizing per-gene DE statistics,

3. Generation: topology-based methods, explicitly taking into account interactions be-
tween genes as defined in signaling pathways and gene regulatory networks ([9] for an
example).

Although topology-based (also: network-based) methods appear to be most realistic, their
straightforward application can be impaired by features that are not detectable on the
transcriptional level (such as protein-protein interactions) and insufficient network knowl-
edge [8, 19].

24



EnrichmentBrowser

Given the individual benefits and limitations of existing methods, cautious interpretation of
results is required to derive valid conclusions. Whereas no single method is best suited for
all application scenarios, applying multiple methods can be beneficial. This has been shown
to filter out spurious hits of individual methods, thereby reducing the outcome to gene sets
accumulating evidence from different methods [20, 21].

B Frequently asked questions

1. How to cite the EnrichmentBrowser?

Geistlinger L, Csaba G and Zimmer R. Bioconductor's EnrichmentBrowser: seamless
navigation through combined results of set- & network-based enrichment analysis. BMC
Bioinformatics, 17:45, 2016.

. Is it possible to apply the EnrichmentBrowser to simple gene lists?

Enrichment methods implemented in the EnrichmentBrowser are, except for ORA,
expression-based (and also draw their strength from that). The set-based methods
GSEA, SAFE, and SAMGS use sample permutation, involving recomputation of dif-
ferential expression, for gene set significance estimation, i.e. they require the complete
expression matrix. The network-based methods require measures of differential expres-
sion such as fold change and p-value to score interactions of the network. In addition,
visualization of enriched gene sets is explicitly designed for expression data. Thus, for
simple gene list enrichment, tools like DAVID (https://david.ncifcrf.gov) and GeneAn-
alytics (http://geneanalytics.genecards.org) are more suitable, and it is recommended
to use them for this purpose.
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