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1 Introduction

I provide here comparisons with the former version of ADaCGH2 (v. 1.10, as available in
BioConductor v. 2.12) as well as some comparisons against non-parallelized executions and,
finally, some details about recommended patterns of usage. The benchmarks shown here
total more than 2047 hours of wall time (more than 85 days) and correspond to over 400
runs for reading and 370 for analysis. The purpose of these benchmarks is to show the
differences in performance between the new and old versions, as well as to illustrate the
effects of changing several parameters in the new version. Before showing the results, we
provide information about the hardware and data sets.

It should be noted that the very first version of ADaCGH (the one documented in Diaz-
Uriarte and Rueda (2007)) will no longer run in current versions of R without tweaks, as it
depends on a package (papply) that no longer installs in current versions of R (it had problems
at least since v. 2.15.0 of R). The web-based application documented in that paper still works
because I did perform those tweaks, and because in some servers we are still running version
2.9.0 of R. However, for the final user, comparisons against that initial version are therefore
of little interest. Thus, the benchmarks that I show provide comparisons against the version
available from release 2.12 of BioConductor; this “old” version (v. 1.10) still runs, but already
incorporates several major advantages over the initial one documented in the PLoS ONE
paper, mainly:

• Clusters are not restricted to MPI cluster, whereas the initial version only allowed
MPI clusters; so, for instance socket clusters (much easier to use in Windows than
MPI clusters) were not available.

• There are no dependencies on deprecated or orphaned packages so the package will
install in current versions of R.

• ff objects start to be used. The very first version always required the complete data
set to be in memory in the master process for the duration of the analysis, and MPI
moved around actual columns of the data frame, and not just pointers to ff objects. As
a consequence, for the initial version, memory requirements for analysis were actually
higher than the memory requirements of reading data of the “old” version; thus the
largest possible data for analysis were smaller than the ones for v. 1.10, and analyses
were also slower.

• Two algorithms, ACE and PSW, were eliminated because of little usage, and a new
and very fast one, HaarSeg, included.

• Input from, and output to, other BioConductor packages was added.

Therefore, in what follows, “old” refers to v. 1.10, as available from BioConductor 2.12,
and “new” to versions ge2.3, and those are the versions that will be compared.

1.1 Data set and hardware

We will use a simulated data set that contains 6,067,433 rows and up to 4000 columns of data;
these are, thus, data for an array with 6 million probes and data for up to 4000 subjects.
Many of the examples shown below will use smaller subsets of the data, smaller in terms
of the number of subjects or samples (columns). There are 421,000 missing values per data
column.
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To give an idea of sizes, the ASCII file with the data for the 1000 column data is about
96 GB1. The directory with the data for 2000 columns occupies about 198 GB and, when
archived and compressed with bzip2, occupies 78 GB. The RData for the 1000 columns
data is 46 GB (without compression; 41 GB with the standard R compression); in a freshly
started R session, loading the RData will use 46 GB (as reported by gc()). The RData
object with the 1000 columns, when loaded into R in the PowerEdges, takes 13 minutes to
load and uses a total of about 46 GB (45.7 from calls to gc before and after loading the
object, and adding Ncells and Vcells, or 45.6 as reported by object.size). Note that this
is not the result of the object being a data frame and having a column with identifiers (a
factor), instead of being a matrix; a similarly sized matrix with just the numeric data for
the probes (i.e., without the first three columns of ID, chromosome, and location) has a size
of 45.2 GB (therefore, the difference of 300 MB due to the first column, ID, being a factor
with the identifiers, is minute relative to the size of the matrix).

The examples below were run on a Dell PowerEdge C6145 chasis with two nodes. Each
node has 4 AMD Opteron 6276 processors; since each processor has 16 cores, each node
has 64 cores. One node has 256 GB RAM and the other 384 GB of RAM. Both nodes are
connected by Infiniband (40Gb/s). For the data presented here, when using a single node,
the data live on an xfs partition of a RAID0 array of SAS disks (15000 rpm) that are local
to the node doing the computations. When using the two nodes, the data live on one of the
xfs partitions, which is seen by the other node using a simple NFS setup (we have also used
distributed file systems, such as FhGFS, but they have tended to be a lot slower in these
experiments; your mileage might vary). Therefore, in the table entries below, executions
using both nodes will indicate “124 cores” 2

We will also show some examples run on an HP Z800 workstation, with 2 Intel Xeon
E5645 processors (each processor has six cores), and 64 GB of RAM. The data live on an
ext4 partition on a SATA disk (7200 rmp).

In both systems, the operating system is Debian GNU/Linux (a mixture of Debian testing
and Debian unstable). The Dell PowerEdge nodes were running version R-2.15.1 as available
from the Debian repository (v. 2.15.1-5) or, later, R-3.0.1, patched (different releases, as
available through May and June of 2013), and compiled from sources. The Xeon workstation
was running R-2.15.1, patched version (2012-10-02 r60861), compiled from sources or, later
R-3.0.1, patched (different releases, as available through May and June of 2013). Open MPI
is version 1.4.3-2 (as available from Debian).

1.2 Segmentation methods used

The methods available in ADaCGH2 are (see further details in the help of function pSegment):

• The popular Circular Binary Segmentation approach, described in its current imple-
mentation in Venkatraman and Olshen (2007) and implemented in package DNAcopy.

• A wavelet-based method, proposed in Hsu et al. (2005). This is called pSegementWavelets

in ADaCGH2.

• Another wavelet-based method, HaarSeg, published in Ben-Yaacov and Eldar (2008).
This was later made available as an R-package as Ben-Yaacov and Eldar (2009).

1All sizes are computed from the reported size in bytes or megabytes, using 1024, or powers of 1024, as
denominator.

2124 is not a typo; it is 124, even if the total number of cores is 128 = 64 ∗ 2. This is due to the
following documented issue with Open MPI and Infiniband: http://www.open-mpi.org/community/lists/

users/2011/07/17003.php, and since 1282 = 16384, we are hitting the limit, and we have not had a chance
to correct this problem yet. Regardless, the penalty we would pay would be a difference of 4 process out of
124.
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• HMM, as described by Fridlyand et al. (2004) and implemented in package Fridlyand
and Dimitrov (2010).

• BioHMM, a non-homogeneous HMM, described in Marioni et al. (2006) and imple-
mented in package Smith et al. (2009).

• The CGHseg method described in Picard et al. (2005). An implementation of part of
this method is available in the R package Huber et al. (2006), but ADaCGH2 is the
first R implementation of the full description of the CGHseg procedure (see comments
in the help of function pSegmentCGHseg).

• GLAD, a method first described in Hupe et al. (2004) and implemented in Hupe (2011).

1.2.1 Difficulties of using some methods with large data sets

The tables below only show benchmarks for methods HMM, BioHMM, HaarSeg (referred
as Haar) and CBS. CGHseg and the wavelet approach described in Hsu et al. (2005) can-
not be used when any chromosome has a large number of probes because of their memory
use. With CGHseg the problem arises in the underlying tilingArray package, in the in-
ternal step of computing the “costMatrix”, a function called by the function segment in
tilingArray. When analyzing the first chromosome (for a single subject), the request is
for 1493 GB. For the wavelet approach, the problem shows up in the clustering step, when
function pam (from package cluster) is called. For instance, the memory requirements for a
chromosome of 350000 probes would exceeded 400 GB (the request is for a vector of doubles
of size 1 + (n ∗ (n− 1))). It must be emphasized that, in both cases, it is not the complete 6
million probes, nor using multiple subjects, which causes the problems: neither of the meth-
ods is capable of analyzing the first chromosome for a single subject. GLAD seems capable
of dealing with large data sets in terms of memory usage, but it is extremely slow. After
more than four days, the method had not been able to finish the analysis of the 50-column
data set in the machines with 64 cores; on closer inspection, the problem lies in function
OptimBkpFindCluster, a C function internal to the package, and is not attributable, there-
fore, to the initial segmentation method (we were using, anyway, the recommended fast
function, which uses HaarSeg). Finally, to run method BioHMM we often had to increase
the ulimit (stack limit), by using ulimit -u, from the shell.

1.3 Tables: column name explanation

For the tables below, the meaning of columns is as follows:

Wall time (min.) The “elapsed” entry returned by the command system.time. This is
the real elapsed time, the wall time, in minutes, since the function was called.

It is important to understand that these timings can be variable. In many cases,
we show repeated executions with the exact same settings, that will help show the
variability in those numbers.

Memory (GB) The memory used by the master R process. This is the sum of the two
rows of the “max used” column reported by gc(), in R, at the end of the execution of
the given function. This number cannot reflect all the memory used by the function if
the function spawns other R processes (via MPI or forking, for example).

Σ Memory (GB) A simple attempt to measure the memory used by all the processes3.
Right before starting the execution of our function, we call the operating system com-

3Just adding the entries given by top or ps will not do, and will overestimate, sometimes by a huge amount,
the total memory used.
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mand free and record the value reported by the “-/+ buffers/cache” row. Then, while
the function is executing, we record, every 0.1 seconds (or every 0.05 seconds), that
same quantity. The largest difference between the successive measures and the original
one is the largest RAM consumption. Note that this is an approximation. First, if
other process start executing, they will lead to an overestimation of RAM usage; this,
however, is unlikely to have had serious effects (the systems were basically idle, except
for light weight cron jobs), though a few results in the tables suggest this happened in
a few instances (related to backup processes). Second, sampling is carried out every
0.5 seconds, so we could miss short peaks in RAM usage but, again, this is unlikely to
lead to a serious underestimation.

Finally, note that for cases where we know that there is a single R process (e.g.,
reading with the old version), there is an excellent agreement between the “Memory
(GB)” (whose value is reported from R itself) and “Σ Memory (GB)”.

Columns The number of data columns of the data set; the same as the number of arrays
or the number of samples.

Method The analysis method. “Haar” for HaarSeg, “CBS” for Circular Binary Segmen-
tation (from package DNAcopy), “HMM” for the HMM approach in package aCGH,
“BioHMM” for the non-homogeneous HMM method in package snapCGH, and “GLAD”
for the method with the same name in package GLAD. See section 1.2.1 for why other
methods are not shown in the tables.

MPI/Fork Whether forking (via mclapply) or explicitly using an MPI cluster (using the
facilities provided by package Rmpi, which are called from package snow) are used
to parallelize execution.

The “NP” entries in table 8 refer to non-parallelized execution, using the original
packages4.

The entries marked as “-LB” correspond to the load-balanced options with the new
version of ADaCGH2 (setting loadBalance = TRUE, in v. ≥ 2.3.4).

Cores Number of cores used. In most cases, when running in the AMD Opteron machines
we used all 64 cores, and when running on the Intel Xeon machine we used all 12
cores, but not always, to show the effects of changing the number of cores used. When
running over both AMD Opterons we used 124 cores (see above).

Procs. per node When using MPI, the total number of R processes that can run in a node;
this is the parameter npernode passed to mpirun (from Open MPI). When running on
a single node, that is the number of R slaves + 1.

Universe size The number of slave nodes in the MPI universe (over all nodes in the uni-
verse). This is the parameter count passed to makeMPIcluster in R.

Version The version of ADaCGH2. For simplicity, “Old” means version 1.10 and “New”
versions 2.1 and larger.

The post-fix “-noNA” means the new version was run using option certain noNA =

TRUE; note that the old version of ADaCGH2 assumes there are no missing values in
the data. Thus, certain noNA = TRUE is the closest to what the old version assumes.

ff/RAM Where applicable in the tables, if the data for the analysis had been stored as an
ff object, or as a data frame inside an RData that was loaded before the analysis.

4The packages are DNAcopy, as available from BioConductor, and the HaarSeg package, available from
R-forge: https://r-forge.r-project.org/projects/haarseg/
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2 Comparison with v. 1.10 of ADaCGH2

2.1 Main differences between the old (v. 1.10) and new versions (v. ≥
2.3.4) of ADaCGH2

The code for the new version of ADaCGH2 represent a major rewrite of most of the code in
the former version. Listed here are some of the major advantages of the new version5; they
are shown in approximately decreasing order of importance from the user’s point of view.

Reading of large data sets The new version of ADaCGH2 can read data sets much larger
than the old one (see section 2.3). In a machine with 64 GB RAM the old version cannot
read data sets with 500 columns (each with 6 million probes —see section 1.1), whereas
data sets with 4000 columns can be read with the new version (see table 1) and the
scaling of the memory consumption with number of columns suggests that much larger
data sets could be read. Likewise, in machines with 256 and 384 GB of RAM (tables 2
and 3) data sets of 2000 columns could not be read with the old version of ADaCGH2,
but data sets of 4000 columns are read with the new version and, again, the scaling
of memory consumption with number of columns suggests (see Figure 1) that much
larger data sets could be read and, even for the sizes of data that can be read by the
old version, reading is much faster with the new version because of the parallelized
reading, which can make much better usage of available hardware (e.g., RAID arrays
for disks).

Missing value handling The old version of ADaCGH2 used row-wise deletion of missing
values when reading data: a probe would be deleted from the data if it had one missing
value in any subject/column. Analysis could be speed up, as no checks or provisions
had to be taken for dealing with NAs, and all procedures are simplified, as the data are
then known to be complete. However, row-wise deletion of missing values is probably
not an appropriate approach, especially as the number of samples increases (because
the probability that a given probe will then be left out of the analysis increases).
The new version of ADaCGH2 deals with missing values column by column, so for
each column (or subject) all available data (or probes) are used in the segmentation.
Nevertheless, the new version incorporates a setting to provide speed ups when the
user is certain that there are no missing values (certain noNA = TRUE).

Analysis of large data sets The old version of ADaCGH2 cannot analyze large data sets,
as it cannot read them (and it cannot use data read by the new version since the old
version assumes there are no missing values in the data after reading).

In addition, although time increases, obviously, with number of samples to analyze,
the scaling of memory consumption is modest and well below the memory available for
the systems.

Forking and clusters The new version of ADaCGH2 allows for the usage of forking or an
explicit cluster (e.g., MPI, sockets, etc) to parallelize reading and analysis. In POSIX
operating systems (including Unix, GNU/Linux, and Mac OS), forking can be faster,
less memory consuming, and much easier to use than using a cluster.

Speed of analysis The new version can be slightly faster than the old one for the default
options. Further speed improvements can be achieved in some cases, for instance by
not using load balancing with certain methods (e.g., HaarSeg).

5Most of the new capabilities were already available in version 2.1.3; however, the vignettes have suffered
major changes and there have been some changes in the code and help files. Thus, these comments all do
apply to version ≥ 2.3.4.
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Flexibility of reading data The new version of ADaCGH2 has not removed the mech-
anisms of reading data available in the old version. Thus, when data are small or
memory is plentiful, reading data from a single RData is an available option. But the
new version adds new mechanisms, mainly reading from a text file and from a directory
of text files that, as discussed above, allow for reading much larger data sets.

Usage of data read from the other version The new version of ADaCGH2 can accept
data read by the old version. However, the old version of ADaCGH2 cannot accept
data from read by the new version unless the original data contained no missing values
at all: the old version of ADaCGH2 assumes that data that have been read contain no
missing values.

Dependencies The old version depends on package snowfall for parallelization, whereas
the new version depends only on multicore. This makes the new version less likely
to break in the future, as multicore is one of the core packages distributed with R
(whereas, for instance, there were some problems with snowfall not building with the
development versions of v. 3 of R around February 2013).

More flexible options for load balancing The old version of ADaCGH2 forced load bal-
ancing. Whether or not load-balancing is the best approach depends on the size and
number of jobs relative to the number of cores. As shown in the tables (see tables 4,
6, 5), not using load balancing can sometimes lead to speed improvements. The new
version of ADaCGH2 allows not to use load balancing with the argument loadBalance
= FALSE.

Limiting memory consumption Memory usage is generally well below the available mem-
ory of the system. However, if it were necessary to limit memory usage during reading
and analysis this is simple with the new version of ADaCGH2: limit the number of
processes that are allowed to run simultaneously. This is not possible with the old
version of ADaCGH2.

Method availability Two of the methods available, HMM and BioHMM, depend on pack-
ages aCGH and snapCGH. These two packages haven not been updated since 2010 and
2009, respectively, and aCGH will no longer be maintained (personal communication
from the authors). There is code in the ADaCGH2 repositories (including both C and
R code), taken and modified from those packages, that can be readily uncommented
to make these two methods available in ADaCGH2 if either of those packages were not
to pass checks in future versions of BioConductor.

2.2 Data and code availability

All scripts, data, and results from these benchmarks are available from http://www2.iib.

uam.es/rduriarte_lab/ADaCGH2-v2-suppl-files/public. The scripts include the R code
to obtain the tables and figures shown here. All of the code, scripts, and benchmark re-
sults are also available from my personal web site at http://ligarto.org/rdiaz/Papers/
ADaCGH2-v2-suppl-files/ (for space restriction reasons, the more than 140 GB of data in
the form of RData and txt files are only available from the previous site.)
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2.3 Reading data

The next three tables show time and memory consumption when reading data using the
recommended approach with each version of the package (an RData object for the old version,
a directory of single-column txt files for the new version). Some of the major patterns and
results are:

Size limits for old version Table 1 cannot show reading benchmarks for the old version
with data sets of sizes 500, 1000, 2000, or 4000, as those could not be read with the old
version (R run out of memory). Likewise, tables 2 and 3 show reading benchmarks for
the old version with up to 1000 columns, because the AMD Opteron machines with ≥
256 GB RAM could not read data sets of sizes 2000 or 4000, as R could not allocate
the necessary memory.

In contrast, the new version is capable of reading data sets of 4000 columns in all
machines, without getting anywhere near the memory limits of the machines. More-
over, the scaling (see also figure 1) shows that the total number of columns could be
increased to much larger numbers and, in addition, that the total memory used can be
limited by reducing the number of cores used (with little effects on speed —see next
point).

Speed of new and old version Reading is much faster with the new version. These dif-
ferences are most likely inconsequential for small sized data sets (where differences are
by a factor of about 2x), but can have large effects with a large number of columns.
As data sets grow larger in size, reading speeds are much faster with the new version
than the old by factors of about 10x (this can only be verified in the machines with
larger memory, as the old version will not read data sets of 500 columns or more in
the smaller machine). There can, nevertheless, be quite a bit of variation in reading
speeds of small data sets, specially in less capable machines; these variations, however,
are most likely of little practical relevance.

Speed and number of cores in new version Reading speed does not always increase
with the number of cores. In fact, for a range of number of cores, reading speeds show
little variation with number of cores, as the most likely limiting factor is I/O, which is
related to the number of spindles and the speed of the drives. Increasing the number
of cores used, however, tends to make the system less responsive (higher loads) and
thus using a reasonably small number of cores is recommended and the default option.

If the reading operation is to be performed many times, or on very large set of data,
it would pay off to experiment with the number of cores used for reading, which can
be done with the option mc.cores to the function inputToADaCGH.
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Table 1: Reading benchmarks for Coleonyx: Intel Xeon E5645, 12 cores, 64 GB RAM

Wall time (min.) Memory (GB) Σ Memory (GB) Columns Cores Version

1 3.0 1.33 3.2 50 4 New
2 3.0 1.33 3.2 50 4 New
3 5.7 1.33 4.5 50 6 New
4 2.7 1.33 4.5 50 6 New
5 2.7 1.33 4.5 50 6 New
6 2.4 1.33 5.6 50 8 New
7 2.4 1.33 6.9 50 10 New
8 2.4 1.33 8.0 50 12 New
9 6.0 1.33 8.1 50 12 New
10 2.4 1.33 8.1 50 12 New
11 5.9 1.33 8.1 50 12 New
12 2.4 1.33 8.1 50 12 New
13 2.4 1.33 8.1 50 12 New
14 4.2 9.05 9.0 50 Old
15 4.6 9.05 8.9 50 Old
16 4.5 9.05 8.6 50 Old
17 4.2 9.05 9.0 50 Old
18 4.1 9.05 9.0 50 Old
19 12.4 1.33 1.3 100 1 New
20 10.2 1.33 1.3 100 1 New
21 6.2 1.33 2.0 100 2 New
22 6.2 1.33 1.9 100 2 New
23 3.9 1.33 3.3 100 4 New
24 4.2 1.33 3.2 100 4 New
25 3.9 1.33 3.4 100 4 New
26 4.1 1.33 3.4 100 4 New
27 3.5 1.33 4.4 100 6 New
28 3.3 1.33 4.4 100 6 New
29 3.3 1.33 4.5 100 6 New
30 3.4 1.33 4.5 100 6 New
31 3.3 1.33 5.0 100 7 New
32 3.3 1.33 5.0 100 7 New
33 2.9 1.33 5.7 100 8 New
34 2.9 1.33 5.7 100 8 New
35 2.8 1.33 6.2 100 9 New
36 2.8 1.33 6.2 100 9 New
37 2.9 1.33 7.0 100 10 New
38 2.9 1.33 6.9 100 10 New
39 2.7 1.33 7.5 100 11 New
40 2.7 1.33 7.5 100 11 New
41 2.7 1.33 8.1 100 12 New
42 2.6 1.33 8.1 100 12 New
43 10.3 1.33 8.1 100 12 New
44 2.6 1.33 8.1 100 12 New
45 10.0 1.33 8.1 100 12 New
46 2.6 1.33 8.4 100 12 New
47 2.8 1.33 8.1 100 12 New
48 7.1 16.93 17.0 100 Old
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Table 1: (Reading benchmarks for Coleonyx: Intel Xeon E5645, 12 cores, 64 GB RAM,
continued)

Wall time (min.) Memory (GB) Σ Memory (GB) Columns Cores Version

49 5.9 16.93 16.4 100 Old
50 5.5 16.93 16.6 100 Old
51 5.6 16.93 17.0 100 Old
52 6.1 1.33 3.5 200 4 New
53 6.3 1.33 3.5 200 4 New
54 17.4 1.33 4.7 200 6 New
55 5.0 1.33 4.6 200 6 New
56 4.9 1.33 4.6 200 6 New
57 4.8 1.33 4.8 200 6 New
58 5.6 1.33 5.1 200 7 New
59 4.6 1.33 5.0 200 7 New
60 4.2 1.33 5.9 200 8 New
61 4.2 1.33 5.9 200 8 New
62 4.1 1.33 6.2 200 9 New
63 4.1 1.33 6.3 200 9 New
64 3.9 1.33 7.2 200 10 New
65 3.8 1.33 7.0 200 10 New
66 3.8 1.33 7.5 200 11 New
67 3.6 1.33 7.5 200 11 New
68 3.5 1.33 8.1 200 12 New
69 3.6 1.33 8.2 200 12 New
70 18.3 1.33 8.2 200 12 New
71 3.4 1.33 8.1 200 12 New
72 12.8 1.33 8.4 200 12 New
73 3.6 1.33 8.1 200 12 New
74 3.6 1.33 8.3 200 12 New
75 9.2 30.01 30.0 200 Old
76 9.1 31.23 31.1 200 Old
77 9.1 31.02 31.1 200 Old
78 9.1 31.02 31.2 200 Old
79 42.2 1.33 3.4 500 4 New
80 41.1 1.33 4.4 500 6 New
81 42.4 1.33 6.1 500 8 New
82 42.7 1.33 7.3 500 10 New
83 44.6 1.33 8.5 500 12 New
84 44.5 1.33 8.7 500 12 New
85 42.4 1.33 8.5 500 12 New
86 82.3 1.33 3.6 1000 4 New
87 81.7 1.33 4.4 1000 6 New
88 85.8 1.33 6.1 1000 8 New
89 87.7 1.33 7.3 1000 10 New
90 96.2 1.33 8.6 1000 12 New
91 171.2 1.33 3.6 2000 4 New
92 173.8 1.33 4.5 2000 6 New
93 162.3 1.33 4.7 2000 6 New
94 173.0 1.33 6.1 2000 8 New
95 181.6 1.33 7.4 2000 10 New
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Table 1: (Reading benchmarks for Coleonyx: Intel Xeon E5645, 12 cores, 64 GB RAM,
continued)

Wall time (min.) Memory (GB) Σ Memory (GB) Columns Cores Version

96 188.2 1.33 8.7 2000 12 New
97 349.3 1.32 3.0 4000 4 New
98 339.7 1.32 4.4 4000 6 New
99 333.8 1.32 4.4 4000 6 New
100 347.5 1.32 6.1 4000 8 New
101 366.6 1.32 7.4 4000 10 New
102 373.4 1.32 8.6 4000 12 New
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Figure 1: Comparison between old and new versions in wall time and total memory usage
(over all spawned processes) when reading data as a function of number of columns (or arrays
or samples). Both axes shown in log scale. The figure shows the benchmarks using 12 cores
in the Intel Xeon machine and 64 cores in the AMD Opterons; note that for some scenarios
better speeds (and lower memory usage) can be achieved by decreasing the number of cores
used (see tables). When more than one benchmark is available for a scenario, the median is
shown.
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Table 2: Reading benchmarks for Gallotia: AMD Opteron 6276, 64 cores, 256 GB RAM

Wall time (min.) Memory (GB) Σ Memory (GB) Columns Cores Version

1 3.7 1.33 3.8 50 5 New
2 3.8 1.33 3.8 50 5 New
3 3.5 1.33 6.9 50 10 New
4 3.2 1.33 6.9 50 10 New
5 3.4 1.33 6.7 50 10 New
6 2.9 1.33 11.5 50 20 New
7 2.9 1.33 11.6 50 20 New
8 2.8 1.33 17.0 50 30 New
9 3.3 1.33 16.5 50 30 New
10 2.8 1.33 9.9 50 40 New
11 2.8 1.33 10.0 50 40 New
12 2.7 1.33 5.8 50 50 New
13 3.1 1.33 5.8 50 50 New
14 2.8 1.33 6.1 50 55 New
15 2.6 1.33 5.7 50 55 New
16 2.9 1.33 6.2 50 60 New
17 2.9 1.33 5.4 50 60 New
18 2.9 1.33 5.6 50 64 New
19 2.7 1.33 6.3 50 64 New
20 2.9 1.33 5.7 50 64 New
21 2.9 1.33 5.7 50 64 New
22 6.6 9.05 9.1 50 Old
23 7.3 9.05 9.1 50 Old
24 6.5 9.05 9.1 50 Old
25 7.1 9.05 9.1 50 Old
26 6.5 9.05 9.1 50 Old
27 5.0 1.33 4.0 100 5 New
28 5.0 1.33 4.0 100 5 New
29 4.3 1.33 6.9 100 10 New
30 3.8 1.33 7.1 100 10 New
31 4.1 1.33 6.8 100 10 New
32 3.2 1.33 13.1 100 20 New
33 3.4 1.33 13.1 100 20 New
34 3.0 1.33 17.1 100 30 New
35 3.6 1.33 16.9 100 30 New
36 2.8 1.33 21.5 100 40 New
37 3.3 1.33 21.0 100 40 New
38 3.0 1.33 24.9 100 50 New
39 3.1 1.33 24.9 100 50 New
40 3.2 1.33 21.9 100 55 New
41 3.1 1.33 23.0 100 55 New
42 3.0 1.33 18.7 100 60 New
43 2.9 1.33 19.3 100 60 New
44 2.7 1.33 18.8 100 64 New
45 3.4 1.33 16.8 100 64 New
46 2.7 1.33 18.3 100 64 New
47 3.0 1.33 18.6 100 64 New
48 9.8 16.93 17.0 100 Old
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Table 2: (Reading benchmarks for Gallotia: AMD Opteron 6276, 64 cores, 256 GB RAM,
continued)

Wall time (min.) Memory (GB) Σ Memory (GB) Columns Cores Version

49 10.9 16.93 17.0 100 Old
50 10.1 16.93 17.0 100 Old
51 9.8 16.93 16.9 100 Old
52 7.5 1.33 4.1 200 5 New
53 7.7 1.33 4.0 200 5 New
54 5.5 1.33 6.8 200 10 New
55 5.2 1.33 7.4 200 10 New
56 5.7 1.33 7.1 200 10 New
57 3.6 1.33 13.3 200 20 New
58 3.9 1.33 13.3 200 20 New
59 3.5 1.33 19.2 200 30 New
60 4.8 1.33 18.7 200 30 New
61 3.8 1.33 24.2 200 40 New
62 3.7 1.33 24.2 200 40 New
63 3.3 1.33 28.0 200 50 New
64 3.7 1.33 28.2 200 50 New
65 3.5 1.33 30.4 200 55 New
66 3.2 1.33 30.1 200 55 New
67 3.6 1.33 32.8 200 60 New
68 3.5 1.33 32.4 200 60 New
69 3.5 1.33 35.2 200 64 New
70 3.5 1.33 35.2 200 64 New
71 3.5 1.33 35.1 200 64 New
72 3.5 1.33 35.2 200 64 New
73 16.6 32.24 32.6 200 Old
74 18.9 32.24 32.4 200 Old
75 17.0 32.24 32.4 200 Old
76 15.9 32.24 32.5 200 Old
77 15.1 1.33 4.3 500 5 New
78 15.1 1.33 4.3 500 5 New
79 10.1 1.33 7.1 500 10 New
80 9.0 1.33 7.5 500 10 New
81 9.9 1.33 7.3 500 10 New
82 5.8 1.33 13.6 500 20 New
83 5.6 1.33 13.7 500 20 New
84 4.9 1.33 18.7 500 30 New
85 8.7 1.33 18.5 500 30 New
86 4.9 1.33 24.3 500 40 New
87 4.7 1.33 24.5 500 40 New
88 4.2 1.33 30.1 500 50 New
89 4.7 1.33 30.3 500 50 New
90 4.8 1.33 33.2 500 55 New
91 4.6 1.33 33.4 500 55 New
92 4.4 1.33 36.0 500 60 New
93 4.5 1.33 36.2 500 60 New
94 4.4 1.33 38.7 500 64 New
95 4.3 1.33 38.4 500 64 New
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Table 2: (Reading benchmarks for Gallotia: AMD Opteron 6276, 64 cores, 256 GB RAM,
continued)

Wall time (min.) Memory (GB) Σ Memory (GB) Columns Cores Version

96 4.3 1.33 38.7 500 64 New
97 4.6 1.33 38.6 500 64 New
98 36.5 77.67 78.3 500 Old
99 37.7 77.62 79.3 500 Old
100 35.8 77.67 77.8 500 Old
101 35.7 77.67 78.4 500 Old
102 28.1 1.33 4.8 1000 5 New
103 26.7 1.33 4.8 1000 5 New
104 17.9 1.33 7.5 1000 10 New
105 14.9 1.33 7.8 1000 10 New
106 16.6 1.33 7.6 1000 10 New
107 8.9 1.33 13.9 1000 20 New
108 8.5 1.33 13.9 1000 20 New
109 6.8 1.33 19.3 1000 30 New
110 9.9 1.33 18.3 1000 30 New
111 6.6 1.33 24.6 1000 40 New
112 6.7 1.33 24.7 1000 40 New
113 6.2 1.33 30.5 1000 50 New
114 6.3 1.33 30.2 1000 50 New
115 6.4 1.33 33.5 1000 55 New
116 6.5 1.33 33.2 1000 55 New
117 6.0 1.33 36.4 1000 60 New
118 6.2 1.33 36.4 1000 60 New
119 5.6 1.33 39.0 1000 64 New
120 5.8 1.33 38.7 1000 64 New
121 5.9 1.33 38.4 1000 64 New
122 6.0 1.33 38.6 1000 64 New
123 5.9 1.33 38.3 1000 64 New
124 64.8 153.58 154.2 1000 Old
125 67.2 153.58 155.0 1000 Old
126 55.4 1.33 5.8 2000 5 New
127 56.7 1.33 5.7 2000 5 New
128 30.3 1.33 7.9 2000 10 New
129 32.4 1.33 8.7 2000 10 New
130 32.1 1.33 8.4 2000 10 New
131 30.3 1.33 8.8 2000 10 New
132 23.6 1.33 14.5 2000 20 New
133 21.1 1.33 14.5 2000 20 New
134 29.6 1.33 14.4 2000 20 New
135 19.4 1.33 20.0 2000 30 New
136 31.3 1.33 19.5 2000 30 New
137 22.3 1.33 25.6 2000 40 New
138 22.5 1.33 25.2 2000 40 New
139 21.9 1.33 25.5 2000 40 New
140 26.2 1.33 30.1 2000 50 New
141 21.2 1.33 30.5 2000 50 New
142 23.0 1.33 33.5 2000 55 New

16



Table 2: (Reading benchmarks for Gallotia: AMD Opteron 6276, 64 cores, 256 GB RAM,
continued)

Wall time (min.) Memory (GB) Σ Memory (GB) Columns Cores Version

143 23.0 1.33 33.7 2000 55 New
144 21.8 1.33 36.3 2000 60 New
145 21.1 1.33 36.2 2000 60 New
146 21.1 1.33 38.8 2000 64 New
147 21.8 1.33 38.4 2000 64 New
148 19.7 1.33 38.8 2000 64 New
149 110.2 1.32 6.2 4000 5 New
150 60.9 1.32 9.2 4000 10 New
151 62.6 1.32 9.5 4000 10 New
152 58.0 1.32 15.0 4000 20 New
153 59.1 1.32 15.0 4000 20 New
154 60.1 1.32 18.8 4000 30 New
155 59.2 1.32 19.8 4000 30 New
156 63.8 1.32 26.0 4000 40 New
157 62.1 1.32 26.0 4000 40 New
158 63.2 1.32 31.6 4000 50 New
159 65.0 1.32 31.9 4000 50 New
160 65.8 1.32 34.9 4000 55 New
161 64.5 1.32 34.3 4000 55 New
162 65.4 1.32 37.0 4000 60 New
163 65.7 1.32 37.1 4000 60 New
164 66.7 1.32 39.2 4000 64 New
165 65.8 1.32 39.7 4000 64 New
166 67.4 1.32 39.6 4000 64 New
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Table 3: Reading benchmarks for Lacerta: AMD Opteron 6276, 64 cores, 384 GB RAM

Wall time (min.) Memory (GB) Σ Memory (GB) Columns Cores Version

1 3.5 1.33 3.8 50 5 New
2 3.5 1.33 3.8 50 5 New
3 3.2 1.33 6.8 50 10 New
4 3.3 1.33 6.9 50 10 New
5 2.8 1.33 11.5 50 20 New
6 3.3 1.33 11.6 50 20 New
7 2.9 1.33 17.0 50 30 New
8 3.3 1.33 16.7 50 30 New
9 2.8 1.33 9.2 50 40 New
10 2.8 1.33 9.3 50 40 New
11 2.8 1.33 5.5 50 50 New
12 2.9 1.33 5.9 50 50 New
13 2.8 1.33 5.8 50 55 New
14 3.0 1.33 5.7 50 55 New
15 2.8 1.33 5.8 50 60 New
16 2.6 1.33 5.9 50 60 New
17 2.8 1.33 6.1 50 64 New
18 2.4 1.33 5.9 50 64 New
19 2.7 1.33 6.4 50 64 New
20 2.9 1.33 5.6 50 64 New
21 6.4 9.05 9.0 50 Old
22 6.2 9.05 9.1 50 Old
23 6.9 9.05 9.1 50 Old
24 4.9 1.33 4.0 100 5 New
25 5.1 1.33 4.0 100 5 New
26 4.0 1.33 6.8 100 10 New
27 3.5 1.33 7.1 100 10 New
28 3.1 1.33 13.1 100 20 New
29 3.6 1.33 12.8 100 20 New
30 3.0 1.33 17.4 100 30 New
31 3.6 1.33 16.9 100 30 New
32 3.0 1.33 21.5 100 40 New
33 3.7 1.33 21.3 100 40 New
34 2.9 1.33 24.8 100 50 New
35 3.4 1.33 24.2 100 50 New
36 3.1 1.33 22.6 100 55 New
37 3.1 1.33 23.2 100 55 New
38 2.9 1.33 20.3 100 60 New
39 3.4 1.33 17.4 100 60 New
40 2.8 1.33 17.0 100 64 New
41 2.6 1.33 18.0 100 64 New
42 2.7 1.33 18.7 100 64 New
43 2.9 1.33 18.3 100 64 New
44 10.2 16.93 16.9 100 Old
45 9.2 16.93 16.9 100 Old
46 10.2 16.93 17.1 100 Old
47 7.3 1.33 4.0 200 5 New
48 7.7 1.33 4.1 200 5 New
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Table 3: (Reading benchmarks for Lacerta: AMD Opteron 6276, 64 cores, 384 GB RAM,
continued)

Wall time (min.) Memory (GB) Σ Memory (GB) Columns Cores Version

49 5.4 1.33 6.9 200 10 New
50 4.9 1.33 7.3 200 10 New
51 4.0 1.33 13.3 200 20 New
52 4.6 1.33 12.7 200 20 New
53 3.5 1.33 19.1 200 30 New
54 3.9 1.33 18.4 200 30 New
55 3.5 1.33 24.1 200 40 New
56 4.1 1.33 24.1 200 40 New
57 3.4 1.33 28.6 200 50 New
58 3.8 1.33 28.1 200 50 New
59 3.4 1.33 30.4 200 55 New
60 3.6 1.33 30.4 200 55 New
61 3.4 1.33 32.9 200 60 New
62 3.7 1.33 33.0 200 60 New
63 3.2 1.33 35.1 200 64 New
64 3.5 1.33 35.2 200 64 New
65 3.7 1.33 35.0 200 64 New
66 3.5 1.33 34.4 200 64 New
67 16.6 32.24 32.1 200 Old
68 15.5 32.24 32.4 200 Old
69 15.7 32.24 32.6 200 Old
70 14.8 1.33 4.4 500 5 New
71 15.4 1.33 4.4 500 5 New
72 9.6 1.33 7.5 500 10 New
73 8.4 1.33 7.6 500 10 New
74 5.3 1.33 13.7 500 20 New
75 8.1 1.33 12.8 500 20 New
76 4.8 1.33 18.9 500 30 New
77 5.4 1.33 18.7 500 30 New
78 5.4 1.33 24.6 500 40 New
79 4.8 1.33 24.4 500 40 New
80 4.8 1.33 30.4 500 50 New
81 4.6 1.33 30.3 500 50 New
82 4.8 1.33 33.2 500 55 New
83 4.6 1.33 33.3 500 55 New
84 5.1 1.33 36.2 500 60 New
85 4.4 1.33 36.6 500 60 New
86 4.3 1.33 39.3 500 64 New
87 4.6 1.33 39.0 500 64 New
88 4.5 1.33 39.0 500 64 New
89 4.6 1.33 38.6 500 64 New
90 35.2 77.67 77.4 500 Old
91 35.8 77.67 77.6 500 Old
92 36.7 77.67 77.2 500 Old
93 27.0 1.33 4.9 1000 5 New
94 27.9 1.33 4.8 1000 5 New
95 17.1 1.33 8.2 1000 10 New
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Table 3: (Reading benchmarks for Lacerta: AMD Opteron 6276, 64 cores, 384 GB RAM,
continued)

Wall time (min.) Memory (GB) Σ Memory (GB) Columns Cores Version

96 14.9 1.33 7.8 1000 10 New
97 9.1 1.33 13.8 1000 20 New
98 9.1 1.33 13.8 1000 20 New
99 7.5 1.33 18.7 1000 30 New
100 7.3 1.33 19.6 1000 30 New
101 7.0 1.33 24.6 1000 40 New
102 6.7 1.33 24.8 1000 40 New
103 6.3 1.33 30.2 1000 50 New
104 6.3 1.33 30.6 1000 50 New
105 6.1 1.33 33.1 1000 55 New
106 6.1 1.33 33.3 1000 55 New
107 5.9 1.33 36.1 1000 60 New
108 5.9 1.33 36.4 1000 60 New
109 6.1 1.33 39.4 1000 64 New
110 5.9 1.33 38.9 1000 64 New
111 6.1 1.33 38.6 1000 64 New
112 6.0 1.33 38.9 1000 64 New
113 5.8 1.33 38.4 1000 64 New
114 64.9 153.58 154.1 1000 Old
115 59.7 153.58 155.5 1000 Old
116 59.1 153.58 155.5 1000 Old
117 52.1 1.33 6.0 2000 5 New
118 54.5 1.33 6.1 2000 5 New
119 29.5 1.33 8.2 2000 10 New
120 26.7 1.33 8.9 2000 10 New
121 31.7 1.33 9.6 2000 10 New
122 15.5 1.33 14.9 2000 20 New
123 15.5 1.33 14.7 2000 20 New
124 25.5 1.33 14.9 2000 20 New
125 13.2 1.33 20.2 2000 30 New
126 11.7 1.33 20.7 2000 30 New
127 17.1 1.33 25.5 2000 40 New
128 10.9 1.33 25.7 2000 40 New
129 11.1 1.33 25.8 2000 40 New
130 12.8 1.33 31.4 2000 50 New
131 10.2 1.33 31.8 2000 50 New
132 10.8 1.33 34.1 2000 55 New
133 9.7 1.33 34.5 2000 55 New
134 10.1 1.33 37.7 2000 60 New
135 9.1 1.33 37.1 2000 60 New
136 9.0 1.33 39.4 2000 64 New
137 12.1 1.33 39.2 2000 64 New
138 9.2 1.33 39.9 2000 64 New
139 121.5 1.32 7.7 4000 5 New
140 65.1 1.32 10.6 4000 10 New
141 57.4 1.32 16.2 4000 20 New
142 62.1 1.32 16.2 4000 20 New
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Table 3: (Reading benchmarks for Lacerta: AMD Opteron 6276, 64 cores, 384 GB RAM,
continued)

Wall time (min.) Memory (GB) Σ Memory (GB) Columns Cores Version

143 45.3 1.32 22.6 4000 30 New
144 47.0 1.32 19.5 4000 30 New
145 58.3 1.32 26.9 4000 40 New
146 73.1 1.32 27.4 4000 40 New
147 61.6 1.32 32.6 4000 50 New
148 72.1 1.32 31.5 4000 50 New
149 64.6 1.32 35.6 4000 55 New
150 69.9 1.32 35.4 4000 55 New
151 65.1 1.32 38.1 4000 60 New
152 71.6 1.32 38.5 4000 60 New
153 66.3 1.32 40.3 4000 64 New
154 68.4 1.32 40.1 4000 64 New
155 72.4 1.32 40.5 4000 64 New
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2.4 Analyzing data

The next four tables show time and memory consumption when analyzing data. For the old
version, the largest data sets analyzed are of 200 columns for the Intel Xeon machine with 64
GB of RAM, and 1000 columns for the AMD Opteron machines (see details in section 2.3).
In these benchmarks, runs were not allowed to run for more than 36 hours (2160 minutes)
except for a few cases that were allowed to run for longer to either compare between methods
(e.g., HMM in Coleonyx) or to verify that the method is definitely not suitable for very large
data, such as in the case of GLAD, where two processes were allowed to run for four days
(see section 1.2.1). Finally, note that we do not compute the time it takes to set up the MPI
environment (with the old version or with the new version, when using MPI), but only the
time of the call for the segmentation itself; setting up the cluster takes about half a minute
to a minute.

Some of the major patterns and results shown in tables 4 to 7 (see also Figure2) are:

Version comparison There are small speed differences between the old and new versions,
generally favoring the new version, specially with HaarSeg and CBS. The new version
generally also uses less memory than the old version. The main difference, however, is
that the new version can analyze much larger data sets, as the old version is limited
by the size of the data sets that can be read (see section 2.3).

Load balancing Load balancing is generally a good choice, but not with HaarSeg on a
single multicore machine, because the individual analysis of HaarSeg are so fast that
they rarely make it worth it the increased communication and processing overheads of
load balancing.

MPI vs. forking Forking is faster than MPI when running on a single node, which is to
be expected, and in some cases (e.g., HMM) the differences can be very large.

Running over several nodes Even with fast communication between nodes (as in this
case) duplicating the number of cores might not result in significant decreases in wall
time for the fastest methods. In particular, Wall time for HaarSeg is actually larger
when run over two nodes. For CBS there is a slight advantage of running over two
nodes. Running over more than one node to increase the number of cores/CPUs is,
however, advantageous for the slower methods (e.g., HMM).

Note that these results are highly hardware dependent: slower communication
between nodes or slower I/O from shared storage will make running over several nodes
less worth it. However, increasing the available number of cores/CPUs by larger factors
(e.g., 4x or 8x) might make it worth it to use them even for fast methods such as
HaarSeg.
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Figure 2: Comparison between old and new version in wall time and total memory usage
(over all spawned processes) as a function of number of columns (or arrays or samples).
Both axes shown in log scale. The figure shows the default use cases: using 12 cores in the
Intel Xeon machine and 64 cores in the AMD Opterons. Since the old - version assumes no
missing data, when possible (i.e., when data read by the old version are available) the data
without missing values have been used with option certain noNA = TRUE; these correspond
to rows labeled “New-noNA” in tables 4 to 7. When more than one benchmark is available
for a scenario, the median is shown.
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Table 4: Analysis benchmarks for Coleonyx: Intel Xeon E5645, 12 cores, 64 GB RAM

Wall time (min.) Memory (GB) Σ Memory (GB) Method Columns MPI/Fork Cores Procs. per node Universe size Version

1 2.0 0.13 5.3 Haar 50 Fork 12 New
2 1.8 0.13 5.2 Haar 50 Fork-LB 12 New
3 1.4 0.13 5.0 Haar 50 Fork 12 New-noNA
4 1.2 0.13 4.9 Haar 50 Fork 12 New-noNA
5 1.6 0.13 4.9 Haar 50 Fork-LB 12 New-noNA
6 1.4 0.16 5.8 Haar 50 MPI 12 11 Old
7 1.3 0.16 6.2 Haar 50 MPI 13 12 Old
8 1.2 0.16 6.4 Haar 50 MPI 13 12 Old
9 3.1 0.14 5.2 Haar 100 Fork 12 New
10 3.2 0.13 5.1 Haar 100 Fork-LB 12 New
11 2.8 0.13 3.2 Haar 100 MPI 12 11 New
12 3.1 0.13 5.2 Haar 100 MPI-LB 12 11 New
13 2.3 0.13 5.0 Haar 100 Fork 12 New-noNA
14 2.2 0.13 5.0 Haar 100 Fork 12 New-noNA
15 2.7 0.13 5.0 Haar 100 Fork-LB 12 New-noNA
16 2.6 0.17 5.9 Haar 100 MPI 12 11 Old
17 2.3 0.17 6.1 Haar 100 MPI 13 12 Old
18 2.3 0.17 6.1 Haar 100 MPI 13 12 Old
19 5.8 0.13 5.2 Haar 200 Fork 12 New
20 5.3 0.13 5.4 Haar 200 Fork-LB 12 New
21 7.9 0.13 5.3 Haar 200 MPI 12 11 New
22 5.7 0.13 5.6 Haar 200 MPI-LB 12 11 New
23 4.8 0.13 5.3 Haar 200 Fork 12 New-noNA
24 4.2 0.13 5.0 Haar 200 Fork 12 New-noNA
25 5.3 0.13 5.0 Haar 200 Fork-LB 12 New-noNA
26 6.7 0.13 5.2 Haar 200 MPI 12 11 New-noNA
27 5.2 0.13 5.1 Haar 200 MPI-LB 12 11 New-noNA
28 4.8 0.18 6.0 Haar 200 MPI 12 11 Old
29 4.5 0.18 6.5 Haar 200 MPI 13 12 Old
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Table 4: (Analysis benchmarks for Coleonyx: Intel Xeon E5645, 12 cores, 64 GB RAM, continued)

Wall time (min.) Memory (GB) Σ Memory (GB) Method Columns MPI/Fork Cores Procs. per node Universe size Version

30 4.3 0.18 6.5 Haar 200 MPI 13 12 Old
31 38.9 0.14 5.6 Haar 1000 Fork 12 New
32 29.8 0.14 5.7 Haar 1000 Fork-LB 12 New
33 38.7 0.14 5.7 Haar 1000 MPI 12 11 New
34 29.8 0.14 10.0 Haar 1000 MPI-LB 12 11 New
35 54.2 0.15 6.1 Haar 2000 Fork 12 New
36 58.6 0.15 6.1 Haar 2000 Fork-LB 12 New
37 104.1 0.18 6.7 Haar 4000 Fork 12 New
38 117.3 0.18 6.3 Haar 4000 Fork-LB 12 New
39 69.7 0.13 7.5 CBS 50 Fork 12 New
40 64.5 0.13 7.1 CBS 50 Fork-LB 12 New
41 70.0 0.13 6.8 CBS 50 Fork 12 New-noNA
42 68.3 0.13 6.6 CBS 50 Fork 12 New-noNA
43 70.9 0.13 6.8 CBS 50 Fork 12 New-noNA
44 64.6 0.13 6.2 CBS 50 Fork-LB 12 New-noNA
45 74.2 0.13 7.6 CBS 50 MPI 12 11 Old
46 74.1 0.13 7.6 CBS 50 MPI 12 11 Old
47 77.3 0.13 8.1 CBS 50 MPI 13 12 Old
48 133.5 0.13 9.8 CBS 100 Fork 12 New
49 124.2 0.13 7.2 CBS 100 Fork-LB 12 New
50 132.4 0.13 8.4 CBS 100 Fork 12 New-noNA
51 131.2 0.13 7.2 CBS 100 Fork 12 New-noNA
52 122.7 0.13 6.2 CBS 100 Fork-LB 12 New-noNA
53 146.2 0.13 8.0 CBS 100 MPI 12 11 Old
54 147.9 0.13 7.7 CBS 100 MPI 12 11 Old
55 150.0 0.13 15.5 CBS 100 MPI 13 12 Old
56 250.8 0.13 8.2 CBS 200 Fork 12 New
57 241.4 0.13 7.5 CBS 200 Fork-LB 12 New
58 380.0 0.13 9.0 CBS 200 MPI 12 11 New
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Table 4: (Analysis benchmarks for Coleonyx: Intel Xeon E5645, 12 cores, 64 GB RAM, continued)

Wall time (min.) Memory (GB) Σ Memory (GB) Method Columns MPI/Fork Cores Procs. per node Universe size Version

59 307.9 0.13 8.4 CBS 200 MPI-LB 12 11 New
60 255.2 0.13 14.2 CBS 200 Fork 12 New-noNA
61 250.7 0.13 7.3 CBS 200 Fork 12 New-noNA
62 240.3 0.13 6.1 CBS 200 Fork-LB 12 New-noNA
63 372.4 0.13 8.7 CBS 200 MPI 12 11 New-noNA
64 307.8 0.13 7.9 CBS 200 MPI-LB 12 11 New-noNA
65 287.7 0.13 7.9 CBS 200 MPI 12 11 Old
66 287.2 0.13 7.2 CBS 200 MPI 12 11 Old
67 294.6 0.13 10.6 CBS 200 MPI 13 12 Old
68 1246.0 0.14 14.8 CBS 1000 Fork 12 New
69 1185.2 0.14 8.2 CBS 1000 Fork-LB 12 New
70 1804.2 0.14 10.0 CBS 1000 MPI 12 11 New
71 1512.4 0.14 8.9 CBS 1000 MPI-LB 12 11 New
72 311.2 0.18 6.4 HMM 50 Fork 11 New
73 309.5 0.18 10.5 HMM 50 Fork 11 New
74 282.1 0.18 7.0 HMM 50 Fork 12 New
75 286.4 0.18 7.1 HMM 50 Fork 12 New
76 288.4 0.18 9.6 HMM 50 Fork 12 New
77 281.0 0.18 6.3 HMM 50 Fork-LB 12 New
78 310.9 0.18 9.1 HMM 50 Fork 12 New-noNA
79 284.0 0.18 11.5 HMM 50 Fork 12 New-noNA
80 280.1 0.18 5.8 HMM 50 Fork-LB 12 New-noNA
81 322.5 0.18 7.2 HMM 50 MPI 11 10 Old
82 324.4 0.18 7.2 HMM 50 MPI 11 10 Old
83 298.2 0.18 7.3 HMM 50 MPI 12 11 Old
84 302.2 0.18 10.2 HMM 50 MPI 12 11 Old
85 299.9 0.18 8.2 HMM 50 MPI 13 12 Old
86 305.8 0.18 9.8 HMM 50 MPI 13 12 Old
87 574.2 0.18 9.5 HMM 100 Fork 12 New
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Table 4: (Analysis benchmarks for Coleonyx: Intel Xeon E5645, 12 cores, 64 GB RAM, continued)

Wall time (min.) Memory (GB) Σ Memory (GB) Method Columns MPI/Fork Cores Procs. per node Universe size Version

88 552.2 0.18 6.4 HMM 100 Fork-LB 12 New
89 560.4 0.18 11.3 HMM 100 Fork 12 New-noNA
90 559.1 0.18 6.3 HMM 100 Fork-LB 12 New-noNA
91 603.0 0.18 10.7 HMM 100 MPI 12 11 Old
92 595.4 0.18 8.5 HMM 100 MPI 13 12 Old
93 1117.5 0.18 6.1 HMM 200 Fork-LB 12 New
94 3188.2 0.20 8.7 HMM 200 MPI 12 11 New
95 1213.7 0.20 8.1 HMM 200 MPI-LB 12 11 New
96 1108.7 0.18 7.9 HMM 200 Fork 12 New-noNA
97 1122.8 0.18 13.5 HMM 200 Fork 12 New-noNA
98 1112.3 0.18 6.1 HMM 200 Fork-LB 12 New-noNA
99 3240.6 0.20 9.1 HMM 200 MPI 12 11 New-noNA
100 1205.0 0.20 8.4 HMM 200 MPI-LB 12 11 New-noNA
101 1192.3 0.20 7.3 HMM 200 MPI 12 11 Old
102 1169.4 0.18 10.5 BioHMM 50 Fork 12 New-noNA
103 1122.9 0.18 5.5 BioHMM 50 Fork-LB 12 New-noNA
104 1222.2 0.18 17.2 BioHMM 50 MPI 13 12 Old
105 2339.5 0.18 11.0 BioHMM 100 Fork 12 New-noNA
106 2235.4 0.18 5.5 BioHMM 100 Fork-LB 12 New-noNA
107 2401.8 0.18 15.5 BioHMM 100 MPI 13 12 Old
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Table 5: Analysis benchmarks for Gallotia: AMD Opteron 6276, 64 cores, 256 GB RAM

Wall time (min.) Memory (GB) Σ Memory (GB) Method Columns MPI/Fork Cores Procs. per node Universe size Version

1 0.7 0.13 20.2 Haar 50 Fork 64 New
2 1.4 0.13 18.6 Haar 50 Fork-LB 64 New
3 0.6 0.13 19.2 Haar 50 Fork 64 New-noNA
4 0.7 0.13 19.3 Haar 50 Fork 64 New-noNA
5 0.6 0.13 19.2 Haar 50 Fork-LB 64 New-noNA
6 0.4 0.16 23.6 Haar 50 MPI 64 63 Old
7 1.2 0.13 25.7 Haar 100 Fork 64 New
8 1.9 0.13 23.6 Haar 100 Fork-LB 64 New
9 1.0 0.13 25.2 Haar 100 Fork 64 New-noNA
10 1.0 0.13 25.0 Haar 100 Fork 64 New-noNA
11 1.1 0.13 24.5 Haar 100 Fork-LB 64 New-noNA
12 0.8 0.17 28.1 Haar 100 MPI 64 63 Old
13 0.9 0.17 28.0 Haar 100 MPI 65 64 Old
14 0.9 0.17 27.8 Haar 100 MPI 65 64 Old
15 2.4 0.13 25.8 Haar 200 Fork 64 New
16 2.8 0.13 25.2 Haar 200 Fork-LB 64 New
17 2.6 0.14 28.3 Haar 200 MPI 64 63 New
18 1.9 0.14 28.1 Haar 200 MPI-LB 64 63 New
19 1.9 0.14 25.0 Haar 200 Fork 64 New-noNA
20 1.8 0.14 25.0 Haar 200 Fork 64 New-noNA
21 1.9 0.13 24.7 Haar 200 Fork-LB 64 New-noNA
22 2.7 0.14 27.1 Haar 200 MPI 64 63 New-noNA
23 1.8 0.14 26.7 Haar 200 MPI-LB 64 63 New-noNA
24 1.4 0.18 34.2 Haar 200 MPI 64 63 Old
25 1.6 0.18 33.2 Haar 200 MPI 65 64 Old
26 1.5 0.18 32.6 Haar 200 MPI 65 64 Old
27 3.7 0.13 27.0 Haar 500 Fork 64 New
28 3.7 0.14 25.6 Haar 500 Fork 64 New-noNA
29 3.8 0.18 31.3 Haar 500 MPI 64 63 Old
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Table 5: (Analysis benchmarks for Gallotia: AMD Opteron 6276, 64 cores, 256 GB RAM, continued)

Wall time (min.) Memory (GB) Σ Memory (GB) Method Columns MPI/Fork Cores Procs. per node Universe size Version

30 3.0 0.18 34.0 Haar 500 MPI 64 63 Old
31 7.0 0.14 27.7 Haar 1000 Fork 64 New
32 10.1 0.14 27.5 Haar 1000 Fork 64 New
33 13.0 0.14 26.4 Haar 1000 Fork-LB 64 New
34 10.2 0.14 27.4 Haar 1000 Fork-LB 64 New
35 12.4 0.14 29.3 Haar 1000 MPI 64 63 New
36 8.9 0.14 28.6 Haar 1000 MPI-LB 64 63 New
37 6.5 0.14 26.3 Haar 1000 Fork 64 New-noNA
38 8.9 0.14 26.6 Haar 1000 Fork 64 New-noNA
39 7.3 0.14 26.5 Haar 1000 Fork 64 New-noNA
40 7.6 0.14 25.9 Haar 1000 Fork-LB 64 New-noNA
41 8.7 0.14 25.8 Haar 1000 Fork-LB 64 New-noNA
42 6.2 0.14 28.7 Haar 1000 MPI 64 63 New-noNA
43 6.2 0.14 28.5 Haar 1000 MPI-LB 64 63 New-noNA
44 5.9 0.18 33.6 Haar 1000 MPI 64 63 Old
45 15.3 0.15 28.9 Haar 2000 Fork 64 New
46 16.9 0.15 29.8 Haar 2000 Fork 64 New
47 21.8 0.15 28.4 Haar 2000 Fork-LB 64 New
48 19.9 0.15 29.1 Haar 2000 Fork-LB 64 New
49 35.6 0.18 30.7 Haar 4000 Fork 64 New
50 40.8 0.18 30.6 Haar 4000 Fork 64 New
51 43.2 0.18 29.1 Haar 4000 Fork-LB 64 New
52 39.9 0.18 30.2 Haar 4000 Fork-LB 64 New
53 25.1 0.13 29.2 CBS 50 Fork 64 New
54 24.3 0.14 27.9 CBS 50 Fork-LB 64 New
55 25.1 0.13 23.8 CBS 50 Fork 64 New-noNA
56 24.7 0.13 23.8 CBS 50 Fork 64 New-noNA
57 24.0 0.13 23.9 CBS 50 Fork-LB 64 New-noNA
58 33.1 0.13 31.2 CBS 50 MPI 64 63 Old
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Table 5: (Analysis benchmarks for Gallotia: AMD Opteron 6276, 64 cores, 256 GB RAM, continued)

Wall time (min.) Memory (GB) Σ Memory (GB) Method Columns MPI/Fork Cores Procs. per node Universe size Version

59 47.7 0.13 37.1 CBS 100 Fork 64 New
60 45.1 0.14 36.3 CBS 100 Fork-LB 64 New
61 48.2 0.13 31.1 CBS 100 Fork 64 New-noNA
62 47.0 0.14 30.4 CBS 100 Fork 64 New-noNA
63 44.6 0.13 31.6 CBS 100 Fork-LB 64 New-noNA
64 60.3 0.13 38.8 CBS 100 MPI 64 63 Old
65 61.2 0.13 39.4 CBS 100 MPI 65 64 Old
66 61.6 0.13 39.7 CBS 100 MPI 65 64 Old
67 87.5 0.13 38.7 CBS 200 Fork 64 New
68 82.9 0.14 37.4 CBS 200 Fork-LB 64 New
69 134.6 0.14 44.2 CBS 200 MPI 64 63 New
70 104.1 0.14 44.3 CBS 200 MPI-LB 64 63 New
71 88.9 0.13 34.1 CBS 200 Fork 64 New-noNA
72 87.0 0.13 34.4 CBS 200 Fork 64 New-noNA
73 82.5 0.13 30.8 CBS 200 Fork-LB 64 New-noNA
74 135.0 0.14 41.6 CBS 200 MPI 64 63 New-noNA
75 104.7 0.14 41.9 CBS 200 MPI-LB 64 63 New-noNA
76 106.6 0.13 41.7 CBS 200 MPI 64 63 Old
77 108.7 0.13 43.0 CBS 200 MPI 65 64 Old
78 107.5 0.13 42.2 CBS 200 MPI 65 64 Old
79 184.6 0.13 40.7 CBS 500 Fork 64 New
80 182.6 0.14 36.8 CBS 500 Fork 64 New-noNA
81 231.6 0.14 44.2 CBS 500 MPI 64 63 Old
82 362.5 0.14 42.1 CBS 1000 Fork 64 New
83 355.1 0.14 36.3 CBS 1000 Fork-LB 64 New
84 356.6 0.14 36.8 CBS 1000 Fork-LB 64 New
85 563.2 0.14 50.9 CBS 1000 MPI 64 63 New
86 447.6 0.14 49.1 CBS 1000 MPI-LB 64 63 New
87 358.9 0.14 39.3 CBS 1000 Fork 64 New-noNA
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Table 5: (Analysis benchmarks for Gallotia: AMD Opteron 6276, 64 cores, 256 GB RAM, continued)

Wall time (min.) Memory (GB) Σ Memory (GB) Method Columns MPI/Fork Cores Procs. per node Universe size Version

88 352.1 0.14 32.0 CBS 1000 Fork-LB 64 New-noNA
89 446.7 0.14 45.6 CBS 1000 MPI-LB 64 63 New-noNA
90 455.5 0.14 45.5 CBS 1000 MPI 64 63 Old
91 722.7 0.16 43.8 CBS 2000 Fork 64 New
92 696.4 0.16 37.9 CBS 2000 Fork-LB 64 New
93 1499.6 0.18 44.2 CBS 4000 Fork 64 New
94 1396.8 0.18 39.0 CBS 4000 Fork-LB 64 New
95 87.6 0.18 25.8 HMM 50 Fork-LB 64 New
96 105.9 0.17 30.0 HMM 50 Fork 64 New-noNA
97 94.5 0.17 30.0 HMM 50 Fork 64 New-noNA
98 87.2 0.18 23.2 HMM 50 Fork-LB 64 New-noNA
99 83.0 0.18 37.9 HMM 50 MPI 64 63 Old
100 82.2 0.18 37.6 HMM 50 MPI 64 63 Old
101 175.7 0.18 33.6 HMM 100 Fork 63 New
102 174.2 0.18 33.4 HMM 100 Fork 63 New
103 165.4 0.18 34.5 HMM 100 Fork 64 New
104 166.3 0.18 34.4 HMM 100 Fork 64 New
105 179.2 0.18 32.8 HMM 100 Fork-LB 64 New
106 166.9 0.18 31.4 HMM 100 Fork 64 New-noNA
107 168.0 0.18 31.6 HMM 100 Fork 64 New-noNA
108 166.2 0.18 30.4 HMM 100 Fork-LB 64 New-noNA
109 164.0 0.18 38.9 HMM 100 MPI 63 62 Old
110 164.6 0.18 39.6 HMM 100 MPI 63 62 Old
111 160.9 0.18 40.7 HMM 100 MPI 64 63 Old
112 163.0 0.18 39.9 HMM 100 MPI 64 63 Old
113 168.8 0.18 41.1 HMM 100 MPI 65 64 Old
114 167.9 0.18 41.4 HMM 100 MPI 65 64 Old
115 333.8 0.18 34.4 HMM 200 Fork 63 New
116 336.5 0.18 34.8 HMM 200 Fork 63 New
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Table 5: (Analysis benchmarks for Gallotia: AMD Opteron 6276, 64 cores, 256 GB RAM, continued)

Wall time (min.) Memory (GB) Σ Memory (GB) Method Columns MPI/Fork Cores Procs. per node Universe size Version

117 331.5 0.18 36.1 HMM 200 Fork 64 New
118 333.3 0.18 36.1 HMM 200 Fork 64 New
119 359.6 0.19 33.1 HMM 200 Fork-LB 64 New
120 1110.5 0.20 40.5 HMM 200 MPI 64 63 New
121 329.7 0.20 41.5 HMM 200 MPI-LB 64 63 New
122 328.7 0.18 33.5 HMM 200 Fork 64 New-noNA
123 328.9 0.18 33.6 HMM 200 Fork 64 New-noNA
124 325.1 0.18 30.2 HMM 200 Fork-LB 64 New-noNA
125 1109.4 0.20 43.1 HMM 200 MPI 64 63 New-noNA
126 326.9 0.20 42.8 HMM 200 MPI-LB 64 63 New-noNA
127 331.3 0.20 40.8 HMM 200 MPI 63 62 Old
128 330.2 0.20 41.1 HMM 200 MPI 63 62 Old
129 319.5 0.20 41.7 HMM 200 MPI 64 63 Old
130 325.8 0.20 41.5 HMM 200 MPI 64 63 Old
131 1616.9 0.21 40.7 HMM 1000 Fork 64 New-noNA
132 1618.0 0.22 30.9 HMM 1000 Fork-LB 64 New-noNA
133 1612.1 0.26 43.8 HMM 1000 MPI 64 63 Old
134 469.8 0.18 32.2 BioHMM 50 Fork 64 New-noNA
135 499.2 0.18 32.3 BioHMM 50 Fork 64 New-noNA
136 363.3 0.18 42.9 BioHMM 50 MPI 64 63 Old
137 964.7 0.18 34.5 BioHMM 100 Fork 64 New-noNA
138 979.8 0.18 34.2 BioHMM 100 Fork 64 New-noNA
139 645.5 0.18 47.5 BioHMM 100 MPI 64 63 Old
140 1813.8 0.18 36.1 BioHMM 200 Fork 64 New-noNA
141 1939.3 0.18 35.6 BioHMM 200 Fork 64 New-noNA
142 1652.7 0.20 48.8 BioHMM 200 MPI 64 63 Old
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Table 6: Analysis benchmarks for Lacerta: AMD Opteron 6276, 64 cores, 384 GB RAM

Wall time (min.) Memory (GB) Σ Memory (GB) Method Columns MPI/Fork Cores Procs. per node Universe size Version

1 0.7 0.13 20.2 Haar 50 Fork 64 New
2 0.6 0.13 20.2 Haar 50 Fork-LB 64 New
3 0.4 0.13 19.1 Haar 50 Fork 64 New-noNA
4 0.6 0.13 19.2 Haar 50 Fork-LB 64 New-noNA
5 0.5 0.16 24.3 Haar 50 MPI 65 64 Old
6 0.5 0.16 24.3 Haar 50 MPI 65 64 Old
7 1.3 0.13 25.7 Haar 100 Fork 64 New
8 1.2 0.13 25.7 Haar 100 Fork-LB 64 New
9 0.8 0.13 25.3 Haar 100 Fork 64 New-noNA
10 1.1 0.13 24.5 Haar 100 Fork-LB 64 New-noNA
11 0.8 0.17 27.8 Haar 100 MPI 64 63 Old
12 1.1 0.17 28.1 Haar 100 MPI 65 64 Old
13 2.5 0.13 26.8 Haar 200 Fork 64 New
14 1.8 0.13 26.9 Haar 200 Fork-LB 64 New
15 2.6 0.13 28.2 Haar 200 MPI 64 63 New
16 2.1 0.13 28.1 Haar 200 MPI-LB 64 63 New
17 1.5 0.14 25.1 Haar 200 Fork 64 New-noNA
18 2.0 0.13 24.6 Haar 200 Fork-LB 64 New-noNA
19 2.4 0.13 27.1 Haar 200 MPI 64 63 New-noNA
20 1.5 0.13 27.1 Haar 200 MPI-LB 64 63 New-noNA
21 1.4 0.18 31.9 Haar 200 MPI 64 63 Old
22 1.9 0.18 29.0 Haar 200 MPI 65 64 Old
23 10.5 0.14 27.9 Haar 1000 Fork 64 New
24 8.1 0.14 27.7 Haar 1000 Fork 64 New
25 11.4 0.14 26.7 Haar 1000 Fork-LB 64 New
26 10.5 0.14 28.2 Haar 1000 Fork-LB 64 New
27 11.6 0.14 29.8 Haar 1000 MPI 64 63 New
28 10.0 0.14 29.2 Haar 1000 MPI-LB 64 63 New
29 8.0 0.14 26.3 Haar 1000 Fork 64 New-noNA
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Table 6: (Analysis benchmarks for Lacerta: AMD Opteron 6276, 64 cores, 384 GB RAM, continued)

Wall time (min.) Memory (GB) Σ Memory (GB) Method Columns MPI/Fork Cores Procs. per node Universe size Version

30 8.8 0.14 26.7 Haar 1000 Fork 64 New-noNA
31 7.1 0.14 26.7 Haar 1000 Fork 64 New-noNA
32 9.2 0.14 26.5 Haar 1000 Fork-LB 64 New-noNA
33 7.0 0.14 26.2 Haar 1000 Fork-LB 64 New-noNA
34 6.1 0.14 28.5 Haar 1000 MPI 64 63 New-noNA
35 6.1 0.14 28.5 Haar 1000 MPI-LB 64 63 New-noNA
36 6.2 0.18 32.9 Haar 1000 MPI 65 64 Old
37 6.2 0.18 34.9 Haar 1000 MPI 65 64 Old
38 14.8 0.14 29.0 Haar 2000 Fork 64 New
39 16.4 0.14 29.1 Haar 2000 Fork 64 New
40 21.7 0.14 27.1 Haar 2000 Fork-LB 64 New
41 20.2 0.14 28.4 Haar 2000 Fork-LB 64 New
42 36.1 0.18 32.3 Haar 4000 Fork 64 New
43 42.2 0.18 31.9 Haar 4000 Fork 64 New
44 45.0 0.18 31.8 Haar 4000 Fork-LB 64 New
45 44.9 0.18 31.7 Haar 4000 Fork-LB 64 New
46 25.5 0.13 26.2 CBS 50 Fork-LB 64 New
47 24.6 0.13 24.4 CBS 50 Fork 64 New-noNA
48 25.0 0.14 23.1 CBS 50 Fork-LB 64 New-noNA
49 34.0 0.13 35.0 CBS 50 MPI 65 64 Old
50 34.9 0.13 32.3 CBS 50 MPI 65 64 Old
51 44.7 0.13 34.0 CBS 100 Fork-LB 64 New
52 46.2 0.13 31.1 CBS 100 Fork 64 New-noNA
53 44.5 0.14 32.0 CBS 100 Fork-LB 64 New-noNA
54 61.0 0.13 40.5 CBS 100 MPI 64 63 Old
55 60.6 0.13 41.0 CBS 100 MPI 65 64 Old
56 83.6 0.13 35.7 CBS 200 Fork-LB 64 New
57 131.5 0.13 46.1 CBS 200 MPI 64 63 New
58 103.3 0.13 43.9 CBS 200 MPI-LB 64 63 New
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Table 6: (Analysis benchmarks for Lacerta: AMD Opteron 6276, 64 cores, 384 GB RAM, continued)

Wall time (min.) Memory (GB) Σ Memory (GB) Method Columns MPI/Fork Cores Procs. per node Universe size Version

59 88.1 0.14 34.1 CBS 200 Fork 64 New-noNA
60 82.1 0.14 30.9 CBS 200 Fork-LB 64 New-noNA
61 134.9 0.13 43.1 CBS 200 MPI 64 63 New-noNA
62 102.8 0.13 42.0 CBS 200 MPI-LB 64 63 New-noNA
63 107.8 0.13 42.5 CBS 200 MPI 64 63 Old
64 109.7 0.13 41.7 CBS 200 MPI 65 64 Old
65 353.7 0.14 36.7 CBS 1000 Fork-LB 64 New
66 353.4 0.14 36.4 CBS 1000 Fork-LB 64 New
67 556.8 0.14 51.0 CBS 1000 MPI 64 63 New
68 451.2 0.14 47.9 CBS 1000 MPI-LB 64 63 New
69 359.9 0.14 38.8 CBS 1000 Fork 64 New-noNA
70 352.3 0.14 31.7 CBS 1000 Fork-LB 64 New-noNA
71 443.2 0.14 45.0 CBS 1000 MPI-LB 64 63 New-noNA
72 459.6 0.14 45.7 CBS 1000 MPI 65 64 Old
73 722.2 0.15 44.1 CBS 2000 Fork 64 New
74 695.2 0.16 37.3 CBS 2000 Fork-LB 64 New
75 1430.5 0.18 46.4 CBS 4000 Fork 64 New
76 1399.4 0.18 41.9 CBS 4000 Fork-LB 64 New
77 94.5 0.18 25.8 HMM 50 Fork 64 New
78 88.0 0.18 25.7 HMM 50 Fork-LB 64 New
79 94.0 0.17 29.9 HMM 50 Fork 64 New-noNA
80 86.8 0.18 23.0 HMM 50 Fork-LB 64 New-noNA
81 81.3 0.18 38.8 HMM 50 MPI 64 63 Old
82 166.1 0.18 32.5 HMM 100 Fork-LB 64 New
83 167.1 0.18 31.7 HMM 100 Fork 64 New-noNA
84 165.6 0.18 29.9 HMM 100 Fork-LB 64 New-noNA
85 160.3 0.18 41.6 HMM 100 MPI 64 63 Old
86 166.5 0.18 41.0 HMM 100 MPI 65 64 Old
87 324.9 0.18 32.9 HMM 200 Fork-LB 64 New
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Table 6: (Analysis benchmarks for Lacerta: AMD Opteron 6276, 64 cores, 384 GB RAM, continued)

Wall time (min.) Memory (GB) Σ Memory (GB) Method Columns MPI/Fork Cores Procs. per node Universe size Version

88 1113.2 0.20 41.6 HMM 200 MPI 64 63 New
89 326.7 0.20 40.3 HMM 200 MPI-LB 64 63 New
90 323.8 0.18 33.0 HMM 200 Fork 64 New-noNA
91 323.1 0.19 30.0 HMM 200 Fork-LB 64 New-noNA
92 1123.3 0.20 42.7 HMM 200 MPI 64 63 New-noNA
93 324.5 0.20 42.7 HMM 200 MPI-LB 64 63 New-noNA
94 322.3 0.20 40.8 HMM 200 MPI 64 63 Old
95 1612.9 0.21 40.0 HMM 1000 Fork 64 New-noNA
96 1597.5 0.22 33.9 HMM 1000 Fork-LB 64 New-noNA
97 1613.6 0.27 43.9 HMM 1000 MPI 64 63 Old
98 458.4 0.18 28.3 BioHMM 50 Fork 64 New
99 373.7 0.17 32.5 BioHMM 50 Fork 64 New-noNA
100 328.9 0.18 43.2 BioHMM 50 MPI 64 63 Old
101 731.2 0.18 34.5 BioHMM 100 Fork 64 New-noNA
102 697.5 0.18 47.0 BioHMM 100 MPI 64 63 Old
103 1543.5 0.18 36.0 BioHMM 200 Fork 64 New-noNA
104 1525.2 0.20 49.5 BioHMM 200 MPI 64 63 Old
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Table 7: Analysis benchmarks using Lacerta and Gallotia with MPI over Infiniband (total 124 cores)

Wall time (min.) Memory (GB) Σ Memory (GB) Method Columns MPI/Fork Cores Procs. per node Universe size Version

1 1.4 0.13 27.3 Haar 200 MPI 63 124 New-noNA
2 1.3 0.13 26.9 Haar 200 MPI 62 124 New-noNA
3 1.3 0.13 27.1 Haar 200 MPI 62 124 New-noNA
4 1.3 0.13 27.3 Haar 200 MPI 63 124 New-noNA
5 1.1 0.13 27.2 Haar 200 MPI-LB 63 124 New-noNA
6 1.1 0.13 26.7 Haar 200 MPI-LB 62 124 New-noNA
7 1.0 0.13 26.7 Haar 200 MPI-LB 62 124 New-noNA
8 1.2 0.13 27.1 Haar 200 MPI-LB 63 124 New-noNA
9 1.4 0.18 27.4 Haar 200 MPI 63 124 Old
10 1.3 0.18 27.2 Haar 200 MPI 62 124 Old
11 7.9 0.14 28.5 Haar 1000 MPI 62 124 New-noNA
12 4.7 0.14 27.5 Haar 1000 MPI-LB 62 124 New-noNA
13 8.8 0.18 32.9 Haar 1000 MPI 62 124 Old
14 27.7 0.15 31.6 Haar 2000 MPI 62 124 New
15 15.2 0.15 30.8 Haar 2000 MPI-LB 62 124 New
16 59.0 0.18 31.8 Haar 4000 MPI 62 124 New
17 35.0 0.18 32.4 Haar 4000 MPI-LB 62 124 New
18 70.1 0.13 42.1 CBS 200 MPI 63 124 New-noNA
19 69.6 0.13 41.4 CBS 200 MPI 62 124 New-noNA
20 60.6 0.13 40.1 CBS 200 MPI-LB 62 124 New-noNA
21 60.0 0.13 42.0 CBS 200 MPI 63 124 Old
22 61.2 0.13 41.1 CBS 200 MPI 62 124 Old
23 324.1 0.14 44.7 CBS 1000 MPI 62 124 New-noNA
24 239.1 0.14 43.9 CBS 1000 MPI-LB 62 124 New-noNA
25 242.5 0.14 44.8 CBS 1000 MPI 62 124 Old
26 612.7 0.15 51.5 CBS 2000 MPI 62 124 New
27 452.6 0.15 49.6 CBS 2000 MPI-LB 62 124 New
28 1237.0 0.18 53.8 CBS 4000 MPI 62 124 New
29 893.3 0.18 51.7 CBS 4000 MPI-LB 62 124 New
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Table 7: (Analysis benchmarks using Lacerta and Gallotia with MPI over Infiniband (total 124 cores), continued)

Wall time (min.) Memory (GB) Σ Memory (GB) Method Columns MPI/Fork Cores Procs. per node Universe size Version

30 584.2 0.20 41.8 HMM 200 MPI 62 124 New-noNA
31 172.1 0.20 40.9 HMM 200 MPI-LB 62 124 New-noNA
32 165.7 0.20 41.8 HMM 200 MPI 63 124 Old
33 166.4 0.20 41.0 HMM 200 MPI 62 124 Old
34 847.6 0.27 40.4 HMM 1000 MPI-LB 62 124 New-noNA
35 846.4 0.27 43.7 HMM 1000 MPI 62 124 Old
36 1489.2 0.35 41.3 HMM 2000 MPI-LB 62 124 New

38



3 Other comparisons

3.1 Comparison with non-parallelized executions

ADaCGH2 was run without merging, to compare it to the canonical, non-parallelized, im-
plementations of CBS and Haar. Note that, as there are missing values in the data, and
the original HaarSeg code does not deal with missing values, we are forced to remove NAs
array-per-array, and make repeated calls to the function.

39



Table 8: Time and memory usage of segmentation without merging and comparison with
non-parallized executions. These examples have all been run on the Dell Power Edges,
except for the last two, run on the Intel machine (on the Intel machine non-parallelized
runs with 1000 columns cannot be attempted as R runs out of memory loading the data).

Method MPI
/Fork

Cores ff/
RAM

Columns Wall time
(min.)

Memory
(GB)

Σ Memory
(GB)

1 Haar Fork 64 ff 100 1.2 0.13 24.5
2 Haar Fork 10 ff 1000 23.5 0.142 5.9
3 Haar Fork 20 ff 1000 12.3 0.137 10.0
4 Haar Fork 40 ff 1000 7.4 0.142 17.6
5 Haar Fork 50 ff 1000 6.7 0.139 21.2
6 Haar Fork 64 ff 1000 6.4 0.142 26.9
7 Haar Fork 10 ff 2000 49.7 0.16 8.0
8 Haar Fork 20 ff 2000 26.3 0.16 11.9
9 Haar Fork 40 ff 2000 15.4 0.16 19.5
10 Haar Fork 50 ff 2000 13.3 0.16 23.2
11 Haar Fork 64 ff 2000 11.9 0.16 28.4

12 CBS Fork 64 ff 100 55.9 0.13 35.3
13 CBS Fork 10 ff 1000 1855.4 0.135 8.6
14 CBS Fork 20 ff 1000 939.8 0.135 14.9
15 CBS Fork 40 ff 1000 513.5 0.136 27.0
16 CBS Fork 50 ff 1000 438.6 0.142 33.1
17 CBS Fork 64 ff 1000 350.3 0.142 41.3
18 CBS Fork 10 ff 2000 3770.9 0.15 11.1
19 CBS Fork 20 ff 2000 1878.8 0.16 16.5
20 CBS Fork 40 ff 2000 1007.0 0.15 28.8
21 CBS Fork 50 ff 2000 857.1 0.16 35.3
22 CBS Fork 64 ff 2000 717.3 0.163 41.9

23 Haar NP - RAM 100 25.2a 12.5 12.5
24 CBS NP - RAM 100 1706b 40 40
25 Haar NP - RAM 1000 198.3c Cannot allocate memory
26 CBS NP - RAM 1000 Cannot allocate memory

27 Haar NP - RAM 100 15.1d 14.1 14.1
28 CBS NP - RAM 100 1112e 38.3 38.3
a 25.25 = 0.95 + 22.9 + 1.4: load data, analyze, and save results. If there are no missing values in this

data set, the total time of analysis (i.e., sending the whole matrix at once and not checking for, nor
removing, NAs) is 3.3 minutes.

b 1706 = 0.95 + 1698 + 6.7: load data, analyze, and save results. The analysis involves calling the CNA

function to create the CNA object (5.3 min), calling the smooth.CNA function to smooth the data and
detect outlier (83.2 minutes), and segmenting the data with the segment function (1609.5 minutes).

c The analysis uses 113 GB, but results cannot be saved. This was in the machine with 256 GB of RAM.
d 15.1 = 0.65 + 13.5 + 0.9: load data, analyze, and save results.
e 1112 = 0.65 + 1106 + 4.9: load data, analyze, and save results. The analysis involves calling the CNA

function to create the CNA object (0.95 min), calling the smooth.CNA function to smooth the data
and detect outlier (20.2 minutes), and segmenting the data with the segment function (1085 minutes).
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3.2 Reading from a directory of files vs. other options

Here we show time and memory usage of options that are not the recommended approach
with large data set (using ff objects and reading from a directory of single-column files). All
these benchmarks have been carried out in the AMD Opteron machines. These data show
the patterns discussed in the main vignette: with large data sets the best approach is to read
from a directory of single-column files and store as ff objects. Wall time is much smaller
when reading from a directory of single column files (see also table 1 for a comparison with
former versions of ADaCGH2, where original data where stored as RData and then read to
ff objects). Moreover, storing as a RAM object, even when possible, might result in a RAM
object that can then not be successfully used for analysis (see section 3.3).

Table 9: Time and memory usage when reading data

Reading operation Columns Wall time
(min)

Memory
(GB)

Σ Memory (GB)

1 Txt file to ff 1000 2630 1.3 NA

2 RData to ff 1000 29.6 169 168.3

3 Directory to data
frame (RAM object)

1000 22 + 2a 96 NA. Output unusable
for analysis. See table
3.3.

4 RData to data frame
(RAM object)

1000 22 + 2b 139 NA. Output unusable
for analysis. See table
3.3.

5 Directory to data
frame (RAM object)

200 7.7 + 0.4c 20 38

6 Directory to data
frame (RAM object)

100 8.7 + 0.3d 10.5 30

7 Directory to data
frame (RAM object)

50 5.8 + 0.1e 5.8 27

a The 2 reflects the time needed to save the resulting data frame to an RData file.
b The 2 reflects the time needed to save the resulting data frame to an RData file.
c The 0.4 reflects the time needed to save the resulting data frame to an RData file.
d The 0.3 reflects the time needed to save the resulting data frame to an RData file.
e The 0.1 reflects the time needed to save the resulting data frame to an RData file.
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3.3 Analyzing large data with RAM objects

Here we present some results from attempting to analyze large data sets, with the new
version of ADaCGH2, using RAM objects. Even moderately size data sets (200 columns)
cannot be analyzed when using RAM objects in a machine with 384 GB of RAM; memory
usage is already very large (140 GB) with just 50 columns. Time of analysis is also much
larger for the case shown than for similarly sized problems when using ff objects (see tables
5 and 6).

Table 10: Time and memory usage of segmentation with default options

Method MPI
/Fork

Cores ff/RAM Columns Wall time (min.) Memory
(GB)

Σ Mem-
ory (GB)

1 Haar Fork 64 RAM 50 0.7 + 2.5 + 0.9a 14.4 140

2 Haar Fork 64 RAM 200 NA NA Cannot
allocate
memory

3 Haar Fork 64 RAM 1000 NA NA Cannot
allocate
memory

a 0.7 + 2.5 + 0.9: load data, analyze, and save results.
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4 Comments and recommended usage patterns

4.1 Recommended usage: summary

1. For data analysis, use the defaults when running on a single multicore computer:

(a) ff objects for input and output.

(b) Forking (instead of explicit clusters).

(c) Load balancing, except when using HaarSeg.

2. If you have multiple machines available for analysis, try using them with explicit clus-
ters (e.g., MPI). However, especially for methods such as HaarSeg, the gains could
be modest unless you add many machines to the cluster. Use load balancing for all
methods (i.e., override the defult if using HaarSeg).

3. When reading data, the fastest and least memory consuming is using a directory of
single-column files. The best number of cores is likely to be strongly hardware (and
possibly file system) dependent. The default mc.cores has been set to half the number
of cores, but this is not necessarily a sensible default.

4.2 Recommended usage: details

1. Reading data and trying to save it as a RAM object, a usual in-memory data frame,
will quickly exhaust available memory. For these data, we were not able to read data
sets of 100 or more columns. Part of the problem lies on the way memory is handled
and freed in the slaves, given that we are returning lists. In contrast, when saving as
ff objects, the slaves are only returning tiny objects (just pointers to a file).

2. Saving data as RData objects will also not be an option for large numbers of columns
as we will quickly exhaust available memory when trying to analyze them.

3. In a single machine, and for the same number of cores, analyzing data with MPI is
often generally slower than using forking, which is not surprising. Note also that with
MPI there is an overhead of spawning slaves and loading packages in the slaves (which,
in our case, takes about half a minute to a minute).

4. When using two nodes (i.e., almost doubling the number of cores), MPI might, or
might not, be faster than using forking on a single node. Two main issues affect the
speed differences: inter-process communication and access to files. In our case, the
likely bottleneck lies in access to files, which live on an array of disks that is accessed
via NFS. With other hardware/software configurations, access to shared files might
be much faster. Regardless, the MPI costs might not be worth if each individual
calculation is fast; this is why MPI with HaarSeg does not pay off, but it does pay off
with HMM and is borderline with CBS.

5. When using ff, the exact same operations in systems with different RAM can lead to
different amounts of memory usage, as ff tries autotuning when starting.

You can tune parameters when you load the ff package, but even if you don’t (and, by
default, we don’t), defaults are often sensible and will play in your favor.

6. Even for relatively small examples, using ff can be faster than using RAM objects.
Using RAM objects incurs overheads of loading and saving the RData objects in mem-
ory, but analyses also tend to be slightly slower. The later is somewhat surprising:
with forking and RAM objects, the R object that holds the CGH data is accessed only

43



for reading, and thus can be shared between all processes. We expected this to be
faster than using ff, because access to disk is several orders of magnitude slower than
access to memory —note that we made sure that memory was not virtual memory
mapped to disk, as we had disabled all swapping. We suspect the main difference lies
in bottlenecks and contention problems that result from accessing data in a single data
frame simultaneously from multiple processes, compared to loading exactly just one
column independently in each process, and/or repeated cache misses.

7. inputToADaCGH (i.e., transforming a directory of files into ff objects) can be severely
affected, of course, by other processes accessing the disk. More generally, since with
inputToADaCGH several processes can try to access different files at once (we are trying
to parallelize the reading of data), issues such as type of file system, configuration and
type of RAID, number of spindles, quality of the RAID card, amount of free space,
etc, etc, etc, can have an effect on all heavy I/O operations. Note also that, as a
general rule, it is better if the newly created ff files from inputToADaCGH are written
to an empty directory, and if the working directory for segmentation analysis is another
empty directory if you are using ff objects.

inputToADaCGH accepts an argument to reduce the number of cores used, which can
help with contention issues related to I/O. A multicore machine (say, 12 cores) with a
single SATA drive might actually complete the reading faster if you use fewer than 12
cores for the reading. But your mileage might vary. See also comments and full tables
in section 2.3.

8. Reordering data takes time (a lot if you do not use ff objects) and can use a lot of
memory. So it is much better if input data are already ordered (by Chromosome and
Position within Chromosome).
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