Package ‘mia’

October 14, 2021

Type Package
Version 1.0.8
Title Microbiome analysis

Description mia implements tools for microbiome analysis based on the
SummarizedExperiment, SingleCellExperiment and TreeSummarizedExperiment
infrastructure. Data wrangling and analysis in the context of taxonomic data
is the main scope. Additional functions for common task are implemented such
as community indices calculation and summarization.

biocViews Microbiome, Software, Datalmport
License Artistic-2.0 | file LICENSE
Encoding UTF-8

LazyData false

Depends R (>=4.1), SummarizedExperiment, SingleCellExperiment,
TreeSummarizedExperiment (>= 1.99.3)

Imports methods, stats, utils, MASS, ape, decontam, vegan,
BiocGenerics, S4Vectors, IRanges, Biostrings, DECIPHER,
BiocParallel, DelayedArray, DelayedMatrixStats, scuttle,
scater, DirichletMultinomial, rlang, dplyr, tibble, tidyr

Suggests testthat, knitr, patchwork, BiocStyle, yaml, phyloseq, dada2,
stringr, biomformat, reldist, ade4, microbiomeDataSets,
rmarkdown

URL https://github.com/microbiome/mia

BugReports https://github.com/microbiome/mia/issues
Roxygen list(markdown = TRUE)

RoxygenNote 7.1.1

VignetteBuilder knitr

git_url https://git.bioconductor.org/packages/mia

git_branch RELEASE_3_13

git_last_commit 95eeacO

git_last_commit_date 2021-07-30

https://github.com/microbiome/mia
https://github.com/microbiome/mia/issues

2 R topics documented:

Date/Publication 2021-10-14

Author Felix G.M. Ernst [aut, cre] (<https://orcid.org/0000-0001-5064-0928>),
Sudarshan A. Shetty [aut] (<https://orcid.org/0000-0001-7280-9915>),
Tuomas Borman [aut] (<https://orcid.org/0000-0002-8563-8884>),
Leo Lahti [aut] (<https://orcid.org/0000-0001-5537-637X>),

Yang Cao [ctb],

Nathan D. Olson [ctb],
Levi Waldron [ctb],

Marcel Ramos [ctb],
Héctor Corrada Bravo [ctb],
Jayaram Kancherla [ctb],
Domenick Braccia [ctb]

Maintainer Felix G.M. Ernst <felix.gm.ernst@outlook.com>

R topics documented:

mia-package e e e e 3
agglomerate-methods L 3
calculateDistance L. e 5
calculateDMN o e 6
calculateJSD 9
calculateUniFrac L 10
estimateDivergence L. L e 12
estimateDiversity L 14
estimateDominance L oL e 19
estimateEvenness oL 23
estimateRichness 25
getAbundance L. oL L e e 28
getPrevalence 30
isContaminant L. e 34
loadFromMothur 36
loadFromQIIME2 e e 37
makePhyloseqFromTreeSummarizedExperiment 39
makeSummarizedExperimentFromBiom00 0000 40
makeTreeSummarizedExperimentFromDADA2 41
makeTreeSummarizedExperimentFromphyloseq 42
MEItASSAY o e e e e e e 43
merge-methods 45
mia-datasets 46
perSampleDominantTaxa Lo 47
relabundance L e 48
runCCA . . . 49
runDPCoA e 51
runNMDS . . L L e 52
splitByRanks 55
subsetSamples L e e e 57

SUMMATIES & . v v v v v o v e e e e e e e e e e e e e e e 58

https://orcid.org/0000-0001-5064-0928
https://orcid.org/0000-0001-7280-9915
https://orcid.org/0000-0002-8563-8884
https://orcid.org/0000-0001-5537-637X

mia-package 3

taxonomy-methods 60
transformCounts L. L e 63
Index 69
mia-package mia Package.
Description

miaimplements tools for microbiome analysis based on the SummarizedExperiment, SingleCellExperiment
and TreeSummarizedExperiment infrastructure. Data wrangling and analysis in the context of tax-

onomic data is the main scope. Additional functions for common task are implemented such as
community indices calculation and summarization.

See Also

TreeSummarizedExperiment class

agglomerate-methods Agglomerate data using taxonomic information

Description

agglomerateByRank can be used to sum up data based on the association to certain taxonomic
ranks given as rowData. Only available taxonomicRanks can be used.

Usage

S4 method for signature 'SummarizedExperiment'
agglomerateByRank(

X,

rank = taxonomyRanks(x)[1],

onRankOnly = FALSE,

na.rm = FALSE,

empty.fields = c(NA, "", " ", "\t", "=-", "_"),

S4 method for signature 'SingleCellExperiment’
agglomerateByRank(x, ..., altexp = NULL, strip_altexp = TRUE)

S4 method for signature 'TreeSummarizedExperiment'’
agglomerateByRank(x, ..., agglomerateTree = FALSE)

4 agglomerate-methods

Arguments
X a SummarizedExperiment object
rank a single character defining a taxonomic rank. Must be a value of taxonomicRanks ()
function.
onRankOnly TRUE or FALSE: Should information only from the specified rank be used or from
ranks equal and above? See details. (default: onRankOnly = FALSE)
na.rm TRUE or FALSE: Should taxa with an empty rank be removed? Use it with cau-

tion, since empty entries on the selected rank will be dropped. This setting can
be tweaked by defining empty. fields to your needs. (default: na.rm = TRUE)

empty.fields a character value defining, which values should be regarded as empty. (De-
fault: c(NA,""," ","\t")). They will be removed if na.rm = TRUE before ag-
glomeration.

arguments passed to agglomerateByRank function for SummarizedExperiment
objects, mergeRows and sumCountsAcrossFeatures.

altexp String or integer scalar specifying an alternative experiment containing the input
data.

strip_altexp TRUE or FALSE: Should alternative experiments be removed prior to agglomera-
tion? This prevents to many nested alternative experiments by default (default:
strip_altexp = TRUE)

agglomerateTree
TRUE or FALSE: should rowTree () also be agglomerated? (Default: agglomerateTree
= FALSE)

Details

Based on the available taxonomic data and its structure setting onRankOnly = TRUE has certain
implications on the interpretability of your results. If no loops exist (loops meaning two higher
ranks containing the same lower rank), the results should be comparable. you can check for loops
using detectLoop.

Value

A taxonomically-agglomerated, optionally-pruned object of the same class as x.

See Also

mergeRows, sumCountsAcrossFeatures

Examples

data(GlobalPatterns)

print the available taxonomic ranks
colnames(rowData(GlobalPatterns))
taxonomyRanks (GlobalPatterns)

agglomerate at the Family taxonomic rank
x1 <- agglomerateByRank(GlobalPatterns, rank="Family")

calculateDistance 5

How many taxa before/after agglomeration?
nrow(GlobalPatterns)
nrow(x1)

with agglomeration of the tree

x2 <- agglomerateByRank(GlobalPatterns, rank="Family”,
agglomerateTree = TRUE)

nrow(x2) # same number of rows, but

rowTree(x1) # ... different

rowTree(x2) # ... tree

removing empty labels by setting na.rm = TRUE
sum(is.na(rowData(GlobalPatterns)$Family))

Look at enterotype dataset...

data(enterotype)

print the available taxonomic ranks. Shows only 1 rank available
not useful for agglomerateByRank

taxonomyRanks (enterotype)

calculateDistance Calculate sample distances with vegan

Description

calculateDistance calculates a distance matrix between samples. The type of distance calculated
can be modified by setting FUN, which expects a function with a matrix input as its first argument.

Usage

calculateDistance(x, FUN = stats::dist, ...)

S4 method for signature 'ANY'
calculateDistance(x, FUN = stats::dist, ...)

S4 method for signature 'SummarizedExperiment'’
calculateDistance(

X,

FUN = stats::dist,

exprs_values = "counts”,

transposed = FALSE,

)
Arguments
X a SummarizedExperiment object containing a tree.
FUN a function for distance calculation. The function must expect the input matrix

as its first argument. With rows as samples and columns as features.

6 calculateDMIN

other arguments passed onto FUN
exprs_values a single character value for specifying which assay to use for calculation.

transposed Logical scalar, is x transposed with cells in rows?

Value

a sample-by-sample distance matrix, suitable for NMDS, etc.

Examples

generate some example data

mat <- matrix(1:60, nrow = 6)

df <- DataFrame(n = c(1:6))

se <- SummarizedExperiment(assays = list(counts = mat),
rowData = df)

#

calculateDistance(se)

calculateDMN Dirichlet-Multinomial Mixture Model: Machine Learning for Micro-
biome Data

Description

These functions are accessors for functions implemented in the DirichletMultinomial package

Usage

calculateDMN(x, ...)

S4 method for signature 'ANY'

calculateDMN(
X’
k =1,

BPPARAM = SerialParam(),
seed = runif(1, @, .Machine$integer.max),

)

S4 method for signature 'SummarizedExperiment'

calculateDMN(x, exprs_values = "counts"”, transposed = FALSE, ...)
runDMN(x, name = "DMN", ...)

getDMN(x, name = "DMN", ...)

S4 method for signature 'SummarizedExperiment'’

calculateDMIN

getDMN(x, name = "DMN")
bestDMNFit(x, name = "DMN”, type = c("laplace”", "AIC", "BIC"),

S4 method for signature 'SummarizedExperiment'’
bestDMNFit(x, name = "DMN", type = c("laplace”, "AIC", "BIC"))

getBestDMNFit(x, name = "DMN", type = c("laplace”, "AIC", "BIC"),

S4 method for signature 'SummarizedExperiment'’
getBestDMNFit(x, name = "DMN", type = c("laplace”, "AIC"”, "BIC"))

calculateDMNgroup(x, ...)

S4 method for signature 'ANY'
calculateDMNgroup(

X,

variable,

k=1,

seed = runif(1, @, .Machine$integer.max),

)

S4 method for signature 'SummarizedExperiment'
calculateDMNgroup(

X,

variable,

exprs_values = "counts”,

transposed = FALSE,

)
performDMNgroupCV(x, ...)

S4 method for signature 'ANY'
performDMNgroupCV(

X,

variable,

k =1,

seed = runif(1, @, .Machine$integer.max),

)

S4 method for signature 'SummarizedExperiment’
performDMNgroupCV (

X,

variable,

exprs_values = "counts”,

.2

8 calculateDMIN

transposed = FALSE,

)
Arguments

X a numeric matrix with samples as rows or a SummarizedExperiment object.
optional arguments not used.

k the number of Dirichlet components to fit. See dmn

BPPARAM A BiocParallelParamobject specifying whether the UniFrac calculation should
be parallelized.

seed random number seed. See dmn

exprs_values asingle character value for specifying which assay to use for calculation.

transposed Logical scalar, is x transposed with samples in rows?
name the name to store the result in metadata
type the type of measure used for the goodness of fit. One of ‘laplace’, ‘AIC’* or
‘BIC’.
variable a variable from colData to use as a grouping variable. Must be a character of
factor.
Value

calculateDMN and getDMN return a list of DMN objects, one element for each value of k provided.
bestDMNFit returns the index for the best fit and getBestDMNFit returns a single DMN object.
calculateDMNgroup returns a DMNGroup object

performDMNgroupCV returns a data. frame

See Also

DMN-class, DMNGroup-class, dmn, dmngroup, cvdmngroup , accessors for DMN objects

Examples

fl <- system.file(package="DirichletMultinomial”, "extdata”, "Twins.csv")
counts <- as.matrix(read.csv(fl, row.names=1))

fl <- system.file(package="DirichletMultinomial”, "extdata”, "TwinStudy.t")
pheno® <- scan(fl)

lvls <- c("Lean"”, "Obese"”, "Overwt")

pheno <- factor(lvls[pheno® + 1], levels=lvls)

colData <- DataFrame(pheno = pheno)

se <- SummarizedExperiment(assays = list(counts = counts),

colData = colData)

#
dmn <- calculateDMN(se)

calculateJSD 9

dmn[[1L]]

since this take a bit of resources to calculate for k > 1, the data is
loaded

Not run:

se <- runDMN(se, name = "DMN", k = 1:7)

End(Not run)
data(dmn_se)
names(metadata(dmn_se))

return a list of DMN objects
getDMN(dmn_se)

return, which objects fits best
bestDMNFit(dmn_se, type = "laplace”)

return the model, which fits best
getBestDMNFit(dmn_se, type = "laplace”)

calculateJSD Calculate the Jensen-Shannon Divergence

Description

This function calculates the Jensen-Shannon Divergence (JSD) in a SummarizedExperiment object.

Usage

S4 method for signature 'ANY'
calculateJSD(x, ...)

S4 method for signature 'SummarizedExperiment'’
calculateJSD(x, exprs_values = "counts”, transposed = FALSE, ...)

runJSD(x, BPPARAM = SerialParam(), chunkSize = nrow(x))

Arguments

X a numeric matrix or a SummarizedExperiment.
optional arguments not used.

exprs_values asingle character value for specifying which assay to use for calculation.

transposed Logical scalar, is x transposed with cells in rows?

BPPARAM A BiocParallelParam object specifying whether the JSD calculation should
be parallelized.

chunkSize an integer scalar, defining the size of data send to the individual worker. Only

has an effect, if BPPARAM defines more than one worker. (default: chunkSize =
nrow(x))

10 calculateUniFrac

Value

a sample-by-sample distance matrix, suitable for NMDS, etc.

Author(s)

Susan Holmes <susan@stat.stanford. edu>. Adapted for phyloseq by Paul J. McMurdie. Adapted
for mia by Felix G.M. Ernst

References

Jensen-Shannon Divergence and Hilbert space embedding. Bent Fuglede and Flemming Top-
soe University of Copenhagen, Department of Mathematics http://www.math.ku.dk/~topsoe/
ISIT2004JSD.pdf

See Also

http://en.wikipedia.org/wiki/Jensen-Shannon_divergence

Examples

data(enterotype)
library(scater)

jsd <- calculateJSD(enterotype)
class(jsd)
head(jsd)

enterotype <- runMDS(enterotype, FUN = calculateJSD, name = "JSD",
exprs_values = "counts"”)

head(reducedDim(enterotype))

head(attr(reducedDim(enterotype), "eig"))

attr(reducedDim(enterotype), "GOF")

calculateUniFrac Calculate weighted or unweighted (Fast) UniFrac distance

Description

This function calculates the (Fast) UniFrac distance for all sample-pairs in a TreeSummarizedExperiment
object.

Usage

S4 method for signature 'ANY,phylo'
calculateUniFrac(

X,

tree,

http://www.math.ku.dk/~topsoe/ISIT2004JSD.pdf
http://www.math.ku.dk/~topsoe/ISIT2004JSD.pdf
http://en.wikipedia.org/wiki/Jensen-Shannon_divergence

calculateUniFrac

11

weighted = FALSE,
normalized = TRUE,
BPPARAM = SerialParam()

)
S4 method for signature 'TreeSummarizedExperiment,missing'’
calculateUniFrac(x, exprs_values = "counts"”, transposed = FALSE, ...)
runUniFrac(

X,

tree,

weighted = FALSE,
normalized = TRUE,
BPPARAM = SerialParam()

Arguments

X

tree

weighted

normalized

BPPARAM

exprs_values

transposed

Details

a numeric matrix or a TreeSummarizedExperiment object containing a tree.
Please note that runUniFrac expects a matrix with samples per row and not per
column. This is implemented to be compatible with other distance calculations
such as dist as much as possible.

if x is a matrix, a phylo object matching the matrix. This means that the phylo
object and the columns should relate to the same type of features (aka. microor-
ganisms).

TRUE or FALSE: Should use weighted-UniFrac calculation? Weighted-UniFrac
takes into account the relative abundance of species/taxa shared between sam-
ples, whereas unweighted-UniFrac only considers presence/absence. Default is
FALSE, meaning the unweighted-UniFrac distance is calculated for all pairs of
samples.

TRUE or FALSE: Should the output be normalized such that values range from 0 to
1 independent of branch length values? Default is TRUE. Note that (unweighted)
UniFrac is always normalized by total branch-length, and so this value is ig-
nored when weighted == FALSE.

A BiocParallelParamobject specifying whether the UniFrac calculation should
be parallelized.

a single character value for specifying which assay to use for calculation.
Logical scalar, is x transposed with cells in rows?
optional arguments not used.

Please note that if calculateUniFrac is used as a FUN for runMDS, the argument ntop has to be set

to nrow(x).

Value

a sample-by-sample distance matrix, suitable for NMDS, etc.

12 estimateDivergence

Author(s)

Paul J. McMurdie. Adapted for mia by Felix G.M. Ernst

References

http://bmf.colorado.edu/unifrac/
The main implementation (Fast UniFrac) is adapted from the algorithm’s description in:

Hamady, Lozupone, and Knight, “Fast UniFrac: facilitating high-throughput phylogenetic analyses
of microbial communities including analysis of pyrosequencing and PhyloChip data.” The ISME
Journal (2010) 4, 17-27.

See also additional descriptions of UniFrac in the following articles:

Lozupone, Hamady and Knight, “UniFrac - An Online Tool for Comparing Microbial Community
Diversity in a Phylogenetic Context.”, BMC Bioinformatics 2006, 7:371

Lozupone, Hamady, Kelley and Knight, “Quantitative and qualitative (beta) diversity measures lead
to different insights into factors that structure microbial communities.” Appl Environ Microbiol.
2007

Lozupone C, Knight R. “UniFrac: a new phylogenetic method for comparing microbial communi-
ties.” Appl Environ Microbiol. 2005 71 (12):8228-35.

Examples

data(esophagus)

library(scater)

calculateUniFrac(esophagus, weighted = FALSE)

calculateUniFrac(esophagus, weighted = TRUE)

calculateUniFrac(esophagus, weighted = TRUE, normalized = FALSE)

for using calculateUniFrac in conjunction with runMDS the tree argument
has to be given separately. In addition, subsetting using ntop must

be disabled

esophagus <- runMDS(esophagus, FUN = calculateUniFrac, name = "UniFrac”,
tree = rowTree(esophagus),
exprs_values = "counts”,

ntop = nrow(esophagus))
reducedDim(esophagus)

estimateDivergence Estimate divergence

Description

This function estimates a divergence within samples.

http://bmf.colorado.edu/unifrac/
http://www.nature.com/ismej/journal/v4/n1/full/ismej200997a.html

estimateDivergence 13

Usage

estimateDivergence(
X,
abund_values = "counts",
name = "divergence”,
reference = "median”,
FUN = vegan::vegdist,
method = "bray”,

S4 method for signature 'SummarizedExperiment’
estimateDivergence(

X,

abund_values = "counts",

name = "divergence”,

reference = "median”,

FUN = vegan::vegdist,

method = "bray",

Arguments

X a SummarizedExperiment object
abund_values the name of the assay used for calculation of the sample-wise estimates

name a name for the column of the colData the results should be stored in. By defaut,
name is "divergence"”.

reference a numeric vector that has length equal to number of features, or a non-empty
character value; either 'median’ or 'mean’. reference specifies the reference
that is used to calculate divergence. by default, reference is "median”.

FUN a function for distance calculation. For more information, please check calculateDistance.
By default, FUN is vegan: : vegdist.

method a method that is used to calculate the distance. Method is passed to the function
that is specified by FUN. By default, method is "bray”.

optional arguments

Details

Microbiota divergence (heterogeneity / spread) within a given sample set can be quantified by the
average sample dissimilarity or beta diversity with respect to a given reference sample.

This measure is sensitive to sample size. Subsampling or bootstrapping can be applied to equalize
sample sizes between comparisons.

Value

x with additional colData named *namex*

14 estimateDiversity

Author(s)

Leo Lahti and Tuomas Borman. Contact: microbiome.github.io

See Also

plotColData

e estimateRichness
* estimateEvenness
e estimateDominance

e calculateDistance

Examples

data(GlobalPatterns)
tse <- GlobalPatterns

By default, reference is median of all samples. The name of column where results
is "divergence"” by default, but it can be specified.
tse <- estimateDivergence(tse)

The method that are used to calculate distance in divergence and
reference can be specified. Here, euclidean distance and dist function from
stats package are used. Reference is the first sample.
tse <- estimateDivergence(tse, name = "divergence_first_sample”,
reference = assays(tse)$counts[,1],
FUN = stats::dist, method = "euclidean"”)

Reference can also be median or mean of all samples.
By default, divergence is calculated by using median. Here, mean is used.
tse <- estimateDivergence(tse, name = "divergence_average", reference = "mean"”)

All three divergence results are stored in colData.
colData(tse)

estimateDiversity Estimate diversity measures

Description

Several functions for calculating diversity indices are available via wrapper functions. Some of
them are implemented via the vegan package.

microbiome.github.io

estimateDiversity
Usage
estimateDiversity(
X y
abund_values = "counts”,
index = c("coverage", "fisher", "gini_simpson”, "inverse_simpson”,
"log_modulo_skewness"”, "shannon"),

name = index,

)
S4 method for signature 'SummarizedExperiment'’
estimateDiversity(
X,
abund_values = "counts”,
index = c("coverage", "fisher", "gini_simpson”, "inverse_simpson",
"log_modulo_skewness"”, "shannon"),

name = index,

BPPARAM = SerialParam()

S4 method for signature 'TreeSummarizedExperiment'’
estimateDiversity(
X’
abund_values = "counts”,
index = c("coverage", "faith”, "fisher", "gini_simpson”, "inverse_simpson”
"log_modulo_skewness"”, "shannon"),

name = index,

BPPARAM = SerialParam()

estimateFaith(
X,
tree = "missing”,
abund_values = "counts”,
name = "faith",

S4 method for signature 'SummarizedExperiment,phylo’
estimateFaith(

X,

tree = "missing”,

abund_values = "counts”,

name = "faith”,

15

16 estimateDiversity

S4 method for signature 'TreeSummarizedExperiment,missing'

estimateFaith(
X7
tree = "missing”,
abund_values = "counts”,
name = "faith”,

)

Arguments
X a SummarizedExperiment object

abund_values the name of the assay used for calculation of the sample-wise estimates.
index a character vector, specifying the diversity measures to be calculated.
name a name for the column(s) of the colData the results should be stored in.
optional arguments:
e threshold A numeric value in the unit interval, determining the threshold
for coverage index. By default, threshold is 0.9.

* quantile Arithmetic abundance classes are evenly cut up to to this quantile
of the data. The assumption is that abundances higher than this are not
common, and they are classified in their own group. By default, quantile
is 0.5.

e num_of classes The number of arithmetic abundance classes from zero to
the quantile cutoff indicated by quantile. By default, num_of_classes is

50.
BPPARAM A BiocParallelParamobject specifying whether calculation of estimates should
be parallelized.
tree A phylogenetic tree that is used to calculate *faith’ index. If x is a TreeSummarizedExperiment,

rowTree(x) is used by default.

Details

The available indices include the ‘Coverage’, ‘Faith’s phylogenetic diversity’, ‘Fisher alpha’, ‘Gini-
Simpson’, ‘Inverse Simpson’, ‘log-modulo skewness’, and ‘Shannon’ diversity indices. See details
for more information and references.

Diversity is a joint quantity that combines elements or community richness and evenness. Diversity
increases, in general, when species richness or evenness increase.

By default, this function returns all indices.

* ’coverage’ Number of species needed to cover a given fraction of the ecosystem (50\ Tune this
with the threshold argument.

* ’faith’ Faith’s phylogenetic alpha diversity index measures how long the taxonomic distance
is between taxa that are present in the sample. Larger value represent higher diversity. (Faith
1992)

* “fisher’ Fisher’s alpha; as implemented in vegan: : fisher.alpha. (Fisher et al. 1943)

estimateDiversity 17

* ’gini_simpson’ Gini-Simpson diversity i.e. 1 — lambda, where lambda is the Simpson in-
dex, calculated as the sum of squared relative abundances. This corresponds to the diversity
index ’simpson’ in vegan::diversity. This is also called Gibbs—Martin, or Blau index in
sociology, psychology and management studies. The Gini-Simpson index (1-lambda) should
not be confused with Simpson’s dominance (lambda), Gini index, or inverse Simpson index
(1/lambda).

* ’inverse_simpson’ Inverse Simpson diversity: 1/lambda where lambda = sum(p?) and p
refers to relative abundances. This corresponds to the diversity index ’invsimpson’ in ve-
gan::diversity. Don’t confuse this with the closely related Gini-Simpson index

* ’log_modulo_skewness’ The rarity index characterizes the concentration of species at low
abundance. Here, we use the skewness of the frequency distribution of arithmetic abundance
classes (see Magurran & McGill 2011). These are typically right-skewed; to avoid taking
log of occasional negative skews, we follow Locey & Lennon (2016) and use the log-modulo
transformation that adds a value of one to each measure of skewness to allow logarithmization.

* ’shannon’ Shannon diversity (entropy).

Value

x with additional colData named *name*

Author(s)

Leo Lahti and Tuomas Borman. Contact: microbiome.github.io

References

Beisel J-N. et al. (2003) A Comparative Analysis of Diversity Index Sensitivity. Internal Rev. Hy-
drobiol. 88(1):3-15. https://portais.ufg.br/up/202/0/2003-comparative_evennes_index.
pdf

Bulla L. (1994) An index of diversity and its associated diversity measure. Qikos 70:167-171

Faith D.P. (1992) Conservation evaluation and phylogenetic diversity. Biological Conservation
61(1):1-10.

Fisher R.A., Corbet, A.S. & Williams, C.B. (1943) The relation between the number of species and
the number of individuals in a random sample of animal population. Journal of Animal Ecology 12,
42-58.

Locey K.J. & Lennon J.T. (2016) Scaling laws predict global microbial diversity. PNAS 113(21):5970-
5975.

Magurran A.E., McGill BJ, eds (2011) Biological Diversity: Frontiers in Measurement and Assess-
ment. (Oxford Univ Press, Oxford), Vol 12.

Smith B. & Wilson JB. (1996) A Consumer’s Guide to Diversity Indices. Oikos 76(1):70-82.

See Also
plotColData

e estimateRichness

* estimateEvenness

microbiome.github.io
https://portais.ufg.br/up/202/o/2003-comparative_evennes_index.pdf
https://portais.ufg.br/up/202/o/2003-comparative_evennes_index.pdf

18 estimateDiversity

e estimateDominance
e diversity

e estimateR

Examples

data(GlobalPatterns)
tse <- GlobalPatterns

All index names as known by the function

index <- c("shannon”,"gini_simpson”,"inverse_simpson”, "coverage"”, "fisher",
"faith”, "log_modulo_skewness")

Corresponding polished names
name <- c("Shannon”,"”GiniSimpson”,"InverseSimpson", "Coverage”, "Fisher"”,
"Faith"”, "LogModSkewness")

Calculate diversities
tse <- estimateDiversity(tse, index = index)

The colData contains the indices with their code names by default
colData(tse)[, index]

Removing indices
colData(tse)[, index] <- NULL

'threshold' can be used to determine threshold for 'coverage' index

tse <- estimateDiversity(tse, index = "coverage"”, threshold = 0.75)

'quantile' and 'num_of_classes' can be used when 'log_modulo_skewness' is calculated

tse <- estimateDiversity(tse, index = "log_modulo_skewness", quantile = 0.75, num_of_classes = 100)

It is recommended to specify also the final names used in the output.
tse <- estimateDiversity(tse,

index = c("shannon”, "gini_simpson”, "inverse_simpson", "coverage", "fisher”,
"faith”, "log_modulo_skewness"),
name = c("Shannon”, "GiniSimpson"”, "InverseSimpson”, "Coverage", "Fisher",

"Faith"”, "LogModSkewness"))

The colData contains the indices by their new names provided by the user
colData(tse)[, name]

Compare the indices visually
pairs(colData(tse)[, namel)

Plotting the diversities - use the selected names

library(scater)

plotColData(tse, "Shannon")

... by sample type

plotColData(tse, "Shannon”, "SampleType")
Not run:

combining different plots
library(patchwork)

estimateDominance

plot_index <- c(”Shannon"”,"GiniSimpson")
plots <- lapply(plot_index,
plotColData,
object = tse,
x = "SampleType”,
colour_by = "SampleType")
plots <- lapply(plots,”+", theme(axis.text.x = element_text(angle=45,6hjust=1)))
names(plots) <- plot_index
plots$Shannon + plots$GiniSimpson + plot_layout(guides = "collect")

End(Not run)

19

estimateDominance Estimate dominance measures

Description

This function calculates community dominance indices. This includes the ‘Absolute’, ‘Berger-

Parker’, ‘Core abundance’, ‘Gini’, ‘McNaughton’s’, ‘Relative’, and ‘Simpson’s’ indices.

Usage

estimateDominance(
X,
abund_values = "counts",
index = c("absolute”, "dbp"”, "core_abundance”, "gini”, "dmn", "relative”,
"simpson_lambda"),
ntaxa = 1,
aggregate = TRUE,
name = index,

BPPARAM = SerialParam()

S4 method for signature 'SummarizedExperiment'’
estimateDominance(
X,
abund_values = "counts”,
index = c("absolute”, "dbp", "core_abundance”, "gini”, "dmn", "relative”,
"simpson_lambda"),
ntaxa = 1,
aggregate = TRUE,
name = index,

BPPARAM = SerialParam()

20

Arguments

X

abund_values

index

ntaxa

aggregate

name

BPPARAM

Details

estimateDominance

a SummarizedExperiment object

A single character value for selecting the assay used for calculation of the
sample-wise estimates.

a character vector, specifying the indices to be calculated.

Optional and only used for the Absolute and Relative dominance indices: The
n-th position of the dominant taxa to consider (default: ntaxa = 1). Disregarded

EERNT3

for the indices “dbp”, “core_abundance”, “Gini”, “dmn”, and “Simpson”.

Optional and only used for the Absolute, dbp, Relative, and dmn dominance
indices: Aggregate the values for top members selected by ntaxa or not. If TRUE,
then the sum of relative abundances is returned. Otherwise the relative abun-
dance is returned for the single taxa with the indicated rank (default: aggregate

9% ¢

= TRUE). Disregarded for the indices “core_abundance”, “gini”, “dmn”, and “simp-

LE)

son .

A name for the column(s) of the colData where the calculated Dominance in-
dices should be stored in.

additional arguments currently not used.

A BiocParallelParamobject specifying whether calculation of estimates should
be parallelized. (Currently not used)

A dominance index quantifies the dominance of one or few species in a community. Greater values
indicate higher dominance.

Dominance indices are in general negatively correlated with alpha diversity indices (species rich-
ness, evenness, diversity, rarity). More dominant communities are less diverse.

estimateDominance calculates the following community dominance indices:

* ’absolute’ Absolute index equals to the absolute abundance of the most dominant n species of

the sample (specify the number with the argument ntaxa). Index gives positive integer values.

"dbp’ Berger-Parker index (See Berger & Parker 1970) calculation is a special case of the
relative’ index. dbp is the relative abundance of the most abundant species of the sample.
Index gives values in interval O to 1, where bigger value represent greater dominance.

Ny

dbp =
P A@m

where [V; is the absolute abundance of the most dominant species and Ny, is the sum of
absolute abundances of all species.

"core_abundance’ Core abundance index is related to core species. Core species are species
that are most abundant in all samples, i.e., in whole data set. Core species are defined as
those species that have prevalence over 50\ species must be prevalent in 50\ calculate the core
abundance index. Core abundance index is sum of relative abundances of core species in the
sample. Index gives values in interval O to 1, where bigger value represent greater dominance.

core
coregbundance = ——

tot

estimateDominance 21

where N .. is the sum of absolute abundance of the core species and N;,; is the sum of
absolute abundances of all species.

 ’gini’ Gini index is probably best-known from socio-economic contexts (Gini 1921). In eco-
nomics, it is used to measure, for example, how unevenly income is distributed among popu-
lation. Here, Gini index is used similarly, but income is replaced with abundance.

If there is small group of species that represent large portion of total abundance of microbes,
the inequality is large and Gini index closer to 1. If all species has equally large abundances,
the equality is perfect and Gini index equals 0. This index should not be confused with Gini-
Simpson index, which quantifies diversity.

* ’dmn’ McNaughton’s index is the sum of relative abundances of the two most abundant species
of the sample (McNaughton & Wolf, 1970). Index gives values in the unit interval:

dmn = (N7 + N3)/Not

where N; and N, are the absolute abundances of the two most dominant species and Ny, is
the sum of absolute abundances of all species.

* ’relative’ Relative index equals to the relative abundance of the most dominant n species of
the sample (specify the number with the argument ntaxa). This index gives values in interval
Oto 1.

relative = Ny /Not
where [V; is the absolute abundance of the most dominant species and Ny, is the sum of

absolute abundances of all species.

* ’simpson_lambda’ Simpson’s (dominance) index or Simpson’s lambda is the sum of squared
relative abundances. This index gives values in the unit interval. This value equals the prob-
ability that two randomly chosen individuals belongs to the same species. The higher the
probability, the greater the dominance (See e.g. Simpson 1949).

lambda = Z(p2)

where p refers to relative abundances.

There is also a more advanced Simpson dominance index (Simpson 1949). However, this
is not provided and the simpler squared sum of relative abundances is used instead as the
alternative index is not in the unit interval and it is highly correlated with the simpler variant
implemented here.

Value

x with additional colData named *name*

Author(s)

Leo Lahti and Tuomas Borman. Contact: microbiome.github.io

microbiome.github.io

22 estimateDominance

References

Berger WH & Parker FL (1970) Diversity of Planktonic Foraminifera in Deep-Sea Sediments. Sci-
ence 168(3937):1345-1347. doi: 10.1126/science.168.3937.1345

Gini C (1921) Measurement of Inequality of Incomes. The Economic Journal 31(121): 124-126.
doi: 10.2307/2223319

McNaughton, SJ and Wolf LL. (1970). Dominance and the niche in ecological systems. Science
167:13, 1-139

Simpson EH (1949) Measurement of Diversity. Nature 163(688). doi: 10.1038/163688a0

See Also

e estimateRichness
e estimateEvenness

* estimateDiversity

Examples

data(esophagus)

Calculates Simpson's lambda (can be used as a dominance index)
esophagus <- estimateDominance(esophagus, index="simpson_lambda")

Shows all indices
colData(esophagus)

Indices must be written correctly (e.g. dbp, not dbp), otherwise an error
gets thrown

Not run: esophagus <- estimateDominance(esophagus, index="DBP")

Calculates dbp and Core Abundance indices

esophagus <- estimateDominance(esophagus, index=c("dbp", "core_abundance”))
Shows all indices

colData(esophagus)

Shows dbp index

colData(esophagus) $dbp

Deletes dbp index

colData(esophagus)$dbp <- NULL

Shows all indices, dbp is deleted

colData(esophagus)

Deletes all indices

colData(esophagus) <- NULL

Calculates all indices

esophagus <- estimateDominance(esophagus)
Shows all indices

colData(esophagus)

Deletes all indices

colData(esophagus) <- NULL

Calculates all indices with explicitly specified names
esophagus <- estimateDominance(esophagus,

estimateEvenness 23

index = c("dbp”, "dmn", "absolute", "relative”,
"simpson_lambda”, "core_abundance”, "gini"),
name = c("BergerParker”, "McNaughton”, "Absolute"”, "Relative”,
"SimpsonLambda"”, "CoreAbundance”, "Gini")
)
Shows all indices
colData(esophagus)
estimateEvenness Estimate Evenness measures
Description

This function calculates community evenness indices. These include the ‘Camargo’, ‘Pielou’,
‘Simpson’, ‘Evar’ and ‘Bulla’ evenness measures. See details for more information and references.

Usage
estimateEvenness(
X,
abund_values = "counts”,
index = c("pielou”, "camargo”, "simpson_evenness", "evar”, "bulla"),

name = index,

)
S4 method for signature 'SummarizedExperiment'
estimateEvenness(
X,
abund_values = "counts",
index = c("camargo”, "pielou”, "simpson_evenness", "evar"”, "bulla"),

name = index,

BPPARAM = SerialParam()

Arguments

X a SummarizedExperiment object

abund_values A single character value for selecting the assay used for calculation of the
sample-wise estimates.

index a character vector, specifying the eveness measures to be calculated.
name a name for the column(s) of the colData the results should be stored in.
optional arguments:

* threshold a numeric threshold. assay values below or equal to this threshold
will be set to zero.

24 estimateEvenness

BPPARAM A BiocParallelParamobject specifying whether calculation of estimates should
be parallelized.

Details
Evenness is a standard index in community ecology, and it quantifies how evenly the abundances of
different species are distributed. The following evenness indices are provided:
By default, this function returns all indices.

The available evenness indices include the following (all in lowercase):

* ’camargo’ Camargo’s evenness (Camargo 1992)

* ’simpson_evenness’ Simpson’s evenness is calculated as inverse Simpson diversity (1/lambda)
divided by observed species richness S: (1/lambda)/S.

* ’pielou’ Pielou’s evenness (Pielou, 1966), also known as Shannon or Shannon-Weaver/Wiener/Weiner
evenness; H/In(S). The Shannon-Weaver is the preferred term; see Spellerberg and Fedor
(2003).

e ’evar’ Smith and Wilson’s Evar index (Smith & Wilson 1996).

* ’bulla’ Bulla’s index (O) (Bulla 1994).
Desirable statistical evenness metrics avoid strong bias towards very large or very small abundances;
are independent of richness; and range within the unit interval with increasing evenness (Smith &

Wilson 1996). Evenness metrics that fulfill these criteria include at least camargo, simpson, smith-
wilson, and bulla. Also see Magurran & McGill (2011) and Beisel et al. (2003) for further details.

Value

x with additional colData named *namex

References

Beisel J-N. et al. (2003) A Comparative Analysis of Evenness Index Sensitivity. Internal Rev. Hy-
drobiol. 88(1):3-15. URL: https://portais.ufg.br/up/202/0/2003-comparative_evennes_
index.pdf

Bulla L. (1994) An index of evenness and its associated diversity measure. Oikos 70:167-171.

Camargo, JA. (1992) New diversity index for assessing structural alterations in aquatic communi-
ties. Bull. Environ. Contam. Toxicol. 48:428-434.

Locey KJ and Lennon JT. (2016) Scaling laws predict global microbial diversity. PNAS 113(21):5970-
5975; doi:10.1073/pnas.1521291113.

Magurran AE, McGill BJ, eds (2011) Biological Diversity: Frontiers in Measurement and Assess-
ment (Oxford Univ Press, Oxford), Vol 12.

Pielou, EC. (1966) The measurement of diversity in different types of biological collections. J
Theoretical Biology 13:131-144.

Smith B and Wilson JB. (1996) A Consumer’s Guide to Evenness Indices. Oikos 76(1):70-82.

Spellerberg and Fedor (2003). A tribute to Claude Shannon (1916 —2001) and a plea for more
rigorous use of species richness, species diversity and the ‘Shannon—Wiener’ Index. Alpha Ecology
& Biogeography 12, 177-197.

https://portais.ufg.br/up/202/o/2003-comparative_evennes_index.pdf
https://portais.ufg.br/up/202/o/2003-comparative_evennes_index.pdf

estimateRichness 25

See Also
plotColData
e estimateRichness

* estimateDominance

* estimateDiversity

Examples

data(esophagus)
se <- esophagus

Specify index and their output names
index <- c("pielou”, "camargo"”, "simpson_evenness”, "evar”, "bulla")
name <- c("Pielou”, "Camargo", "SimpsonEvenness”, "Evar", "Bulla")

Estimate evenness and give polished names to be used in the output
se <- estimateEvenness(se, index = index, name = name)

Check the output
head(colData(se))

estimateRichness Estimate richness measures

Description

Several functions for calculation of community richness indices available via wrapper functions.
They are implemented via the vegan package.

Usage
estimateRichness(
X’
abund_values = "counts”,
index = c("ace", "chaol”, "hill"”, "observed"),

name = index,
detection = 0,

BPPARAM = SerialParam()

)
S4 method for signature 'SummarizedExperiment'
estimateRichness(

X’

abund_values = "counts”,

index = c("ace", "chaol”, "hill"”, "observed"),

26 estimateRichness

name = index,
detection = 0,

BPPARAM = SerialParam()
)
Arguments

X a SummarizedExperiment object

abund_values the name of the assay used for calculation of the sample-wise estimates

index a character vector, specifying the richness measures to be calculated.
name a name for the column(s) of the colData the results should be stored in.
detection anumeric value for selecting detection threshold for the abundances. The default

detection threshold is 0.
additional parameters passed to estimateRichness

BPPARAM A BiocParallelParam object specifying whether calculation of estimates should
be parallelized.

Details

These include the ‘ACE’, ‘Chaol’, ‘Hill’, and ‘Observed’ richness measures. See details for more
information and references.

The richness is calculated per sample. This is a standard index in community ecology, and it pro-
vides an estimate of the number of unique species in the community. This is often not directly
observed for the whole community but only for a limited sample from the community. This has led
to alternative richness

Richness index differs from the concept of species diversity or evenness in that it ignores species
abundance, and focuses on the binary presence/absence values that indicate simply whether the
species was detected.

The function takes all index names in full lowercase. The user can provide the desired spelling
through the argument name (see examples).

The following richness indices are provided.

* ’ace’ Abundance-based coverage estimator (ACE) is another nonparametric richness index
that uses sample coverage, defined based on the sum of the probabilities of the observed
species. This method divides the species into abundant (more than 10 reads or observations)
and rare groups in a sample and tends to underestimate the real number of species. The ACE
index ignores the abundance information for the abundant species, based on the assumption
that the abundant species are observed regardless of their exact abundance. We use here the
bias-corrected version (O’Hara 2005, Chiu et al. 2014) implemented in estimateR. For an
exact formulation, see estimateR. Note that this index comes with an additional column with
standard error information.

* ’chaol’ This is a nonparametric estimator of species richness. It assumes that rare species
carry information about the (unknown) number of unobserved species. We use here the bias-
corrected version (O’Hara 2005, Chiu et al. 2014) implemented in estimateR. This index
implicitly assumes that every taxa has equal probability of being observed. Note that it gives a

estimateRichness 27

lower bound to species richness. The bias-corrected for an exact formulation, see estimateR.
This estimator uses only the singleton and doubleton counts, and hence it gives more weight
to the low abundance species. Note that this index comes with an additional column with
standard error information.

* ’hill’ Effective species richness aka Hill index (see e.g. Chao et al. 2016). Currently only the
case 1D is implemented. This corresponds to the exponent of Shannon diversity. Intuitively,
the effective richness indicates the number of species whose even distribution would lead to
the same diversity than the observed community, where the species abundances are unevenly
distributed.

» ’observed’ The observed richness gives the number of species that is detected above a given
detection threshold in the observed sample (default 0). This is conceptually the simplest
richness index. The corresponding index in the vegan package is "richness".

Value

x with additional colData named *name*

Author(s)

Leo Lahti. Contact: microbiome.github.io

References

Chao A. (1984) Non-parametric estimation of the number of classes in a population. Scand J Stat.
11:265-270.

Chao A, Chun-Huo C, Jost L (2016). Phylogenetic Diversity Measures and Their Decomposition:
A Framework Based on Hill Numbers. Biodiversity Conservation and Phylogenetic Systematics,
Springer International Publishing, pp. 141-172, doi:10.1007/978-3-319-22461-9_8.

Chiu, C.H., Wang, Y.T., Walther, B.A. & Chao, A. (2014). Improved nonparametric lower bound
of species richness via a modified Good-Turing frequency formula. Biometrics 70, 671-682.

O’Hara, R.B. (2005). Species richness estimators: how many species can dance on the head of a
pin? J. Anim. Ecol. 74, 375-386.

See Also
plotColData

* estimateR
Examples
data(esophagus)

Calculates all richness indices by default
esophagus <- estimateRichness(esophagus)

Shows all indices
colData(esophagus)

microbiome.github.io

28

getAbundance

Shows Hill index
colData(esophagus)$hill
Deletes hill index
colData(esophagus)$hill <- NULL
Shows all indices, hill is deleted
colData(esophagus)
Delete the remaining indices
colData(esophagus)[, c("observed”, "chaol”, "ace")] <- NULL
Calculates observed richness index and saves them with specific names
esophagus <- estimateRichness(esophagus,

index = c("observed”, "chaol”, "ace”, "hill"),

name = c("Observed”, "Chaol”, "ACE", "Hill"))
Show the new indices
colData(esophagus)
Deletes all colData (including the indices)
colData(esophagus) <- NULL
Calculate observed richness excluding singletons (detection limit 1)
esophagus <- estimateRichness(esophagus, index="observed"”, detection = 1)
Deletes all colData (including the indices)
colData(esophagus) <- NULL
Indices must be written correctly (all lowercase), otherwise an error
gets thrown
Not run: esophagus <- estimateRichness(esophagus, index="ACE")
Calculates Chaol and ACE indices only
esophagus <- estimateRichness(esophagus, index=c("chaol1”, "ace"), name=c("Chaol”, "ACE"))

Deletes all colData (including the indices)
colData(esophagus) <- NULL

Names of columns can be chosen arbitrarily, but the length of arguments must match.
esophagus <- estimateRichness(esophagus,
index = c("ace"”, "chaol"),
name = c("index1", "index2"))
Shows all indices
colData(esophagus)

getAbundance Get abundance values by “SamplelD” or “FeaturelD”

getAbundance

Description

29

These are functions for extracting abundances present in assay(x). These functions are conve-
nience wrapper around subsetting columns or rows from assay(x, name).

Usage

getAbundanceSample(x, sample_id, abund_values = "counts"”)

S4 method for signature 'SummarizedExperiment'’
getAbundanceSample(x, sample_id = NULL, abund_values = "counts")

getAbundanceFeature(x, feature_id, abund_values)

S4 method for signature 'SummarizedExperiment'’

getAbundanceFeature(x, feature_id = NULL, abund_values = "counts")
Arguments
X A SummarizedExperiment object.

sample_id

abund_values

feature_id

Details

A “SampleID” from which user wants to extract the abundances of “FeatureID”.
This is essentially a column name in assay(x).

a character value to select an assayNames

A “FeaturelD” for which user wants to extract the abundances from all of “Sam-
pleID” in assayNames. This is essentially a rowname in assay(x).

getAbundanceSample returns abundance values for all “FeatureIDs” in a user specified “Sam-

plelD”.

getAbundanceFeature returns abundance values in all “SampleIDs” for user specified “FeatureID”.

Value

getAbundanceSample and getAbundanceFeature return a numeric matrix of the abundance values
for all “SampleIDs”/*FeaturelDs”

Author(s)

Sudarshan A. Shetty

Examples

getAbundanceSample
data(GlobalPatterns)
getAbundanceSample (GlobalPatterns,

sample_id = 'CC1',
abund_values = 'counts')

getAbundanceFeature
getAbundanceFeature(GlobalPatterns,

30 getPrevalence

feature_id = '522457',
abund_values = 'counts')

getPrevalence Calculation prevalence information for features across samples

Description

These functions calculate the population prevalence for taxonomic ranks in a SummarizedExperiment-class
object.

Usage

getPrevalence(x, ...)

S4 method for signature 'ANY'
getPrevalence(x, detection = @, include_lowest = FALSE, sort = FALSE, ...)

S4 method for signature 'SummarizedExperiment'’
getPrevalence(x, abund_values = "counts"”, as_relative = TRUE, rank = NULL, ...)

getPrevalentTaxa(x, ...)

S4 method for signature 'ANY'
getPrevalentTaxa(x, prevalence = 50/100, include_lowest = FALSE, ...)

S4 method for signature 'SummarizedExperiment'’

getPrevalentTaxa(
X’
rank = NULL,

prevalence = 50/100,
include_lowest = FALSE,

)
getRareTaxa(x, ...)

S4 method for signature 'ANY'
getRareTaxa(x, prevalence = 50/100, include_lowest = FALSE, ...)

S4 method for signature 'SummarizedExperiment'’
getRareTaxa(x, rank = NULL, prevalence = 50/100, include_lowest = FALSE, ...)

subsetByPrevalentTaxa(x, ...)

S4 method for signature 'SummarizedExperiment'’
subsetByPrevalentTaxa(x, rank = NULL, ...)

getPrevalence 31

subsetByRareTaxa(x, ...)

S4 method for signature 'SummarizedExperiment'’
subsetByRareTaxa(x, rank = NULL, ...)

getPrevalentAbundance(x, abund_values = "relabundance”, ...)

S4 method for signature 'ANY'
getPrevalentAbundance(x, abund_values = "relabundance”, ...)

S4 method for signature 'SummarizedExperiment'
getPrevalentAbundance(x, abund_values = "counts”, ...)

agglomerateByPrevalence(x, ...)

S4 method for signature 'SummarizedExperiment’
agglomerateByPrevalence(

X,

rank = taxonomyRanks(x)[1L],

other_label = "Other”,

)
Arguments
X a SummarizedExperiment object
detection Detection threshold for absence/presence. Either an absolute value compared
directly to the values of x or a relative value between 0 and 1, if as_relative =
TRUE.

include_lowest logical scalar: Should the lower boundary of the detection and prevalence cutoffs
be included? (default: FALSE)

sort logical scalar: Should the result be sorted by prevalence? (default: FALSE)

abund_values A single character value for selecting the assay to use for prevalence calcula-
tion.

as_relative logical scalar: Should the detection threshold be applied on compositional (rel-
ative) abundances? (default: TRUE)

rank, ... additional arguments

e If lis.null(rank) arguments are passed on to agglomerateByRank. See
?agglomerateByRank for more details.
e forgetPrevalentTaxa, getRareTaxa, subsetByPrevalentTaxa and subsetByRareTaxa
additional parameters passed to getPrevalence
* for getPrevalentAbundance additional parameters passed to getPrevalentTaxa
prevalence Prevalence threshold (in O to 1). The required prevalence is strictly greater by
default. To include the limit, set include_lowest to TRUE.

other_label A single character valued used as the label for the summary of non-prevalent
taxa. (default: other_label = "Other")

32 getPrevalence

Details

getPrevalence calculates the relative frequency of samples that exceed the detection threshold.
For SummarizedExperiment objects, the prevalence is calculated for the selected taxonomic rank,
otherwise for the rows. The absolute population prevalence can be obtained by multiplying the
prevalence by the number of samples (ncol(x)). If as_relative = TRUE the relative frequency
(between 0 and 1) is used to check against the detection threshold.

The core abundance index from getPrevalentAbundance gives the relative proportion of the core
species (in between 0 and 1). The core taxa are defined as those that exceed the given population
prevalence threshold at the given detection level as set for getPrevalentTaxa.

subsetPrevalentTaxa and subsetRareTaxa return a subset of x. The subset includes the most
prevalent or rare taxa that are calculated with getPrevalentTaxa or getRareTaxa respectively.

getPrevalentTaxa returns taxa that are more prevalent with the given detection threshold for the
selected taxonomic rank.

getRareTaxa returns complement of getPrevalentTaxa.

Value

subsetPrevalentTaxa and subsetRareTaxa return subset of x.
All other functions return a named vectors:
* getPrevalence returns a numeric vector with the names being set to either the row names of
x or the names after agglomeration.

» getPrevalentAbundance returns a numeric vector with the names corresponding to the col-
umn name of x and include the joint abundance of prevalent taxa.

* getPrevalentTaxa and getRareTaxa return a character vector with only the names ex-
ceeding the threshold set by prevalence, if the rownames of x is set. Otherwise an integer
vector is returned matching the rows in x.

Author(s)
Leo Lahti For getPrevalentAbundance: Leo Lahti and Tuomas Borman. Contact: microbiome.
github.io

References

A Salonen et al. The adult intestinal core microbiota is determined by analysis depth and health
status. Clinical Microbiology and Infection 18(S4):16 20, 2012. To cite the R package, see cita-
tion(’mia’)

See Also

agglomerateByRank, getTopTaxa

microbiome.github.io
microbiome.github.io

getPrevalence

Examples

data(GlobalPatterns)
tse <- GlobalPatterns
Get prevalence estimates for individual ASV/0TU
prevalence.frequency <- getPrevalence(tse,
detection = 0,
sort = TRUE,
as_relative = TRUE)
head(prevalence. frequency)

Get prevalence estimates for phylums
- the getPrevalence function itself always returns population frequencies
prevalence.frequency <- getPrevalence(tse,
rank = "Phylum”,
detection = 0,
sort = TRUE,
as_relative = TRUE)
head(prevalence. frequency)

- to obtain population counts, multiply frequencies with the sample size,
which answers the question "In how many samples is this phylum detectable”
prevalence.count <- prevalence.frequency * ncol(tse)

head(prevalence.count)

Detection threshold 1 (strictly greater by default);
Note that the data (GlobalPatterns) is here in absolute counts
(and not compositional, relative abundances)
Prevalence threshold 50 percent (strictly greater by default)
prevalent <- getPrevalentTaxa(tse,

rank = "Phylum”,

detection = 10,

prevalence = 50/100,

as_relative = FALSE)
head(prevalent)

Gets a subset of object that includes prevalent taxa
altExp(tse, "prevalent”) <- subsetByPrevalentTaxa(tse,
rank = "Family",
detection = 0.001,
prevalence = 0.55,
as_relative = TRUE)
altExp(tse, "prevalent”)

getRareTaxa returns the inverse

rare <- getRareTaxa(tse,
rank = "Phylum”,
detection = 1/100,
prevalence = 50/100,
as_relative = TRUE)

head(rare)

Gets a subset of object that includes rare taxa

34 isContaminant

altExp(tse, "rare") <- subsetByRareTaxa(tse,
rank = "Class”,
detection = 0.001,
prevalence = 0.001,
as_relative = TRUE)
altExp(tse, "rare")

Names of both experiments, prevalent and rare, can be found from slot altExpNames
tse

data(esophagus)
getPrevalentAbundance(esophagus, abund_values = "counts")

data can be aggregated based on prevalent taxonomic results
agglomerateByPrevalence(tse,

rank = "Phylum”,

detection = 1/100,

prevalence = 50/100,

as_relative = TRUE)

isContaminant decontam functions

Description

The decontam functions isContaminant and isNotContaminant are made available for SummarizedExperiment

objects.
Usage
S4 method for signature 'SummarizedExperiment'’
isContaminant(
seqtab,
abund_values = "counts”,
name = "isContaminant”,

concentration = NULL,
control = NULL,

batch = NULL,
threshold = 0.1,
normalize = TRUE,
detailed = TRUE,

S4 method for signature 'SummarizedExperiment'
isNotContaminant(

seqtab,

abund_values = "counts",

isContaminant 35

name = "isNotContaminant”,
control = NULL,

threshold = 0.5,

normalize = TRUE,

detailed = FALSE,

addContaminantQC(x, name = "isContaminant”, ...)

S4 method for signature 'SummarizedExperiment'’
addContaminantQC(x, name = "isContaminant”, ...)

addNotContaminantQC(x, name = "isNotContaminant”, ...)

S4 method for signature 'SummarizedExperiment'’

addNotContaminantQC(x, name = "isNotContaminant”, ...)
Arguments
seqtab, x a SummarizedExperiment

abund_values A single character value for selecting the assay to use.

name A name for the column of the colData in which the contaminant information
should be stored.

concentration NULL or asingle character value. Defining a column with numeric values from
the colData to use as concentration information. (default: concentration =
NULL)

control NULL or a single character value. Defining a column with logical values from
the colData to define control and non-control samples. (default: control =
NULL)

batch NULL or a single character value. Defining a column with values interpretable
as a factor from the colData to use as batch information. (default: batch =
NULL)

threshold numeric scalar. See decontam: isContaminant or decontam: isNotContaminant
normalize, detailed
logical scalar. See decontam: isContaminant or decontam: isNotContaminant
 for isContaminant/isNotContaminant: arguments passed on to decontam:isContaminant
or decontam: isNotContaminant
* for addContaminantQC/addNotContaminantQC: arguments passed on to

isContaminant/ isNotContaminant
Value

for isContaminant/ isNotContaminant a DataFrame or for addContaminantQC/addNotContaminantQC
a modified object of class(x)

36 loadFromMothur

See Also

decontam:isContaminant, decontam:isNotContaminant

Examples

data(esophagus)

setup of some mock data
colData(esophagus)$concentration <- ¢(1,2,3)
colData(esophagus)$control <- c(FALSE,FALSE,TRUE)

isContaminant (esophagus,
method = "frequency”,
concentration = "concentration")
esophagus <- addContaminantQC(esophagus,
method = "frequency”,
concentration = "concentration”)
colData(esophagus)

isNotContaminant(esophagus, control = "control")
esophagus <- addNotContaminantQC(esophagus, control = "control”)
colData(esophagus)

loadFromMothur Import Mothur results as a SummarizedExperiment

Description

This method creates a SummarizedExperiment object from Mothur files provided as input.

Usage

loadFromMothur(sharedFile, taxonomyFile = NULL, designFile = NULL)

Arguments
sharedFile a single character value defining the file path of the feature table to be im-
ported. The File has to be in shared file format as defined in Mothur docu-
mentation.

taxonomyFile a single character value defining the file path of the taxonomy table to be
imported. The File has to be in taxonomy file or constaxonomy file format
as defined in Mothur documentation. (default: taxonomyFile = NULL).

designFile a single character value defining the file path of the sample metadata to be
imported. The File has to be in desing file format as defined in Mothur docu-
mentation. (default: designFile = NULL).

loadFromQIIME?2 37

Details

Results exported from Mothur can be imported as a SummarizedExperiment using loadFromMothur.
Except for the sharedFile, the other data types, taxonomyFile, and designFile, are optional, but
are highly encouraged to be provided.

Value

A SummarizedExperiment object

Author(s)

Leo Lahti and Tuomas Borman. Contact: microbiome.github.io

References

https://mothur.org/ https://mothur.org/wiki/shared_file/ https://mothur.org/wiki/
taxonomy_file/ https://mothur.org/wiki/constaxonomy_file/ https://mothur.org/wiki/
design_file/

See Also
makeTreeSummarizedExperimentFromphyloseqmakeSummarizedExperimentFromBiommakeTreeSummarizedExperimel

loadFromQIIME2

Examples

Abundance table

counts <- system.file("extdata”, "mothur_example.shared”, package = "mia")

Taxa table (in "cons.taxonomy"” or "taxonomy” format)

taxa <- system.file("extdata”, "mothur_example.cons.taxonomy”, package = "mia")
#taxa <- system.file("extdata”, "mothur_example.taxonomy”, package = "mia")

Sample meta data

meta <- system.file("extdata”, "mothur_example.design”, package = "mia")

Creates se object from files
se <- loadFromMothur(counts, taxa, meta)
se

loadFromQIIME2 Import QIIME? results to TreeSummarizedExperiment

Description

Results exported from QIMME?2 can be imported as a TreeSummarizedExperiment using loadFromQIIME2.
Except for the featureTableFile, the other data types, taxonomyTableFile, refSeqFile and
phyTreeFile, are optional, but are highly encouraged to be provided.

microbiome.github.io
https://mothur.org/
https://mothur.org/wiki/shared_file/
https://mothur.org/wiki/taxonomy_file/
https://mothur.org/wiki/taxonomy_file/
https://mothur.org/wiki/constaxonomy_file/
https://mothur.org/wiki/design_file/
https://mothur.org/wiki/design_file/

38 loadFromQIIME?2
Usage
loadFromQIIME2(
featureTableFile,
taxonomyTableFile = NULL,
sampleMetaFile = NULL,
featureNamesAsRefSeq = TRUE,
refSeqFile = NULL,
phyTreeFile = NULL,
)
Arguments
featureTableFile
a single character value defining the file path of the feature table to be im-
ported.
taxonomyTableFile
a single character value defining the file path of the taxonomy table to be
imported. (default: taxonomyTableFile = NULL).
sampleMetaFile a single character value defining the file path of the sample metadata to be
imported. The file has to be in tsv format. (default: sampleMetaFile = NULL).
featureNamesAsRefSeq
TRUE or FALSE: Should the feature names of the feature table be regarded as ref-
erence sequences? This setting will be disregarded, if refSegFile is not NULL.
If the feature names do not contain valid DNA characters only, the reference
sequences will not be set.
refSeqFile a single character value defining the file path of the reference sequences for
each feature. (default: refSeqFile = NULL).
phyTreeFile asingle character value defining the file path of the phylogenetic tree. (default:
phyTreeFile = NULL).
additional arguments:
e temp: the temporary directory used for decompressing the data. (default:
tempdir())
* removeTaxaPrefixes: TRUE or FALSE: Should taxonomic prefixes be re-
moved? (default: removeTaxaPrefixes = FALSE)
Details
Both arguments featureNamesAsRefSeq and refSeqFile can be used to define reference se-
quences of features. featureNamesAsRefSeq is only taken into account, if refSeqFile is NULL.
No reference sequences are tried to be created, if featureNameAsRefSeq is FALSE and refSeqFile
is NULL.
Value

A TreeSummarizedExperiment object

makePhyloseqFromTreeSummarizedExperiment 39

Author(s)

Yang Cao

References

Bolyen E et al. 2019: Reproducible, interactive, scalable and extensible microbiome data science
using QIIME 2. Nature Biotechnology 37: 852—-857. https://doi.org/10.1038/s41587-019-0209-9

https://qiime2.org

See Also
makeTreeSummarizedExperimentFromphyloseqmakeSummarizedExperimentFromBiommakeTreeSummarizedExperimel
loadFromMothur

Examples
featureTableFile <- system.file("extdata”, "table.qgza"”, package = "mia")
taxonomyTableFile <- system.file("extdata”, "taxonomy.qgza", package = "mia")
sampleMetaFile <- system.file("”extdata”, "sample-metadata.tsv”, package = "mia")
phyTreeFile <- system.file("extdata”, "tree.qza", package = "mia")
refSeqFile <- system.file("extdata”, "refseq.qza”, package = "mia")

tse <- loadFromQIIME2(
featureTableFile = featureTableFile,
taxonomyTableFile = taxonomyTableFile,
sampleMetaFile = sampleMetaFile,
refSeqFile = refSeqgFile,
phyTreeFile = phyTreeFile

tse

makePhylosegFromTreeSummarizedExperiment
Create a phyloseq object from a TreeSummarizedExperiment object

Description
This function creates a phyloseq object from a TreeSummarizedExperiment object. By using
abund_values, it is possible to specify which table from assay is added to the phyloseq object.
Usage

makePhyloseqFromTreeSummarizedExperiment(x, ...)

S4 method for signature 'SummarizedExperiment'’
makePhyloseqFromTreeSummarizedExperiment(x, abund_values = "counts"”)

S4 method for signature 'TreeSummarizedExperiment'’
makePhyloseqFromTreeSummarizedExperiment(x, ...)

https://doi.org/10.1038/s41587-019-0209-9
https://qiime2.org

40

Arguments

X

abund_values

Details

makeSummarizedExperimentFromBiom

a TreeSummarizedExperiment object
additional arguments

A single character value for selecting the assay to be included in the phyloseq
object that is created. By default, it is counts table.

makePhyloseqFromTreeSummarizedExperiment is used for creating a phyloseq object from TreeSum-
marizedExperiment object.

Value

An object of class Phyloseq object.

Author(s)

Leo Lahti and Tuomas Borman. Contact: microbiome.github.io

Examples

Get tse object

data(GlobalPatterns)
tse <- GlobalPatterns

Create a phyloseq object from it
phy <- makePhyloseqFromTreeSummarizedExperiment(tse)

phy

By default the chosen table is counts, but if there are other tables,
they can be chosen with abund_values.

Counts relative abundances table

tse <- transformCounts(tse, method = "relabundance")
phy2 <- makePhyloseqFromTreeSummarizedExperiment(tse, abund_values = "relabundance”)
phy2

makeSummarizedExperimentFromBiom

Loading a biom file

Description

For convenience a few functions are available to convert data from a ‘biom’ file or object into a
SummarizedExperiment

microbiome.github.io

makeTreeSummarizedExperimentFromDADA?2 41

Usage

loadFromBiom(file)

makeSummarizedExperimentFromBiom(obj)

Arguments
file biom file location
obj object of type biom
Value

An object of class SummarizedExperiment

See Also

makeTreeSummarizedExperimentFromphyloseqmakeTreeSummarizedExperimentFromDADA2 loadFromQIIME2
loadFromMothur

Examples

if (requireNamespace("biomformat”)) {
library(biomformat)
load from file
rich_dense_file = system.file("extdata”, "rich_dense_otu_table.biom”,
package = "biomformat”)
se <- loadFromBiom(rich_dense_file)

load from object

x1 <- biomformat::read_biom(rich_dense_file)
se <- makeSummarizedExperimentFromBiom(x1)
se

makeTreeSummarizedExperimentFromDADA2
Coerce ‘DADA2’ results to TreeSummarizedExperiment

Description
makeTreeSummarizedExperimentFromDADA2 is a wrapper for the mergePairs function from the
dada2 package.

Usage

makeTreeSummarizedExperimentFromDADA2(. . .)

42 makeTreeSummarizedExperimentFromphyloseq

Arguments

See mergePairs function for more details.

Details

A count matrix is contructed via makeSequenceTable(mergePairs(...)) and rownames are dy-
namically created as ASV(N) with N from 1 to nrow of the count tables. The colnames and rownames
from the output of makeSequenceTable are stored as colnames and in the referenceSeq slot of
the TreeSummarizedExperiment, respectively.

Value

An object of class TreeSummarizedExperiment

See Also

makeTreeSummarizedExperimentFromphyloseqmakeSummarizedExperimentFromBiom loadFromQIIME2
loadFromMothur

Examples

if(requireNamespace("dada2")) {
fnF <- system.file("extdata”, "samlF.fastq.gz", package="dada2")
fnR = system.file("extdata”, "samlR.fastq.gz", package="dada2")
dadaF <- dada2::dada(fnF, selfConsist=TRUE)
dadaR <- dada2::dada(fnR, selfConsist=TRUE)

tse <- makeTreeSummarizedExperimentFromDADA2(dadaF, fnF, dadaR, fnR)
tse

makeTreeSummarizedExperimentFromphyloseq
Coerce a phyloseq object to a TreeSummarizedExperiment

Description

makeTreeSummarizedExperimentFromphyloseq converts phyloseq objects into TreeSummarizedExperiment
objects.

Usage

makeTreeSummarizedExperimentFromphyloseq(obj)

Arguments

obj a phyloseq object

meltAssay 43

Details

All data stored in a phyloseq object is transfered.

Value

An object of class TreeSummarizedExperiment

See Also

makeSummarizedExperimentFromBiommakeTreeSummarizedExperimentFromDADA2 loadFromQIIME?2
loadFromMothur

Examples

if (requireNamespace("phyloseq”)) {
data(GlobalPatterns, package="phyloseq")
makeTreeSummarizedExperimentFromphyloseq(GlobalPatterns)
data(enterotype, package="phyloseq")
makeTreeSummarizedExperimentFromphyloseq(enterotype)
data(esophagus, package="phyloseq")
makeTreeSummarizedExperimentFromphyloseq(esophagus)

meltAssay Converting a SummarizedExperiment object into a long data.frame

Description

metlAssaay Converts a SummarizedExperiment object into a long data.frame which can be used
for tidyverse-tools.

Usage

meltAssay(
X,
add_row_data = NULL,
add_col_data = NULL,
assay_name = "counts”,
feature_name = "FeaturelID”,
sample_name = "SampleID”,

)

S4 method for signature 'SummarizedExperiment'’

meltAssay(
X,
add_row_data = NULL,
add_col_data = NULL,

44 meltAssay
assay_name = "counts”,
feature_name = "FeaturelID”,
sample_name = "SampleID",
)
Arguments
X A numeric matrix or a SummarizedExperiment

add_row_data

add_col_data

assay_name
feature_name

sample_name

Details

NULL, TRUE or a character vector to select information from the rowData to
add to the molten assay data. If add_row_data = NULL no data will be added, if
add_row_data = TRUE all data will be added and if add_row_datais a character
vector, it will be used to subset to given column names in rowData. (default:
add_row_data = NULL)

NULL, TRUE or a character vector to select information from the colData to
add to the molten assay data. If add_col_data = NULL no data will be added, if
add_col_data = TRUE all data will be added and if add_col_datais a character
vector, it will be used to subset to given column names in colData. (default:
add_col_data =NULL)

a character value to select an assayNames

a character scalar to use as the output’s name for the feature identifier. (default:
feature_name = "FeatureID")

a character scalar to use as the output’s name for the sample identifier. (de-
fault: sample_name = "SampleID")

optional arguments currently not used.

If the colData contains a column “SampleID” or the rowData contains a column “FeatureID”, they
will be renamed to “SamplelD_col” and “FeatureID_row”, if row names or column names are set.

Value

A tibble with the molten data. The assay values are given in a column named like the selected
assay assay_name. In addition, a column “FeatureID” will contain the rownames, if set, and anal-
ogously a column “SampleID” with the colnames, if set

Author(s)

Sudarshan A. Shetty

Examples

data(GlobalPatterns)
molten_se <- meltAssay(GlobalPatterns,

molten_se

add_row_data = TRUE,
add_col_data = TRUE,
assay_name = "counts")

merge-methods

45

merge-methods

Merge a subset of the rows or columns of a SummarizedExperiment

Description

mergeRows/mergeCols merge data on rows or columns of a SummarizedExperiment as defined by
a factor alongside the chosen dimension. Metadata from the rowData or colData are retained as
defined by archetype.

Usage

mergeRows (x,

mergeCols(x,

S4 method

mergeRows (x,

S4 method

mergeCols(x,

S4 method

mergeRows (x,

S4 method

mergeCols(x,

Arguments

archetype

mergeTree

mergeRefSeq

f, archetype

f, archetype

i, ...)

i, ...)

for signature 'SummarizedExperiment'’
f, archetype = 1L, ...)

for signature 'SummarizedExperiment'
f, archetype = 1L, ...)

for signature 'TreeSummarizedExperiment'
f, archetype = 1L, mergeTree = FALSE, mergeRefSeq = FALSE, ...)

for signature 'TreeSummarizedExperiment'
f, archetype = 1L, mergeTree = FALSE, ...)

a SummarizedExperiment or a TreeSummarizedExperiment

A factor for merging. Must be the same length as nrow(x)/ncol (x). Rows/Cols
corresponding to the same level will be merged. If length(levels(f)) ==
nrow(x)/ncol(x), x will be returned unchanged.

Of each level of f, which element should be regarded as the archetype and
metadata in the columns or rows kept, while merging? This can be single in-
terger value or an integer vector of the same length as levels(f). (Default:
archetype = 1L, which means the first element encountered per factor level will
be kept)

optional arguments:
* passed onto sumCountsAcrossFeatures, except subset_row, subset_col

TRUE or FALSE: should to rowTree() also be merged? (Default: mergeTree =
FALSE)

TRUE or FALSE: should a consensus sequence calculate? If set to FALSE, the result
from archetype is returned; If set to TRUE the result from DECIPHER: : ConsensusSequence
is returned. (Default: mergeRefSeq = FALSE)

46 mia-datasets

Details

These functions are similar to sumCountsAcrossFeatures. However, additional support for TreeSummarizedExperiment
was added and science field agnostic names were used. In addition the archetype argument lets
the user select how to preserve row or column data.

For merge data of assays the function from scuttle are used.

Value

an object with the same class x with the specified entries merged into one entry in all relevant
components.

See Also

sumCountsAcrossFeatures

Examples

data(esophagus)
esophagus
plot(rowTree(esophagus))
get a factor for merging
f <- factor(regmatches(rownames(esophagus),
regexpr("*~[0-9]x_[0-9]*", rownames(esophagus))))
merged <- mergeRows(esophagus, f)
plot(rowTree(merged))

#
data(GlobalPatterns)
GlobalPatterns
merged <- mergeCols(GlobalPatterns,colData(GlobalPatterns)$SampleType)
merged
mia-datasets mia datasets
Description

These datasets are conversions of the phyloseq datasets GlobalPatterns enterotype, esophagus
and soilrep.

dmn_se contains an example SummarizedExperiment derived from data in the DirichletMultinomal
package. See ?calculateDMN for more details.

Usage
data(GlobalPatterns)

data(enterotype)

data(esophagus)

perSampleDominantTaxa 47

data(soilrep)

data(dmn_se)

Format

An object of class TreeSummarizedExperiment with 19216 rows and 26 columns.
An object of class TreeSummarizedExperiment with 553 rows and 280 columns.
An object of class TreeSummarizedExperiment with 58 rows and 3 columns.

An object of class TreeSummarizedExperiment with 16825 rows and 56 columns.

An object of class SummarizedExperiment with 130 rows and 278 columns.

perSampleDominantTaxa Get dominant taxa

Description

These functions return information about the most dominant taxa in a SummarizedExperiment

object.

Usage
perSampleDominantTaxa(x, abund_values = "counts"”, rank = NULL, ...)
S4 method for signature 'SummarizedExperiment'’
perSampleDominantTaxa(x, abund_values = "counts"”, rank = NULL, ...)

addPerSampleDominantTaxa(x, name = "dominant_taxa"”, ...)

S4 method for signature 'SummarizedExperiment’

addPerSampleDominantTaxa(x, name = "dominant_taxa"”, ...)
Arguments
X A SummarizedExperiment object.

abund_values A single character value for selecting the assay to use for identifying dominant
taxa.

rank A single character defining a taxonomic rank. Must be a value of the output of
taxonomicRanks ().

Additional arguments passed on to agglomerateByRank () when rank is speci-
fied.

name A name for the column of the colData where the dominant taxa will be stored
in when using addPerSampleDominantTaxa.

48 relabundance

Details

addPerSampleDominantTaxa extracts the most abundant taxa in a SummarizedExperiment object,
and stores the information in the colData. It is a wrapper for perSampleDominantTaxa.

With rank parameter, it is possible to agglomerate taxa based on taxonomic ranks. E.g. if ’Genus’
rank is used, all abundances of same Genus are added together, and those families are returned. See
agglomerateByRank () for additional arguments to deal with missing values or special characters.

Value
perSampleDominantTaxa returns a named character vector x while addPerSampleDominantTaxa
returns SummarizedExperiment with additional column in colData named *xname*.

Author(s)

Leo Lahti, Tuomas Borman and Sudarshan A. Shetty.

Examples

data(GlobalPatterns)
x <- GlobalPatterns

Finds the dominant taxa.
sim.dom <- perSampleDominantTaxa(x, rank="Genus")

Add information to colData

x <- addPerSampleDominantTaxa(x, rank = "Genus", name="dominant_genera")
colData(x)
relabundance Getter / setter for relative abundance data
Description

relabundance is a getter/setter for relative abundance stored in the assay slot ‘relabundance’ of a
TreeSummarizedExperiment object. This is a shortcut function for assay(x, "relabundance™).

Usage
relabundance(x, ...)
relabundance(x) <- value

S4 method for signature 'SummarizedExperiment'’
relabundance(x)

S4 replacement method for signature 'SummarizedExperiment'
relabundance(x) <- value

runCCA 49

Arguments
X a TreeSummarizedExperiment object
optional arguments not used currently.
value amatrix to store as the the ‘relabundance’ assay
Value

For relabundance the matrix stored with the name “relabundance”.

Examples

data(GlobalPatterns)

Calculates relative abundances

GlobalPatterns <- relAbundanceCounts(GlobalPatterns)
Fetches calculated relative abundances
head(relabundance(GlobalPatterns))

runCCA Canonical Correspondance Analysis

Description

These functions perform Canonical Correspondance Analysis on data stored in a SummarizedExperiment.

Usage
calculateCCA(x, ...)
runCCA(x, ...)
calculateRDA(x, ...)
runRDA(x, ...)

S4 method for signature 'ANY'
calculateCCA(x, formula, variables, scale = TRUE)

S4 method for signature 'SummarizedExperiment’
calculateCCA(x, formula, ..., exprs_values = "counts")

S4 method for signature 'SingleCellExperiment'’
runCCA(x, ..., altexp = NULL, name = "CCA")

S4 method for signature 'ANY'
calculateRDA(x, formula, variables, scale = TRUE)

S4 method for signature 'SummarizedExperiment'’

50 runCCA

calculateRDA(x, formula, ..., exprs_values = "counts")

S4 method for signature 'SingleCellExperiment'

runRDA(x, ..., altexp = NULL, name = "RDA")
Arguments
X For calculateCCA a numeric matrix with columns as samples or a SummarizedExperiment.

For runCCA a SingleCellExperiment or a derived object.
additional arguments not used.

formula If x is a SummarizedExperiment a formula can be supplied. Based on the right-
hand side of the given formula colData is subset to variables.

variables a data.frame or an object coercible to one containing the variables to use. Can
be missing, which turns the CCA analysis into a CA analysis. All variables are
used. Please subset, if you want to consider only some of them.

scale Logical scalar, should the expression values be standardized?

exprs_values a single character value for specifying which assay to use for calculation.

altexp String or integer scalar specifying an alternative experiment containing the input
data.
name String specifying the name to be used to store the result in the reducedDims of
the output.
Value

For calculateCCA a matrix with samples as rows and CCA dimensions as columns

For runCCA a modified x with the results stored in reducedDim as the given name

See Also

For more details on the actual implementation see cca and rda

Examples

library(scater)

data(GlobalPatterns)

GlobalPatterns <- runCCA(GlobalPatterns, data ~ SampleType)
plotReducedDim(GlobalPatterns,"CCA"”, colour_by = "SampleType")

GlobalPatterns <- runRDA(GlobalPatterns, data ~ SampleType)
plotReducedDim(GlobalPatterns,"CCA"”, colour_by = "SampleType")

runDPCoA 51

runDPCoA Calculation of Double Principal Correspondance analysis

Description

Double Principal Correspondance analysis is made available via the ade4 package in typical fash-
ion. Results are stored in the reducedDims and are available for all the expected functions.

Usage

calculateDPCoA(x, vy, ...)

S4 method for signature 'ANY,ANY'
calculateDPCoA(

X,

Y,

ncomponents = 2,

ntop = NULL,

subset_row = NULL,

scale = FALSE,

transposed = FALSE

)
S4 method for signature 'TreeSummarizedExperiment,missing'
calculateDPCoA(x, ..., exprs_values = "counts”, dimred = NULL, n_dimred = NULL)
runDPCoA(x, ..., altexp = NULL, name = "DPCoA")
Arguments
X For calculateDPCoA, a numeric matrix of expression values where rows are

features and columns are cells. Alternatively, a TreeSummarizedExperiment
containing such a matrix.

For runDPCoA a TreeSummarizedExperiment containing the expression values
as well as a rowTree to calculate y using cophenetic.phylo.

y adist or a symmetric matrix compatible with ade4:dpcoa
Currently not used.
ncomponents Numeric scalar indicating the number of DPCoA dimensions to obtain.

ntop Numeric scalar specifying the number of features with the highest variances to
use for dimensionality reduction. Alternatively NULL, if all features should be
used. (default: ntop = NULL)

subset_row Vector specifying the subset of features to use for dimensionality reduction. This
can be a character vector of row names, an integer vector of row indices or a
logical vector.

scale Logical scalar, should the expression values be standardized?

52 runNMDS

transposed Logical scalar, is x transposed with cells in rows?

exprs_values a single character value for specifying which assay to use for calculation.

dimred String or integer scalar specifying the existing dimensionality reduction results
to use.

n_dimred Integer scalar or vector specifying the dimensions to use if dimred is specified.

altexp String or integer scalar specifying an alternative experiment containing the input
data.

name String specifying the name to be used to store the result in the reducedDims of
the output.

Details

In addition to the reduced dimension on the features, the reduced dimension for samples are returned
as well as sample_red attribute. eig, feature_weights and sample_weights are returned as
attributes as well.

Value

For calculateDPCoA a matrix with samples as rows and CCA dimensions as columns

For runDPCoA a modified x with the results stored in reducedDim as the given name

See Also

plotReducedDim reducedDims

Examples

data(esophagus)
dpcoa <- calculateDPCoA(esophagus)
head(dpcoa)

esophagus <- runDPCoA(esophagus)
reducedDims (esophagus)

library(scater)
plotReducedDim(esophagus, "DPCoA")

runNMDS Perform non-metric MDS on sample-level data

Description

Perform non-metric multi-dimensional scaling (nMDS) on samples, based on the datain a SingleCellExperiment
object.

runNMDS 53

Usage

calculateNMDS(x, ...)

S4 method for signature 'ANY'
calculateNMDS(

X,

FUN = vegdist,

nmdsFUN = c("isoMDS", "monoMDS"),

ncomponents = 2,

ntop = 500,

subset_row = NULL,

scale = FALSE,

transposed = FALSE,

keep_dist = FALSE,

)

S4 method for signature 'SummarizedExperiment'
calculateNMDS(x, ..., exprs_values = "counts”, FUN = vegdist)

S4 method for signature 'SingleCellExperiment'’
calculateNMDS(

X,

exprs_values = "counts”,

dimred = NULL,

n_dimred = NULL,

FUN = vegdist

)

runNMDS(x, ..., altexp = NULL, name = "NMDS")

plotNMDS(x, ..., ncomponents = 2)

Arguments

X For calculateNMDS, a numeric matrix of expression values where rows are fea-
tures and columns are cells. Alternatively, a TreeSummarizedExperiment con-
taining such a matrix.
For runNMDS a SingleCellExperiment
additional arguments to pass to FUN and nmdsFUN.

FUN a function or character value with a function name returning a dist object

nmdsFUN a character value to choose the scaling implementation, either “isoMDS” for
MASS: : isoMDS or “monoMDS” for vegan: : monoMDS

ncomponents Numeric scalar indicating the number of NMDS dimensions to obtain.

ntop Numeric scalar specifying the number of features with the highest variances to

use for dimensionality reduction.

54

subset_row

scale

transposed

keep_dist

exprs_values

dimred

n_dimred

altexp

name

Details

runNMDS

Vector specifying the subset of features to use for dimensionality reduction. This
can be a character vector of row names, an integer vector of row indices or a
logical vector.

Logical scalar, should the expression values be standardized?
Logical scalar, is x transposed with cells in rows?

Logical scalar indicating whether the dist object calculated by FUN should
be stored as ‘dist’ attribute of the matrix returned/stored by calculateNMDS/
runNMDS.

a single character value for specifying which assay to use for calculation.

String or integer scalar specifying the existing dimensionality reduction results
to use.

Integer scalar or vector specifying the dimensions to use if dimred is specified.

String or integer scalar specifying an alternative experiment containing the input
data.

String specifying the name to be used to store the result in the reducedDims of
the output.

Either MASS: : isoMDS or vegan: :monoMDS are used internally to compute the NMDS components.
If you supply a custom FUN, make sure that the arguments of FUN and nmdsFUN do not collide.

Value

For calculateNMDS, a matrix is returned containing the MDS coordinates for each sample (row)
and dimension (column).

Author(s)

Felix Ernst

See Also

MASS: : isoMDS, vegan: :monoMDS for NMDS component calculation.

plotMDS, to quickly visualize the results.

Examples

generate some example data

mat <- matrix(1:60, nrow = 6)

df <- DataFrame(n = c(1:6))

se <- SummarizedExperiment(assays = list(counts = mat),

#

calculateNMDS(se)

#

data(esophagus)

rowData = df)

splitByRanks 55

esophagus <- runNMDS(esophagus, FUN = vegan::vegdist, name = "BC")

esophagus <- runNMDS(esophagus, FUN = vegan::vegdist, name = "euclidean”,
method = "euclidean”)

reducedDims (esophagus)

splitByRanks Split/Unsplit a SingleCellExperiment by taxonomic ranks

Description

splitByRanks takes a SummarizedExperiment, splits it along the taxonomic ranks, aggregates the
data per rank, converts the input to a SingleCellExperiment objects and stores the aggregated
data as alternative experiments.

Usage
splitByRanks(x, ...)

S4 method for signature 'SummarizedExperiment'’
splitByRanks(x, ranks = taxonomyRanks(x), na.rm = TRUE, ...)

S4 method for signature 'SingleCellExperiment'’
splitByRanks(x, ranks = taxonomyRanks(x), na.rm = TRUE, ...)

S4 method for signature 'TreeSummarizedExperiment'’
splitByRanks(x, ranks = taxonomyRanks(x), na.rm = TRUE, ...)

unsplitByRanks(x, ...)

S4 method for signature 'SingleCellExperiment'’
unsplitByRanks(x, ranks = taxonomyRanks(x), keep_reducedDims = FALSE, ...)

S4 method for signature 'TreeSummarizedExperiment'’

unsplitByRanks(x, ranks = taxonomyRanks(x), keep_reducedDims = FALSE, ...)
Arguments

X a SummarizedExperiment object
arguments passed to agglomerateByRank function for SummarizedExperiment
objects and other functions. See agglomerateByRank for more details.

ranks a character vector defining taxonomic ranks. Must all be values of taxonomicRanks ()
function.

na.rm TRUE or FALSE: Should taxa with an empty rank be removed? Use it with cau-

tion, since results with NA on the selected rank will be dropped. This setting can
be tweaked by defining empty. fields to your needs. (default: na.rm = TRUE)

56 splitByRanks

keep_reducedDims
TRUE or FALSE: Should the reducedDims (x) be transferred to the result? Please
note, that this breaks the link between the data used to calculate the reduced
dims. (default: keep_reducedDims = FALSE)

Details

unsplitByRanks takes these alternative experiments and flattens them again into a single SummarizedExperiment.

splitByRanks will use by default all available taxonomic ranks, but this can be controlled by
setting ranks manually. NA values are removed by default, since they would not make sense, if the
result should be used for unsplitByRanks at some point. The input data remains unchanged in the
returned SingleCellExperiment objects.

unsplitByRanks will remove any NA value on each taxonomic rank so that no ambiguous data is
created. In additional, a column taxonomicLevel is created or overwritten in the rowData to spec-
ify from which alternative experiment this originates from. This can also be used for splitAltExps
to split the result along the same factor again. The input data from the base objects is not returned,
only the data from the altExp(). Be aware that changes to rowData of the base object are not
returned, whereas only the colData of the base object is kept.

Value

For splitByRanks: x, with objects of x agglomerated for selected ranks as altExps.

For unsplitByRanks: x, with rowData and assay data replaced by the unsplit data. colData of x
is kept as well and any existing rowTree is dropped as well, since existing rowLinks are not valid
anymore.

See Also

mergeRows, sumCountsAcrossFeatures, agglomerateByRank, altExps, splitAltExps

Examples

data(GlobalPatterns)
print the available taxonomic ranks
taxonomyRanks (GlobalPatterns)

splitByRanks

altExps(GlobalPatterns) <- splitByRanks(GlobalPatterns)
altExps(GlobalPatterns)

altExp(GlobalPatterns, "Kingdom™)

altExp(GlobalPatterns, "Species”)

unsplitByRanks
x <- unsplitByRanks(GlobalPatterns)
X

subsetSamples 57

subsetSamples Subset functions

Description

To make a transition from phyloseq easier, the subsetSamples and subsetFeatures functions
are implemented. To avoid name clashes they are named differently.

Usage
subsetSamples(x, ...)
subsetFeatures(x, ...)
subsetTaxa(x, ...)

S4 method for signature 'SummarizedExperiment'’
subsetSamples(x, ...)

S4 method for signature 'SummarizedExperiment'’
subsetFeatures(x, ...)

S4 method for signature 'SummarizedExperiment’

subsetTaxa(x, ...)
Arguments
X a SummarizedExperiment object

See subset. drop is not supported.

Details

However, the use of these functions is discouraged since subsetting using [works on both dimen-
sion at the same time, is more flexible and is used throughout R to subset data with two or more
dimension. Therefore, these functions will be removed in Bioconductor release 3.15 (April, 2022).

Value

A subset of x

Examples

data(GlobalPatterns)
subsetSamples(GlobalPatterns, colData(GlobalPatterns)$SampleType == "Soil")
subsetFeatures(GlobalPatterns, rowData(GlobalPatterns)$Kingdom == "Bacteria”)

58 summaries

summaries Summarizing microbiome data

Description

To query a SummarizedExperiment for interesting features, several functions are available.

Usage
getTopTaxa(
X,
top = 5L,
method = c("mean”, "sum”, "median"),
abund_values = "counts"
)
S4 method for signature 'SummarizedExperiment'’
getTopTaxa(
X!
top = 5L,
method = c("mean”, "sum”, "median”, "prevalence"),
abund_values = "counts"
)
getUniqueTaxa(x, ...)

S4 method for signature 'SummarizedExperiment'’
getUniqueTaxa(x, rank = NULL)

countDominantTaxa(x, group = NULL, ...)

S4 method for signature 'SummarizedExperiment'’
countDominantTaxa(x, group = NULL, ...)

S4 method for signature 'SummarizedExperiment'

summary(object, abund_values = "counts")
Arguments
X A SummarizedExperiment object.
top Numeric value, how many top taxa to return. Default return top five taxa.
method Specify the method to determine top taxa. Either sum, mean, median or preva-

lence. Default is mean’.
abund_values acharacter value to select an assayNames By default it expects count data.

Additional arguments passed on to agglomerateByRank () when rank is speci-
fied for countDominantTaxa.

sumimaries 59

rank A single character defining a taxonomic rank. Must be a value of the output of
taxonomicRanks ().
group With group, it is possible to group the observations in an overview. Must be one
of the column names of colData.
object A SummarizedExperiment object.
Details

The getTopTaxa extracts the most top abundant “FeatureID”’s in a SummarizedExperiment object.
The getUniqueTaxa is a basic function to access different taxa at a particular taxonomic rank.

countDominantTaxa returns information about most dominant taxa in a tibble. Information in-
cludes their absolute and relative abundances in whole data set.

The summary will return a summary of counts for all samples and features in SummarizedExperiment
object.

Value

The getTopTaxa returns a vector of the most top abundant “FeatureID’’s
The getUniqueTaxa returns a vector of unique taxa present at a particular rank

The countDominantTaxa returns an overview in a tibble. It contains dominant taxa in a column
named *name* and its abundance in the data set.

The summary returns a list with two tibbles

Author(s)

Leo Lahti, Tuomas Borman and Sudarshan A. Shetty

See Also

getPrevalentTaxa
perCellQCMetrics, perFeatureQCMetrics, addPerCellQC, addPerFeatureQC, quickPerCellQC

Examples
data(GlobalPatterns)
top_taxa <- getTopTaxa(GlobalPatterns,
method = "mean”,
top = 5,
abund_values = "counts")
top_taxa

Gets the overview of dominant taxa
dominant_taxa <- countDominantTaxa(GlobalPatterns,

rank = "Genus")
dominant_taxa

With group, it is possible to group observations based on specified groups
Gets the overview of dominant taxa

60 taxonomy-methods

dominant_taxa <- countDominantTaxa(GlobalPatterns,

rank = "Genus",
group = "SampleType”,
na.rm= TRUE)

dominant_taxa

Get an overview of sample and taxa counts
summary(GlobalPatterns)

Get unique taxa at a particular taxonomic rank
getUniqueTaxa(GlobalPatterns, "Phylum")

taxonomy-methods Functions for accessing taxonomic data stored in rowData

Description

These function work on data present in rowData and define a way to represent taxonomic data
alongside the features of a SummarizedExperiment.

Usage
TAXONOMY_RANKS

taxonomyRanks (x)

S4 method for signature 'SummarizedExperiment'
taxonomyRanks (x)

taxonomyRankEmpty (

X,

rank = taxonomyRanks(x)[1L],

empty,fields = C(NA’ "ll’ n Il, Il\t”’ H_Il, ”_ll)
)

S4 method for signature 'SummarizedExperiment'’
taxonomyRankEmpty (

X!

rank = taxonomyRanks(x)[1],

empty.fields = c(NA, "", " ", "\t", "=" "_")
)

checkTaxonomy(x, ...)

S4 method for signature 'SummarizedExperiment'’
checkTaxonomy (x)

taxonomy-methods

getTaxonomyLabels(x, ...)

S4 method for signature
getTaxonomylLabels(
X,
empty.fields = c(NA, "",
with_rank = FALSE,
make_unique = TRUE,
resolve_loops = FALSE
)

taxonomyTree(x, ...)

S4 method for signature
taxonomyTree(x)

addTaxonomyTree(x, ...)

S4 method for signature

61

'SummarizedExperiment'

non n n n_mn non
’ \t ’ ’)7

'SummarizedExperiment'

'SummarizedExperiment'

addTaxonomyTree(x)

mapTaxonomy (X,

.2

S4 method for signature 'SummarizedExperiment'’
mapTaxonomy(x, taxa = NULL, from = NULL, to = NULL, use_grepl = FALSE)

IdTaxaToDataFrame(from)

Arguments

X

rank

empty.fields

with_rank
make_unique

resolve_loops

taxa

a SummarizedExperiment object

a single character defining a taxonomic rank. Must be a value of taxonomicRanks ()
function.

a character value defining, which values should be regarded as empty. (De-
fault: c(NA,""," ","\t")). They will be removed if na.rm = TRUE before ag-
glomeration.

optional arguments not used currently.

TRUE or FALSE: Should the level be add as a suffix? For example: "Phylum:Crenarchaeota”
(default: with_rank = FALSE)

TRUE or FALSE: Should the labels be made unique, if there are any duplicates?
(default: make_unique = TRUE)

TRUE or FALSE: Should resolvelLoops be applied to the taxonomic data? Please
note that has only an effect, if the data is unique. (default: resolve_loops =
TRUE)

a character vector, which is used for subsetting the taxonomic information. If
no information is found,NULL is returned for the individual element. (default:

62 taxonomy-methods

NULL)

from e For mapTaxonomy: a scalar character value, which must be a valid taxo-
nomic rank. (default: NULL)

 otherwise a Taxa object as returned by IdTaxa

to a scalar character value, which must be a valid taxonomic rank. (default:
NULL)
use_grepl TRUE or FALSE: should pattern matching via grepl be used? Otherwise literal

matching is used. (default: FALSE)

Format

a character vector of length 8 containing the taxonomy ranks recognized. In functions this is used
as case insensitive.

Details

taxonomyRanks returns, which columns of rowData(x) are regarded as columns containing taxo-
nomic information.

taxonomyRankEmpty checks, if a selected rank is empty of information.

checkTaxonomy checks, if taxonomy information is valid and whether it contains any problems.
This is a soft test, which reports some diagnostic and might mature into a data validator used upon
object creation.

getTaxonomylLabels generates a character vector per row consisting of the lowest taxonomic infor-
mation possible. If data from different levels, is to be mixed, the taxonomic level is prepended by
default.

taxonomyTree generates a phylo tree object from the available taxonomic information. Internally
it uses toTree and resolveloop to sanitize data if needed.

IdTaxaToDataFrame extracts taxonomic results from results of IdTaxa.

Taxonomic information from the IdTaxa function of DECIPHER package are returned as a special
class. With as(taxa, "DataFrame”) the information can be easily converted to a DataFrame com-
patible with storing the taxonomic information a rowData. Please note that the assigned confidence
information are returned as metatdata and can be accessed using metadata(df)$confidence.

Value

¢ taxonomyRanks: a character vector with all the taxonomic ranks found in colnames (rowData(x))
e taxonomyRankEmpty: a logical value

* mapTaxonomy: a list per element of taxa. Each element is either a DataFrame, a character
or NULL. If all character results have the length of one, a single character vector is returned.

See Also

agglomerateByRank, toTree, resolvelLoop

transformCounts 63

Examples

data(GlobalPatterns)
GlobalPatterns
taxonomyRanks (GlobalPatterns)

checkTaxonomy (GlobalPatterns)

table(taxonomyRankEmpty(GlobalPatterns, "Kingdom”))
table(taxonomyRankEmpty(GlobalPatterns, "Species”))

getTaxonomylLabels(GlobalPatterns[1:20,1)

mapTaxonomy

returns the unique taxonomic information
mapTaxonomy (GlobalPatterns)

returns specific unique taxonomic information

mapTaxonomy (GlobalPatterns, taxa = "Escherichia”)
returns information on a single output
mapTaxonomy (GlobalPatterns, taxa = "Escherichia”,to="Family")

adding a rowTree() based on the available taxonomic information. Please
note that any tree already stored in rowTree() will be overwritten.

X <- GlobalPatterns

x <- addTaxonomyTree(x)

X

transformCounts Transform Counts

Description

These functions provide a variety of options for transforming abundance data. By using these
functions, transformed table is calculated and stored in assay. transformSamples does the trans-
formation sample-wise, i.e., column-wise. It is alias for transformCounts. transformFeatures
does the transformation feature-wise, i.e., row-wise. ZTransformis a shortcut for Z-transformation.
relAbundanceCounts is a shortcut for fetching relative abundance table.

Usage

transformSamples(
X,
abund_values = "counts",
method = c("clr”, "hellinger", "logl@"”, "pa", "rank"”, "relabundance"),
name = method,
pseudocount = FALSE,
threshold = 0

64

S4 method for signature 'SummarizedExperiment’
transformSamples(

X,

abund_values = "counts",

transformCounts

method = c("clr”, "hellinger", "logl@", "pa", "rank"”, "relabundance"),

name = method,
pseudocount = FALSE,
threshold = 0

transformCounts(
X’
abund_values = "counts”,

method = c("clr”, "hellinger", "logl@", "pa", "rank”, "relabundance"),

name = method,
pseudocount = FALSE,
threshold = @

)
S4 method for signature 'SummarizedExperiment'’
transformCounts(

X)

abund_values = "counts”,

method = c("clr"”, "hellinger", "logl@", "pa", "rank”, "relabundance"),

name = method,
pseudocount = FALSE,
threshold = @

transformFeatures(
X,
abund_values = "counts",
method = c("logl0@"”, "pa", "z"),
name = method,
pseudocount = FALSE,
threshold = 0

)

S4 method for signature 'SummarizedExperiment'
transformFeatures(

X,

abund_values = "counts",

method = c("logl@"”, "pa", "z"),

name = method,

pseudocount = FALSE,

threshold = 0

transformCounts 65

ZTransform(x, ...)

S4 method for signature 'SummarizedExperiment'’
ZTransform(x, ...)

relAbundanceCounts(x, ...)

S4 method for signature 'SummarizedExperiment'

relAbundanceCounts(x, ...)
Arguments
X A SummarizedExperiment object.

abund_values A single character value for selecting the assay to be transformed.

method A single character value for selecting the transformation method.
name A single character value specifying the name of transformed abundance table.
pseudocount FALSE or numeric value deciding whether pseudocount is added. Numerical

value specifies the value of pseudocount. (Only used for methods method =
"clr"”, method = "hellinger”, or method = "1og10")

threshold A numeric value for setting threshold for pa transformation. By default it is 0.
(Only used for method = "pa")

additional arguments

Details

transformCounts or transformSamples and transformFeatures applies transformation to abun-
dance table. Provided transformation methods include:

* “clr’ Centered log ratio (clr) transformation can be used for reducing the skewness of data and
for centering it. (See e.g. Gloor et al. 2017.)

clr = logiox, — logior

where z,. is a single relative value, p,- is mean relative value".

* ’hellinger’ Hellinger transformation can be used to reduce the impact of extreme data points.
It can be utilize for clustering or ordination analysis. (See e.g. Legendre & Gallagher 2001.)

X

hellinger =
Ltot

where z is a single value and x4, is the sum of all values

* ’logl0’ log10 transformation can be used for reducing the skewness of the data.

log10 = log, Ox

where z is a single value of data.

66 transformCounts

* ’pa’ Transforms table to presence/absence table. All abundances higher than € are transformed
to 1 (present), otherwise O (absent). By default, threshold is 0.

* ’rank’ Rank returns ranks of taxa. For each sample, the least abundant taxa get lower value
and more abundant taxa bigger value. The implementation is based on the colRanks function
with ties.method="first".

* ’relabundance’ Transforms abundances to relative. Generally, all microbiome data are compo-
sitional. That is, e.g., because all measuring instruments have their capacity limits. To make
results comparable with other results, values must be relative. (See e.g. Gloor et al. 2017.)

relabundance =

Ttot

where z is a single value and x4, is the sum of all values.

e ’7’ Z-transformation, Z score transformation, or Z-standardization normalizes the data by
shifting (to mean) and scaling (to standard deviation o). Z-transformation can be done
with function ZTransform. It is done per rows (features / taxa), unlike most other transforma-
tions. This is often preceded by log10p or clr transformation. In other words, single value is
standardized with respect of feature’s values.

where z is a single value, y is the mean of the feature, and o is the standard deviation of the
feature.

Value

transformCounts, transformSamples, transformFeatures, relAbundanceCounts, and ZTransform
return x with additional, transformed abundance table named name in the assay.

Author(s)

Leo Lahti and Tuomas Borman. Contact: microbiome.github.io

References

Gloor GB, Macklaim JM, Pawlowsky-Glahn V & Egozcue JJ (2017) Microbiome Datasets Are
Compositional: And This Is Not Optional. Frontiers in Microbiology 8: 2224. doi: 10.3389/fmicb.2017.02224

Legendre P & Gallagher ED (2001) Ecologically meaningful transformations for ordination of
species data. Oecologia 129: 271-280.

Examples

data(esophagus)
x <- esophagus

By specifying, it is possible to apply different transformations, e.g. clr transformation.
Pseudocount can be added by specifying 'pseudocount'.

x <- transformSamples(x, method="clr", pseudocount=1)

head(assay(x, "clr"))

microbiome.github.io

transformCounts 67

Also, the target of transformation
can be specified with "abund_values”.
x <- transformSamples(x, method="relabundance")
x <- transformSamples(x, method="clr", abund_values="relabundance"”,

pseudocount = min(assay(x, "relabundance"”)[assay(x, "relabundance”)>0]))
x2 <- transformSamples(x, method="clr", abund_values="counts"”, pseudocount = 1)
head(assay(x, "clr"))

Different pseudocounts used by default for counts and relative abundances

x <- transformSamples(x, method="relabundance")

mat <- assay(x, "relabundance");

pseudonumber <- min(mat[mat>0])

x <- transformSamples(x, method="clr"”, abund_values = "relabundance”, pseudocount=pseudonumber)
x <- transformSamples(x, method="clr"”, abund_values = "counts”, pseudocount=1)

Name of the stored table can be specified.
x <- transformSamples(x, method="hellinger"”, name="test")
head(assay(x, "test"))

pa returns presence absence table. With 'threshold', it is possible to set the
threshold to a desired level. By default, it is 0.

x <- transformSamples(x, method="pa", threshold=35)

head(assay(x, "pa"))

rank returns ranks of taxa. It is calculated column-wise, i.e., per sample
and using the ties.method="first” from the colRanks function

x <- transformSamples(x, method="rank")

head(assay(x, "rank"))

transformCounts is an alias for transformSamples
x <- transformCounts(x, method="relabundance"”, name="test2")
head(assay(x, "test2"))

In order to use other ranking variants, modify the chosen assay directly:

assay(x, "rank_average”, withDimnames = FALSE) <- colRanks(assay(x, "counts"),
ties.method="average",
preserveShape = TRUE)

If you want to do the transformation for features, you can do that by using
x <- transformFeatures(x, method="logl1@", name="logl@_features”, pseudocount = 1)
head(assay(x, "loglo_features”))

Z-transform can be done for features by using shortcut function
X <= ZTransform(x)
head(assay(x, "z"))

For visualization purposes it is sometimes done by applying CLR for samples,
followed by Z transform for taxa
x <= ZTransform(transformCounts(x, method="clr", abund_values = "counts”, pseudocount = 1))

Relative abundances can be also calculated with the dedicated
relAbundanceCounts function.

68

x <- relAbundanceCounts(x)
head(assay(x, "relabundance"))

transformCounts

Index

+ datasets bestDMNFit (calculateDMN), 6
mia-datasets, 46 bestDMNFit, SummarizedExperiment-method
taxonomy-methods, 60 (calculateDMN), 6
?agglomerateByRank, 37 BiocParallelParam, 8, 9, 11, 16, 20, 24, 26
[,57 biom, 41
accessors for DMN objects, 8 calculateCCA (runCCA), 49
addContaminantQC (isContaminant), 34 calculateCCA,ANY-method (runCCA), 49
addContaminantQC, SummarizedExperiment-method calculateCCA, SummarizedExperiment-method
(isContaminant), 34 (runCCA), 49
addNotContaminantQC (isContaminant), 34 calculateDistance, 5, 14
addNotContaminantQC, SummarizedExperiment-methodlculateDistance, ANY-method
(isContaminant), 34 (calculateDistance), 5
addPerCellQC, 59 calculateDistance, SummarizedExperiment-method
addPerFeatureQC, 59 (calculateDistance), 5
addPerSampleDominantTaxa calculateDMN, 6
(perSampleDominantTaxa), 47 calculateDMN, ANY-method (calculateDMN),
addPerSampleDominantTaxa, SummarizedExperiment-method 6
(perSampleDominantTaxa), 47 calculateDMN, SummarizedExperiment-method
addTaxonomyTree (taxonomy-methods), 60 (calculateDMN), 6
addTaxonomyTree, SummarizedExperiment-method calculateDMNgroup (calculateDMN), 6
(taxonomy-methods), 60 calculateDMNgroup, ANY-method
agglomerate-methods, 3 (calculateDMN), 6
agglomerateByPrevalence calculateDMNgroup, SummarizedExperiment-method
(getPrevalence), 30 (calculateDMN), 6
agglomerateByPrevalence, SummarizedExperiment-aelbobtateDPCoA (runDPCoA), 51
(getPrevalence), 30 calculateDPCoA,ANY,ANY-method
agglomerateByRank, 31, 32, 55, 56, 62 (runDPCoA), 51
agglomerateByRank calculateDPCoA, TreeSummarizedExperiment,missing-method
(agglomerate-methods), 3 (runDPCoA), 51
agglomerateByRank,SingleCellExperiment-methodcalculateJSD, 9
(agglomerate-methods), 3 calculateJSD,ANY-method (calculateJSD),
agglomerateByRank, SummarizedExperiment-method 9
(agglomerate-methods), 3 calculateJSD, SummarizedExperiment-method
agglomerateByRank, TreeSummarizedExperiment-method (calculateJSD), 9
(agglomerate-methods), 3 calculateNMDS (runNMDS), 52
altExps, 56 calculateNMDS,ANY-method (runNMDS), 52
assay, 20, 23, 31, 35,40, 47, 65, 66 calculateNMDS,SingleCellExperiment-method
assayNames, 29, 44, 58 (runNMDS), 52

69

70 INDEX

calculateNMDS, SummarizedExperiment-method estimateEvenness, SummarizedExperiment-method

(runNMDS), 52 (estimateEvenness), 23
calculateRDA (runCCA), 49 estimateFaith (estimateDiversity), 14
calculateRDA,ANY-method (runCCA), 49 estimateFaith,SummarizedExperiment,phylo-method
calculateRDA, SummarizedExperiment-method (estimateDiversity), 14
(runCCA), 49 estimateFaith,TreeSummarizedExperiment,missing-method
calculateUniFrac, 10 (estimateDiversity), 14
calculateUniFrac, ANY,phylo-method estimateR, I8, 26, 27
(calculateUniFrac), 10 estimateRichness, 14, 17,22, 25,25
calculateUniFrac, TreeSummarizedExperiment,missstgnae¢Rddhness, SummarizedExperiment-method
(calculateUniFrac), 10 (estimateRichness), 25
cca, 50
checkTaxonomy (taxonomy-methods), 60 getAbundance, 28
checkTaxonomy, SummarizedExperiment-method getAbundanceFeature (getAbundance), 28
(taxonomy-methods), 60 getAbundanceFeature, SummarizedExperiment-method
colData, 13, 17,21, 24,27, 48 (getAbundance), 28
cophenetic.phylo, 51 getAbundanceSample (getAbundance), 28
countDominantTaxa (summaries), 58 getAbundanceSample, SummarizedExperiment-method
countDominantTaxa, SummarizedExperiment-method (getAbundance), 28
(summaries), 58 getBestDMNFit (calculateDMN), 6
cvdmngroup , 8 getBestDMNFit, SummarizedExperiment-method
(calculateDMN), 6
DECIPHER: : ConsensusSequence, 45 getDMN (calculateDMN), 6
decontam:isContaminant, 35, 36 getDMN, SummarizedExperiment-method
decontam:isNotContaminant, 35, 36 (calculateDMN), 6
detectlLoop, 4 getPrevalence, 30
DirichletMultinomial, 6 getPrevalence, ANY-method
dist, /1,53 (getPrevalence), 30
diversity, 18 getPrevalence, SummarizedExperiment-method
dmn, 8 (getPrevalence), 30
dmn_se (mia-datasets), 46 getPrevalentAbundance (getPrevalence),
DMNGroup, 8 30
dmngroup, 8 getPrevalentAbundance, ANY-method
(getPrevalence), 30
enterotype (mia-datasets), 46 getPrevalentAbundance, SummarizedExperiment-method
esophagus (mia-datasets), 46 (getPrevalence), 30
estimateDivergence, 12 getPrevalentTaxa, 59
estimateDivergence, SummarizedExperiment-methogetPrevalentTaxa (getPrevalence), 30
(estimateDivergence), 12 getPrevalentTaxa, ANY-method
estimateDiversity, 14, 22, 25 (getPrevalence), 30
estimateDiversity,SummarizedExperiment-methodgetPrevalentTaxa,SummarizedExperiment-method
(estimateDiversity), 14 (getPrevalence), 30
estimateDiversity,TreeSummarizedExperiment-megbbRlareTaxa (getPrevalence), 30
(estimateDiversity), 14 getRareTaxa,ANY-method (getPrevalence),
estimateDominance, 14, 18, 19, 25 30
estimateDominance, SummarizedExperiment-methodgetRareTaxa, SummarizedExperiment-method
(estimateDominance), 19 (getPrevalence), 30

estimateEvenness, 14, 17, 22,23 getTaxonomylLabels (taxonomy-methods), 60

INDEX

71

getTaxonomylLabels, SummarizedExperiment-methodmergeCols, SummarizedExperiment-method

(taxonomy-methods), 60

getTopTaxa, 32

getTopTaxa (summaries), 58

getTopTaxa, SummarizedExperiment-method
(summaries), 58

getUniqueTaxa (summaries), 58

getUniqueTaxa, SummarizedExperiment-method
(summaries), 58

GlobalPatterns (mia-datasets), 46

IdTaxa, 62

IdTaxaToDataFrame (taxonomy-methods), 60

isContaminant, 34

isContaminant, SummarizedExperiment-method
(isContaminant), 34

isNotContaminant, SummarizedExperiment-method

(isContaminant), 34

loadFromBiom
(makeSummarizedExperimentFromBiom),
40

loadFromMothur, 36, 39, 41-43

loadFromQIIME2, 37,37, 41-43

makePhyloseqFromTreeSummarizedExperiment
39

(merge-methods), 45

mergeCols, TreeSummarizedExperiment-method
(merge-methods), 45

mergeRows, 4, 56

mergeRows (merge-methods), 45

mergeRows, SummarizedExperiment-method
(merge-methods), 45

mergeRows, TreeSummarizedExperiment-method
(merge-methods), 45

metadata, 8§

mia-datasets, 46

mia-package, 3

name, 26

perCellQCMetrics, 59
perFeatureQCMetrics, 59
performDMNgroupCV (calculateDMN), 6
performDMNgroupCV, ANY-method
(calculateDMN), 6
performDMNgroupCV, SummarizedExperiment-method
(calculateDMN), 6
perSampleDominantTaxa, 47

perSampleDominantTaxa, SummarizedExperiment-method

(perSampleDominantTaxa), 47
phylo, 11
plotColData, 14, 17, 25, 27

makePhyloseqFromTreeSummarizedExperiment,Sumq@f&gﬁggxpgriment—method
(makePhyloseqFromTreeSummarizedExperquBENMDs(runNMDS) 52

39

plotReducedDim, 52

makePhylosegFromTreeSummarizedExperiment, TreeSummarizedExperiment-method
(makePhyloseqFromTreeSummarizedExperiggitkPercellQC, 59

39

makeSummarizedExperimentFromBiom, 37,
39,40, 42, 43

makeTreeSummarizedExperimentFromDADA2,
37,39,41,41,43

makeTreeSummarizedExperimentFromphyloseq,
37,39,41, 42,42

mapTaxonomy (taxonomy-methods), 60

mapTaxonomy, SummarizedExperiment-method
(taxonomy-methods), 60

MASS: : isoMDS, 53, 54

meltAssay, 43

meltAssay, SummarizedExperiment-method
(meltAssay), 43

merge-methods, 45

mergeCols (merge-methods), 45

rda, 50

reducedDims, 52

relabundance, 48

relabundance, SummarizedExperiment-method
(relabundance), 48

relabundance<- (relabundance), 48

relabundance<-, SummarizedExperiment-method
(relabundance), 48

relAbundanceCounts (transformCounts), 63

relAbundanceCounts, SummarizedExperiment-method
(transformCounts), 63

resolveloop, 62

runCCA, 49

runCCA,SingleCellExperiment-method
(runCCA), 49

72

runDMN (calculateDMN), 6

runDPCoA, 51

runJSD (calculateJSD), 9

runNMDS, 52

runRDA (runCCA), 49

runRDA, SingleCellExperiment-method
(runCCA), 49

runUniFrac (calculateUniFrac), 10

SingleCellExperiment, 50, 53
soilrep (mia-datasets), 46
splitAltExps, 56
splitByRanks, 55

splitByRanks,SingleCellExperiment-method

(splitByRanks), 55

splitByRanks, SummarizedExperiment-method

(splitByRanks), 55

splitByRanks, TreeSummarizedExperiment-method

(splitByRanks), 55

subset, 57

subsetByPrevalentTaxa (getPrevalence),
30

INDEX

taxonomyRankEmpty, SummarizedExperiment-method
(taxonomy-methods), 60

taxonomyRanks (taxonomy-methods), 60

taxonomyRanks, SummarizedExperiment-method
(taxonomy-methods), 60

taxonomyTree (taxonomy-methods), 60

taxonomyTree, SummarizedExperiment-method
(taxonomy-methods), 60

toTree, 62

transformCounts, 63

transformCounts, SummarizedExperiment-method
(transformCounts), 63

transformFeatures (transformCounts), 63

transformFeatures, SummarizedExperiment-method
(transformCounts), 63

transformSamples (transformCounts), 63

transformSamples, SummarizedExperiment-method
(transformCounts), 63

TreeSummarizedExperiment, 3, 10, 11, 38,
45,48, 49,51

unsplitByRanks (splitByRanks), 55

subsetByPrevalentTaxa, SummarizedExperiment-metthsplitByRanks,SingleCellExperiment-method

(getPrevalence), 30
subsetByRareTaxa (getPrevalence), 30

subsetByRareTaxa, SummarizedExperiment-method

(getPrevalence), 30
subsetFeatures (subsetSamples), 57

subsetFeatures, SummarizedExperiment-method

(subsetSamples), 57
subsetSamples, 57

subsetSamples, SummarizedExperiment-method

(subsetSamples), 57
subsetTaxa (subsetSamples), 57
subsetTaxa, SummarizedExperiment-method
(subsetSamples), 57
sumCountsAcrossFeatures, 4, 45, 46, 56
summaries, 58
SummarizedExperiment, 4, 5, 8, 9, 13, 16, 20,
23,26, 29, 31, 34, 35, 37,40, 41,
43-45, 47, 48, 50, 55, 57-59, 61, 65
summary, SummarizedExperiment-method
(summaries), 58

taxonomicRanks, 3

taxonomicRanks (taxonomy-methods), 60
taxonomy-methods, 60

TAXONOMY_RANKS (taxonomy-methods), 60
taxonomyRankEmpty (taxonomy-methods), 60

(splitByRanks), 55
unsplitByRanks, TreeSummarizedExperiment-method
(splitByRanks), 55

vegan: :diversity, 17
vegan: :fisher.alpha, 16
vegan: :monoMDS, 53, 54

ZTransform (transformCounts), 63
ZTransform, SummarizedExperiment-method
(transformCounts), 63

	mia-package
	agglomerate-methods
	calculateDistance
	calculateDMN
	calculateJSD
	calculateUniFrac
	estimateDivergence
	estimateDiversity
	estimateDominance
	estimateEvenness
	estimateRichness
	getAbundance
	getPrevalence
	isContaminant
	loadFromMothur
	loadFromQIIME2
	makePhyloseqFromTreeSummarizedExperiment
	makeSummarizedExperimentFromBiom
	makeTreeSummarizedExperimentFromDADA2
	makeTreeSummarizedExperimentFromphyloseq
	meltAssay
	merge-methods
	mia-datasets
	perSampleDominantTaxa
	relabundance
	runCCA
	runDPCoA
	runNMDS
	splitByRanks
	subsetSamples
	summaries
	taxonomy-methods
	transformCounts
	Index

