
ARRm: Adaptive Robust Regression method for

normalization of methylation data
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1 Introduction

With the adaptation of microarray hybridization techniques developed for gene
expression and genomics studies to methylation data, there has been a revolu-
tion in the development of DNA methylation profiling techniques [1]. Illumina
recently released the Infinium HumanMethylation450 BeadChip, a single CpG
site resolution array using bisulfite-converted DNA. The Infinium 450k methy-
lation array comprises two different chemistry technologies (Infinium I and II).
Microarray methylation data can be affected by technical artifacts, like any
microarray-based assay. Signals can be affected by the position of the probes
on the chip, probe design, inter-batch differences in chips, laboratory conditions
or other unknown factors. In gene-expression studies, quantile normalization is
one of the most popular approaches for between-array correction. It forces the
distributions of gene expressions to be essentially identical across samples; this
assumption is justified in gene expression studies where only a few genes are
expected to be differentially expressed across the samples. Various versions of
quantile normalization procedures are currently being used to preprocess DNA
methylation data and have been previously compared for the 27k platform [2];
here we argue, as have others [3], that these methods are not appropriate for
these data. Indeed, it is well-known that overall DNA methylation levels can
be significantly different when tumor cells are compared to normal cells [4, 5].
Furthermore, even when all samples are from the same cell type, genome-wide
methylation alterations can be seen. For example, global patterns of hypomethy-
lation with age have been seen in blood cells [6]. We propose a new normaliza-
tion procedure that does not assume similarity of statistical distributions across
samples. Our model corrects explicitly for background intensity, dye bias and
spatial effects, and allows these corrections to vary by the quantile of the signals.
We use a robust regression model to reduce the influence of outliers. To take
into account the difference between Type I and Type II probes, we consider
the two probe designs as two different arrays and we apply our normalization
procedure separately.
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2 Example dataset: ARRm package

To illustrate how our method works, we use an example dataset included in
the package ARRmData. The dataset contains 36 methylation profiles from the
Illumina Infinium HumanMethylation 450k array. For each sample, methylation
levels are provided by a vector of Beta values. In addition, two vectors of
negative probes are provided: one for the intensities in the green channel, and
one for the intensities in the red channel. The matrix of Beta values for the 36
samples are contained in“betaMatrix”, the negative control probes are contained
in the two matrices“greenControlMatrix”and“redControlMatrix”and the names
of the samples are contained in the vector ”sampleNames”. We first load these
data into the R environment using the following commands:

> library(ARRmData)

> data(greenControlMatrix)

> data(redControlMatrix)

> data(betaMatrix)

> data(sampleNames)

For the beta matrix, columns are samples (36 in total) and rows are probes
(485,577 in total). Names of the columns are the names of the samples.

> betaMatrix[1:5,1:3]

5621146023_R01C01 5621146023_R01C02 5621146023_R02C01

1 0.6231034 0.7419837 0.7163057

2 0.9401186 0.9336658 0.9248899

3 0.9148064 0.9055801 0.9315221

4 0.2965243 0.3161751 0.3002749

5 0.8469906 0.8736507 0.8857006

For the negative control matrices, columns are samples (36 in total) and rows
are negative control probes (600 in total). Names of the columns are the names
of the samples. The order of the samples in the beta matrix must be identical
to that of the samples in the negative control probe matrices.

> greenControlMatrix[1:5,1:3]

5621146023_R01C01 5621146023_R01C02 5621146023_R02C01

24 316 359 277

25 280 417 283

26 248 425 276

27 259 400 341

28 320 364 269

> redControlMatrix[1:5,1:3]
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5621146023_R01C01 5621146023_R01C02 5621146023_R02C01

24 273 432 254

25 208 435 287

26 198 343 276

27 229 339 234

28 241 241 216

The names of the probes for the beta matrix (following Illumina”s notation,
e.g. “cg00000029” for the first probe), is given in the file “ProbesType.rda”,
located in the ARRmNormalization package:

> library(ARRmNormalization)

> data(ProbesType)

> head(ProbesType)

Probe_Name Design_Type

1 cg00000029 II

2 cg00000108 II

3 cg00000109 II

4 cg00000165 II

5 cg00000236 II

6 cg00000289 II

Names of the samples are of the form:

> head(sampleNames)

sampleNames

1 5621146023_R01C01

2 5621146023_R01C02

3 5621146023_R02C01

4 5621146023_R02C02

5 5621146023_R03C01

6 5621146023_R03C02

3 Preparing the workspace

In order to normalize your methylation profiles, you need to format the data in
the same fashion as the example dataset presented above. Then you load the
package ARRmNormalization:

> library(ARRmNormalization)

We load here also the additional package ARRmData in order to use the example
dataset:

> library(ARRmData)
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We load the data into the workspace:

> data(betaMatrix)

> data(greenControlMatrix)

> data(redControlMatrix)

> data(sampleNames)

4 Pre-normalization steps

Before normalizing the methylation profiles, we need to extract the background
intensities and the physical chip information of the samples. For the background
extraction, we use the following command:

> backgroundInfo <- getBackground(greenControlMatrix, redControlMatrix)

We get a data frame whose two columns are the medians of the background
intensity of the green and red channels, respectively, for each sample.

> head(backgroundInfo)

green red

5621146023_R01C01 275.0 249.0

5621146023_R01C02 390.5 365.0

5621146023_R02C01 281.0 239.0

5621146023_R02C02 324.0 268.5

5621146023_R03C01 277.0 231.5

5621146023_R03C02 284.0 238.0

For the chip and position information of the samples, there are two ways to
process it. The first way is to extract it from the sample names; these must be
in the following format to use the extraction function:

> head(sampleNames)

sampleNames

1 5621146023_R01C01

2 5621146023_R01C02

3 5621146023_R02C01

4 5621146023_R02C02

5 5621146023_R03C01

6 5621146023_R03C02

Then use the command getDesignInfo to extract the physical chip informa-
tion:

> designInfo <- getDesignInfo(sampleNames)

> head(designInfo)
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chipInfo positionInfo sampleNames

1 1 1 5621146023_R01C01

2 1 2 5621146023_R01C02

3 1 3 5621146023_R02C01

4 1 4 5621146023_R02C02

5 1 5 5621146023_R03C01

6 1 6 5621146023_R03C02

The first column gives a chip index, and the second column gives a position
index (between 1 and 12).
The second way to build the design information matrix is by providing explicit
chip and position indices. For example, let’s create these artificial chip and
position index vectors:

> myChipVector <- c(rep(1,12), rep(2, 12), rep(3, 12))

> myPositionVector <- rep(seq(1:12), 3)

Then the design matrix can be created with the same command as above:

> designInfo <- getDesignInfo(sampleNames=NULL,

+ positionVector=myPositionVector, chipVector=myChipVector)

> head(designInfo)

chipInfo positionInfo

1 1 1

2 1 2

3 1 3

4 1 4

5 1 5

6 1 6

5 ARRm Normalization

We are now ready to normalize the methylation profiles. First, the normalization
function needs three data frames similar to those of the example dataset:

1 a matrix of beta values where columns are samples and rows are probes

2 a designInfo data frame obtained with the getDesignInfo function

3 a backgroundInfo data frame obtained with the function getBackground-
Info

By default, the percentage of outlier samples to be removed in the estimation
of the bias effects is set to 2%; the user can choose his or her own desired
percentage of outlier samples to be trimmed in the robust regression, by setting
the parameter outliers.perc to a number between 0 and 1. For instance, here
we normalize all the data from the dataset example with 10% of the outliers
removed:
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> normMatrix <-

+ normalizeARRm(betaMatrix=betaMatrix, designInfo=designInfo,

+ backgroundInfo=backgroundInfo, outliers.perc=0.1)

Two more options are offered to the user. The first one allows the nor-
malization of a subset of the probes. This can be very handy since we expect
that some of the probes may need to be excluded after quality control, or if
the user wants to exclude probes containing SNPs, of probes mapped to sex
chromosomes. In that case, the user has to build a vector of all probes names
(e.g. “cg00000029” for the first probe) to be normalized and has to pass it to the
parameter goodProbes in the function normalizeARRm. For instance, suppose
we want to normalize only half of the probes, say the even numbered probes
(for example purposes only). We first construct the list of these probes:

> data(ProbesType)

> goodProbes <- as.character(unlist(ProbesType$Probe_Name))[seq(1,485577,2)]

and then normalize the data with these probes only:

> normMatrix <-

+ normalizeARRm(betaMatrix=betaMatrix, designInfo=designInfo,

+ backgroundInfo=backgroundInfo, outliers.perc=0, goodProbes=goodProbes)

Note that normalized Beta values for the non-normalized probes are set to“NA”.
The second option is to decide whether or not chip correction should be per-
formed, by setting chipCorrection to be true or false (by default, set to true).
This can be useful if chips are confounded with important sample character-
istics. For instance, if samples were allocated to chips according to gender
or case-control status, chip means are confounded with these sample charac-
teristics, and chip correction should not be performed since it would remove
important biological variation. Here is an example of normalization without
chip correction, on all probes:

> normMatrix <-

+ normalizeARRm(betaMatrix=betaMatrix, designInfo=designInfo,

+ backgroundInfo=backgroundInfo, outliers.perc=0, chipCorrection=F)

6 Visualization

We have included visualization tools in order to investigate background, dye
bias and on-chip position effects. In this section, we investigate only the non-
normalized data (betaMatrix ), but visualization tools can be applied on nor-
malized values as well, by switching betaMatrix to normMatrix in the examples
below. To avoid long computations in plotting functions, the first step is to
extract Beta value distribution quantiles for each sample, separately by probe
type. This is achieved by the getQuantiles function:

6



> quantiles=getQuantiles(betaMatrix)

> attributes(quantiles)

$names

[1] "green" "red" "II"

In the case only a subset of probes were normalized, the option goodProbes
is available as before for the function getQuantiles so that quantiles are only
computed for these given probes:

> quantiles=getQuantiles(betaMatrix, goodProbes=goodProbes)

> attributes(quantiles)

$names

[1] "green" "red" "II"

In both cases, the function getQuantiles returns a list of three matrices that
can be accessed by $green, $red and $II, corresponding respectively to the
quantiles of the Type I green probes, Type I red probes and Type II probes.
Each matrix has 100 rows, corresponding to percentiles; columns are samples.
For instance , we can look at the matrix for Type II probes:

> quantiles$II[1:5,1:4]

5621146023_R01C01 5621146023_R01C02 5621146023_R02C01 5621146023_R02C02

1% 0.05467959 0.05521203 0.06418919 0.05920067

2% 0.06155891 0.06188955 0.07151738 0.06605582

3% 0.06620405 0.06665925 0.07713512 0.07116320

4% 0.07023557 0.07058765 0.08170022 0.07559437

5% 0.07374357 0.07417378 0.08591799 0.07964716

To investigate background effects and dye bias effects on percentiles, the
function quantilePlots can be applied to the quantiles extracted with the func-
tion getQuantiles:

> quantilePlots(quantiles, backgroundInfo, designInfo)

null device

1

The function has no return value, but instead makes a pdf file (“quantile-
Plots.pdf”) of several plots used to visualize background and dye bias effects.
For each probe type, a plot of percentiles against background intensity is pro-
duced. For Type II probes, there is also a plot of percentiles against dye bias.
One can specify which percentiles are plotted with the parameters percentilesI
and percentilesII for Type I and Type II probes respectively. By default, for
Type I probes, k-th percentiles are drawn for k ∈ {5, 10, . . . , 100}; for Type II
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Figure 1: Background effects on Type II probes

probes, k-th percentiles are drawn for k ∈ {10, 20, . . . , 100}. As an example, the
corresponding plots for Type II probes, with the default list of percentiles, are
presented in Figure 1 and Figure 2. Two colors are used to separate consecu-
tive percentiles. Fitted lines with non-zero slope indicate potential bias in the
corresponding percentiles.

To investigate on-chip position effects, the function positionPlots can be
applied to the quantiles previously extracted with getQuantiles:

> positionPlots(quantiles, designInfo, percentiles=c(25, 50, 75))

pdf

2

The function has no return value, but instead makes a pdf file (“position-
Plots.pdf”) of several plots used to visualize position effects. For each probe
type, and for each sample, deviations from the chip mean are computed for
every percentile specified by the function parameter percentiles. For these per-
centiles, deviations are plotted against the position index. If spatial position
has no effect on beta value distribution, points are expected to create a uniform
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Figure 2: Dye bias effects on Type II probes
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Figure 3: Position effects for for Type II probes - 75th percentile

cloud centered around zero. An example plot is shown for the 75th percentile of
Type II probes in Figure 3.

For investigation of the coefficients estimated by the robust regression model
used in the ARRm normalization, the function getCoefficients can be used to
extract the coefficients:

> coefficients <- getCoefficients(quantiles, designInfo, backgroundInfo, outliers.perc=0.02)

> attributes(coefficients)

$names

[1] "green" "red" "II"

The function returns a list of three lists, one corresponding for each probe type,
that can be accessed by $green, $red and $II. Each sublist contains different
subfields corresponding to different effect estimates:

> attributes(coefficients$II)

$names

[1] "res" "background.vector" "dyebias.vector"

[4] "chip.variations" "position.variations"

10



$res contains a vector of summary statistics for residuals. For each sample Si,
the statistic

∑100
k=1 e

2
i,k is computed, where ei,k is the residual for the sample Si

in the regression model fitted to the k-th percentile.
$background.vector contains the regression coefficient corresponding to back-
ground effect for each percentile, and $dyebias.vector contains the regression
coefficient corresponding to dye bias for each percentile. For Type I probes,
$dyebias.vector contains only missing values, since no dye bias doesn’t apply
for these probes. $chip.variations is a matrix where rows are percentiles, and
columns are chip indices, and entries represent the estimated chip variations
from the grand mean, for each percentile. Similarly, $position.variations is a
matrix where rows are percentiles, and columns are position indices (from 1
to 12), and entries represent the estimated position variations from the corre-
sponding chip mean, for each percentile.
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