Design Microarray Probes

Erik S. Wright
May 19, 2021

Contents

(I__Introduction| 1

[2 Getting Started|

..

[2.2 Creating a Sequence Databasel. o o oo
2.3 efining Groups| L e e

N DN =

{3 Array Design and Validation Steps|
3.1 Designing the Probe Set| oo o
3.2 Validating the Probe Set|.
3.3 rther Improving the Result| o oo
[3.4 Extending the Simulation| o

N O W

<]

Session Tnformat

1 Introduction

This document describes how to design and validate sequence-specific probes for synthesis onto a DNA
microarray. As a case study, this tutorial focuses on the development of a microarray to identify taxonomic
groups based on previously obtained 16S ribosomal RNA sequences. The same approach could be applied to
differentiate sequences representing any number of groups based on any shared region of DNA. The objective
of microarray probe design is straightforward: to determine a set of probes that will bind to one group of
sequences (the target consensus sequence) but no others (the non-targets). Beginning with a set of aligned
DNA sequences, the program chooses the best set of probes for targeting each consensus sequence. More
importantly, the design algorithm is able to predict when potential cross-hybridization of the probes may
occur to non-target sequence(s). An integrated design approach enables characterizing the probe set before
fabrication, and then assists with analysis of the experimental results.

2 Getting Started

2.1 Startup

To get started we need to load the DECIPHER package, which automatically loads several other required
packages.

> library (DECIPHER)

Help for the DesignArray function can be accessed through:

> 7 DesignArray
If DECIPHER is installed on your system, the code in each example can be obtained via:

> browseVignettes ("DECIPHER")

2.2 Creating a Sequence Database

We begin with a set of aligned sequences belonging to the 16S rRNA of several samples obtained from
drinking water distribution systems. Be sure to change the path names to those on your system by replacing
all of the text inside quotes labeled “<<path to ...>>” with the actual path on your system.

> # specify the path to your sequence file:

> fas <- "<<path to FASTA file>>"

> # OR find the example sequence file used in this tutorial:

> fas <- system.file("extdata", "Bacteria_175seqs.fas", package="DECIPHER")

Next, there are two options for importing the sequences into a database: either save a database file or
maintain the database in memory. Here we will build the database in memory because it is a small set of
sequences and we do not intend to use the database later:

specify a path for where to write the sequence database
dbConn <- "<<path to write sequence database>>"

OR create the sequence database in memory

dbConn <- dbConnect(SQLite(), ":memory:")

Seqs2DB(fas, "FASTA", dbConn, "uncultured bacterium")

Reading FASTA file chunk 1

V V V Vv V

175 total sequences in table Segs.
Time difference of 0.06 secs

2.3 Defining Groups

At this point we need to define groups of related sequences in the database we just created. In this case we
wish to cluster the sequences into groups of at most 3% distance between sequences.

> dna <- SearchDB(dbConn)

Search Expression:

select row_names, sequence from _Seqs where row_names in (select row_names
from Segs)

DNAStringSet of length: 175

Time difference of 0.01 secs

> dMatrix <- DistanceMatrix(dna, verbose=FALSE)

> clusters <- IdClusters(dMatrix, cutoff=0.03, method="complete", verbose=FALSE)
> Add2DB(clusters, dbConn, verbose=FALSE)

Now that we have identified 100 operational taxonomic units (OTUs), we must form a set of consensus
sequences that represent each OTU.

conSeqs <- IdConsensus(dbConn, colName="cluster", verbose=FALSE)
dbDisconnect (dbConn)

name the sequences by their cluster number

ns <- lapply(strsplit(names(conSeqgs), "_", fixed=TRUE), [, 1)

names (conSeqgs) <- gsub("cluster", "", unlist(uns), fixed=TRUE)
order the sequences by their cluster number

o <- order(as.numeric(names(conSeqs)))

conSeqgs <- conSeqs[o]

V V V V V V V YV

3 Array Design and Validation Steps

3.1 Designing the Probe Set

Next we will design the optimal set of 20 probes for targeting each OTU. Since there are 100 OTUs, this
process will result in a set of 2,000 probes. By default, probes are designed to have the optimal length
for hybridization at 46°C and 10% (vol/vol) formamide. We wish to allow up to 2 permutations for each
probe, which will potentially require more space on the microarray. Since not all of the sequences span the
alignment, we will design probes between alignment positions 120 and 1,450, which is the region encompassed
by most of the sequences.

> probes <- DesignArray(conSeqs, maxPermutations=2, numProbes=20,
start=120, end=1450, verbose=FALSE)

> dim(probes)

[1] 2000 12

> names (probes)

[1] "name" "start" "length" "start_aligned"
[5] "end_aligned" "permutations" "score" "formamide"
[9] "hyb_eff" "target_site" "probes" "mismatches"

We can see the probe sequence, target site positioning, melt point (formamide), and predicted cross-
hybridization efficiency to non-targets (mismatches). The first probe targeting the first consensus sequence
(OTU #1) is predicted to have 84% hybridization efficiency at the formamide concentration used in the
experiment (10%). This probe is also predicted to cross-hybridize with OTU #5 with 59% hybridization
efficiency.

> probes([1,]

name start length start_aligned end_aligned permutations score

1 1 1 22 120 143 1 22.75502....
formamide hyb_eff target_site
1 16.06832.... 84.26072.... GCATCGGAACGTGTCCTAAAGT

probes mismatches
1 ACTTTAGGACACGTTCCGATGCTTTTTTTTTTTITTTTTTTITT 5 (59.4%)

If we wished to have the probe set synthesized onto a microarray, all we would need is the unique set of
probes. Note that the predictive model was calibrated using NimbleGen microarrays. Although predictions
are likely similar for other microarray platforms, hybridization conditions should always be experimentally
optimized.

> u <- unique(unlist(strsplit(probes$probes, ",", fixed=TRUE)))

> length(u)

[1] 1899

> head(u)

[1] "ACTTTAGGACACGTTCCGATGCTTTTTTTTTTTTTTTTTTTT"
[2] "GTATTAGCGCATCTTTCGATGCTTTTTTTTTTTTTTTTTTTT"
[3] "GTCTTTCGATCCCCTACTTTCCTCTTTTTTTTTTTTTTTTTTTT"
[4] "GGCCGCTCCAAAAGCATAAGGTTTTTTTTTTTTTTTTTTTTT"
[6] "ATGGCAATTAATGACAAGGGTTGCTTTTTTTTTTTTTTTTTTTT"
[6] "CAGTGTGGTTGGCCATCCTCTTTTTTTTTTTTTTTTTTTTT"

3.2 Validating the Probe Set

Before fabrication onto a DNA microarray it may be useful to predict whether the probe set will adequately
discriminate between the OTUs. This can be accomplished by simulating the hybridization process multiple
times while incorporating error. We begin by converting the predicted cross-hybridization efficiencies into
a sparse matrix that mathematically represents the microarray (A). Here the rows of the matrix represent
each probe, and the columns of the matrix represent each OTU. The entries of the matrix therefore give the
hybridization efficiency of probe ¢ with OTU j. We can neglect all hybridization efficiencies less than 5%
because these will likely not hybridize or have insufficient brightness.

> A <- Array2Matrix(probes, verbose=FALSE)
> w <- which(A$x < 0.05)
> if (length(w) > 0) {
A$i <- A$i[-w]
A$j <- A$j[-w]
A$x <- A$x[-w]
}

We then multiply the matrix A by the amount (x) of each OTU present to determine the corresponding
brightness (b) values of each probe. We can add a heteroskedastic error to the brightness values to result
in a more accurate simulation (b = Ax + error). Furthermore, we can introduce a 5% rate of probes that
hybridize randomly.

simulate the case where 10} of the 0TUs are present in random amounts
present <- sample(length(conSeqgs), floor(0.1xlength(conSeqgs)))

x <- numeric(length(conSeqs))

x[present] <- abs(rnorm(length(present), sd=2))

determine the predicted probe brightnesses based on the present 0TUS
background <- 0.2

b <- matrix(tapply(A$x[A$j]l*x[A$j], A$i, sum), ncol=1) + background

b <- b + rnorm(length(b), sd=0.2%b) # add 20% error

b <- b - background # background subtracted brightnesses

add in a 5% false hybridization rate

bad_hybs <- sample(length(b), floor(0.05*length(b)))

b[bad_hybs] <- abs(rnorm(length(bad_hybs), sd=max(b)/3))

V VVVV YV VVVVVYV

Finally, we can solve for the amount of each OTU present on the microarray by solving Ax = b for x using
non-negative (x > 0) least squares. Plotting the expected amount versus the predicted amount shows that
this probe set may result in a small number of false positives and false negatives (Fig. 1). False negatives are
the expected observations below the dashed threshold line, which represents the minimum amount required
to be considered present. If this threshold is lowered then false negatives will appear where no amount was
expected.

> # solve for the predicted amount of each OTU present on the array
> x_out <- NNLS(A, b, verbose=FALSE)

Predicted Amount

Expected Amount

Figure 1: Characterization of predicted specificity for the designed probe set.

3.3 Further Improving the Result

Least squares regression is particularly sensitive outlier observations and heteroskedastic noise. For this
reason we will decrease the effects of outlier observations by using weighted regression. With each iteration
the weights will be refined using the residuals from the prior solution to Ax = b.

> # initialize weights to one:
> weights <- matrix(1l, nrow=nrow(b), ncol=ncol(b))
> # iteratively unweight observations with high residuals:
> for (i in 1:10) { # 10 iterations
weights <- weights*exp(-0.1*abs(x_out$residuals))
A_weighted <- A
A_weighted$x <- A$x*weights[A$i]
b_weighted <- b*weights
x_out <- NNLS(A_weighted, b_weighted, verbose=FALSE)
}

Predicted Amount

Expected Amount

Figure 2: Improved specificity obtained by down-weighting the outliers.

Weighted regression lowered the threshold for detection so that more OTUs would be detectable (Fig. 2).
However, false negatives still remain based on this simulation when a very small amount is expected. If the
threshold is lowered to capture all of the expected OTUs then we can determine the false positive(s) that
would result. These false positive sequences are substantially different from the nearest sequence that is
present.

w <- which(x_out$x >= min(x_out$x[present]))
w <- w[-match(present, w)] # false positives
dMatrix <- DistanceMatrix(conSeqs, verbose=FALSE)
print distances of false positives to the nearest present 0TU
for (i in w)
print(min(dMatrix[i, present]))
.081142
.1160436
.08248233
.03776554
.06382979
.06576981
.1251932

V V V Vv V

(1]
(1]
(1]
[1]
[1]
(1]
[1]

O O O O O oo

3.4 Extending the Simulation

The above simulation can be repeated multiple times and with different initial conditions to better approx-
imate the expected number of false positives and false negatives (Fig. 3). In the same manner the design
parameters can be iteratively optimized to further improve the predicted specificity of the probe set based
on the simulation results. After fabrication, validation experiments using known samples should be used in
replace of the simulated brightness values.

> # simulate multiple cases where 10% of the OTUs are present in random amounts
> iterations <- 100
> b <- matrix(0, nrow=dim(b) [1], ncol=iterations)
> x <- matrix(0, nrow=length(conSeqs), ncol=iterations)
> for (i in 1l:iteratiomns) {
present <- sample(length(conSeqs), floor(0.1lxlength(conSeqs)))
x[present, i] <- abs(rnorm(length(present), sd=2))
determine the predicted probe brightnesses based on the present 0TUS
bl, i] <- tapply(A$x[A$jl*x[A$]j, i], A$i, sum) + background
b[, i] <- b[, i] + rnorm(dim(b) [1], sd=0.2xb[, i]) # add 20% error
bl, i] <- b[, i] - background # background subtracted brightnesses
add in a 5% false hybridization rate
bad_hybs <- sample(dim(b) [1], floor(0.05xlength(b[, il)))
b[bad_hybs, i] <- abs(rnorm(length(bad_hybs), sd=max(b[, i1)/3))
}

> x_out <- NNLS(A, b, verbose=FALSE)

Predicted Amount

° o

A
0® o 0%
0d @ %00

o
og)ooo Og

° o® o0& o °
e @ S
o o
o o
06’ oe¥®e o 9
o 00 o 4 o o
®, o O
80 8° °%
o o o 4
o°°° $ oo %o
% o %
o ©
?
20 @ o
° o °
S o
00
%%
1 2 3 4 5

Expected Amount

Figure 3: The combined results of multiple simulations.

4 Session Information
All of the output in this vignette was produced under the following conditions:
e R version 4.1.0 (2021-05-18), x86_64-pc-linux-gnu
e Running under: Ubuntu 20.04.2 LTS
e Matrix products: default
e BLAS: /home/biocbuild/bbs-3.13-bioc/R/1ib/1ibRblas.so
e LAPACK: /home/biocbuild/bbs-3.13-bioc/R/1ib/1ibRlapack.so
e Base packages: base, datasets, grDevices, graphics, methods, parallel, stats, stats4, utils

e Other packages: BiocGenerics 0.38.0, Biostrings 2.60.0, DECIPHER 2.20.0, GenomelnfoDb 1.28.0,
IRanges 2.26.0, RSQLite 2.2.7, S4Vectors 0.30.0, XVector 0.32.0

e Loaded via a namespace (and not attached): DBI 1.1.1, GenomelnfoDbData 1.2.6,
KernSmooth 2.23-20, RCurl 1.98-1.3, Rcpp 1.0.6, bit 4.0.4, bit64 4.0.5, bitops 1.0-7, blob 1.2.1,
cachem 1.0.5, compiler 4.1.0, crayon 1.4.1, fastmap 1.1.0, memoise 2.0.0, pkgconfig 2.0.3, rlang 0.4.11,
rstudioapi 0.13, tools 4.1.0, vetrs 0.3.8, zlibbioc 1.38.0

	Introduction
	Getting Started
	Startup
	Creating a Sequence Database
	Defining Groups

	Array Design and Validation Steps
	Designing the Probe Set
	Validating the Probe Set
	Further Improving the Result
	Extending the Simulation

	Session Information

