Package ‘memes’

October 14, 2021
Type Package

Title motif matching, comparison, and de novo discovery using the MEME
Suite

Version 1.0.4

Description A seamless interface to the MEME Suite family of tools for motif
analysis. 'memes' provides data aware utilities for using GRanges objects as
entrypoints to motif analysis, data structures for examining & editing motif
lists, and novel data visualizations. 'memes' functions and data structures are
amenable to both base R and tidyverse workflows.

License MIT + file LICENSE
Encoding UTF-8
LazyData true

Imports Biostrings, dplyr, cmdfun (>= 1.0.2), GenomicRanges, ggplot2,
ggseqlogo, magrittr, matrixStats, methods, patchwork, processx,
purrr, rlang, readr, stats, tools, tibble, tidyr, utils,
usethis, universalmotif (>= 1.9.3), xml2

Suggests cowplot, BSgenome.Dmelanogaster. UCSC.dm3,
BSgenome.Dmelanogaster. UCSC.dm6, forcats, testthat (>= 2.1.0),
knitr, MotifDb, pheatmap, PMCMRplus, plyranges (>=1.9.1),
rmarkdown, covr

biocViews Datalmport, FunctionalGenomics, GeneRegulation,
MotifAnnotation, MotifDiscovery, SequenceMatching, Software

RoxygenNote 7.1.1

SystemRequirements Meme Suite (v5.3.3 or above)
<http://meme-suite.org/doc/download.html>

VignetteBuilder knitr

URL https://snystrom.github.io/memes/,
https://github.com/snystrom/memes

BugReports https://github.com/snystrom/memes/issues
Depends R (>=4.1)

https://snystrom.github.io/memes/
https://github.com/snystrom/memes
https://github.com/snystrom/memes/issues

2 R topics documented:

Config/testthat/edition 3

git_url https://git.bioconductor.org/packages/memes
git branch RELEASE 3 13

git_last_commit 7a80e64

git_last_commit_date 2021-08-06
Date/Publication 2021-10-14

Author Spencer Nystrom [aut, cre, cph]
(<https://orcid.org/0000-0003-1000-1579>)

Maintainer Spencer Nystrom <nystromdev@gmail.com>

R topics documented:

add_sequence e e e e 3
ame_compare_heatmap_methodso oL oL 4
check_meme_install 4
drop_best_match 5
example_ame e 6
example_ame_large L. e e 6
example_chip_summits 7
example_dreme 8
example_dreme_by_binding 8
example_dreme_tomtoml e e 9
example_fimo L 9
example_peaks e 9
eXample_IMNASEQ . . . « . v v v e e e e e e e e e e 10
example_tomtom e e e e e e e e e e e 10
force best_ match e 11
GEL SEQUENCE .« . v v v v v e e e e e e e e e e e e e e e e e 12
has_duplicate_motifs 13
IMPOrtAMe L e 13
importDremeXML 14
ImportFimo e e e 15
importMeme 15
importStremeXML L 16
importTomTomXML e 17
meme_is_installed L L 18
NESt_TOMEOIML v v o v e e e e e e e e e e 19
plot_ame_heatmap e e e e 19
plot_sequence_heatmapo e 21
remove_duplicate_motifs L 22
runAme.dist L e e 23
runDreme L e 26
runFimo L e 29
runMeme e e e e e e e 31

TUNSIICIME o v v e e e e e e e e e e e e e e e e e e e 34

https://orcid.org/0000-0003-1000-1579

add_sequence 3

runTomTom oL 36
update_best_match L 38
view_tomtom_hitS e e 39
write_fasta. L 40
Index 41
add_sequence Add nucleic acid sequence of regions to metadata column
Description

Add nucleic acid sequence of regions to metadata column

Usage
add_sequence(ranges, genome, name = "sequence")
Arguments
ranges GRanges object
genome BSgenome object or any other valid input to ‘Biostrings::getSeq()‘ (Do ‘showMeth-
ods(Biostrings::getSeq)* to show valid types)
name name of metadata column to hold sequence information (default: "sequence").
Note, this will overwrite existing columns without warning if the name already
exists.
Value

‘ranges‘ with new metadata column named "sequence” (or another value passed to ‘name*) holding
the DNA or RNA sequence from ‘genome*

Examples

data(example_peaks, package = "memes")
dm.genome <- BSgenome.Dmelanogaster.UCSC.dm3: :BSgenome.Dmelanogaster.UCSC.dm3
add_sequence(example_peaks, dm.genome)

4 check_meme_install

ame_compare_heatmap_methods
Compare AME heatmap methods

Description

This helper function allows the user to visualize the distribution of their AME results data on dif-
ferent scales to help understand the implications of using different values in ‘plot_ame_heatmap()*

Usage

ame_compare_heatmap_methods(ame, group, value = -logl@(adj.pvalue))
Arguments

ame ame results data.frame

group optional name of group to split results by

value value to compare to "normalize" method (default: -log10(adj.pvalue))
Value

a cowplot 2 panel plot comparing the distribution of ‘value‘ to normalized rank values

Examples

data("example_ame"”, package = "memes")
ame_compare_heatmap_methods (example_ame$Decreasing)

check_meme_install Check user’s MEME install

Description

In order to use the run* family of functions, memes must detect a local install of the MEME Suite.
MEME is installed in a directory named meme/bin/ which can be located anywhere on the filesys-
tem, but is typically found in ~/meme/bin. If the MEME Suite is installed at ~/meme/bin, memes
can autodetect the install. However, in the case that the MEME Suite is found at a nonstandard
location, the user may specify the location of their meme/bin in three ways:

Usage

check_meme_install(meme_path = NULL)

Arguments

meme_path path to "meme/bin" (if unset will search MEME_BIN environment variable or
meme_bin option)

drop_best_match 5

Details

1. provide the full path to meme/bin to the meme_path argument to each run* function.

2. set the meme_bin option using options(meme_bin = "path/to/meme/bin") once per R ses-
sion.

3. set the MEME_BIN environment variable either in .Renviron or ~/.bashrc with the path to
meme/bin

To aid the user in determining if memes can detect their meme/bin install, check_meme_install()
will search the aforementioned locations for a valid meme/bin, returning green checks for each
detected tool, or red X’s for undetected tools. Alternatively, users can run meme_is_installed()
to get a boolean value indicating whether their MEME Suite can be detected.

check_meme_install() searches using the following heirarchy. This heirarchy mimics how all
run* functions search for meme/bin, thus the paths printed from check_meme_install() will indi-
cate the paths used by each run* function. The heirarchy is as follows:

1. the meme_path function argument if set
2. the meme_bin option
3. the MEME_BIN environment variable

4. the default location at ~/meme/bin

Value

message indicating which MEME utilities are installed and their location on disk

Examples

check_meme_install()

drop_best_match Drop best match columns from tomtom results

Description

Convenience function for dropping all columns created by runTomTom prefixed by "best_match_"
and the "best_db_name" column. Keeps the "tomtom" data.frame column. Can be useful if you
want to unnest the ‘tomtom* data without propagating these columns.

Usage

drop_best_match(res)

Arguments

res results of runTomTom

6 example_ame_large

Value

‘res‘ without the tomtom best_match_ columns

Examples

data("example_dreme_tomtom")
names (example_dreme_tomtom)
names (drop_best_match(example_dreme_tomtom))

example_ame Example runAme() output

Description
Result when running AME using 100bp window around ‘example_chip_summits‘ for "Increasing"
and "Decreasing" sites, using "Static" as background.

Usage

example_ame

Format
A list object of AME results data.frames

Increasing ‘runAme()‘ Results object for Increasing sites vs Static sites

Decreasing ‘runAme()‘ Results object for Decreasing sites vs Static sites

Examples

Data can be combined into 1 large data.frame using:
where the "behavior” column will hold the "Increasing”/"Decreasing” information

dplyr::bind_rows(example_ame, .id = "behavior")
example_ame_large runAme() output for example_chip_summits split by binding descrip-
tion
Description

non

AME was run for "ectopic", "entopic", and "orphan" sites using shuffled background.

Usage

example_ame_large

example_chip_summits 7

Format

a list of runAme() results data.frames

Details

see ‘vignette("integrative_analysis", package = "memes")‘ for details.

Examples

Data can be combined into 1 large data.frame using:
dplyr::bind_rows(example_ame_large, .id = "binding_type")

example_chip_summits Annotated Transcription Factor ChIP-seq summits

Description

ChIP-seq summit positions on Drosophila melanogaster chromosome 3 for the transcription factor
E93 using a union set of peaks from third-instar larval wings ("Early") and 24 hour Pupal ("Late")
wings.

Usage

example_chip_summits

Format
A GRanges object of ChIP summit position with 2 metadata columns

peak_binding_description Binding profiles between Early and Late E93 were compared. Peaks
are annotated as whether they are bound in Early wings only ("ectopic"), both Early and Late
wings ("entopic"), or only bound in Late wings ("orphan").

€93_sensitive_behavior change in chromatin accessibility in response to E93 binding: Increasing,
Decreasing, or Static

Details

E93 is a transcription factor normally present only in Late wings. An experimental perturbation
precociously expressed E93 during Early stages. Binding profiles between Early and Late E93
were compared. Peaks are annotated as whether they are bound in Early wings only ("ectopic"),
both Early and Late wings ("entopic"), or only bound in Late wings ("orphan").

DNA elements can be made "open" or "closed" in response to binding of transcription factors like
E93. Accessibility of E93 binding sites before and after E93 expression was measured using FAIRE-
seq. ChIP peaks are annotated by how their accessibility changes in response to E93 binding . Peaks
can become more open ("Increasing"), more closed ("Decreasing"), or unchanged in accessibility
("Static"). These experiments demonstrate a causal relationship between E93 binding and both
opening and closing of DNA elements.

8 example_dreme_by_binding

Source

https://www.ncbi.nlm.nih.gov/geo/download/?acc=GSE141738&format=file&file=GSE141738

example_dreme Example runDreme() output

Description

Result when running dreme using 100bp window around example_chip_summits using "Decreas-
ing" sites as foreground, and "Static" sites as background.

Usage

example_dreme

Format

a runDreme results data.frame

example_dreme_by_binding
runDreme() output for example_chip_summits split by binding de-
scription

Description

See vignette("integrative_analysis", package = "memes") for details

Usage

example_dreme_by_binding

Format

a runDreme results data.frame

example_dreme_tomtom

example_dreme_tomtom Example runDreme() output after passing to runTomTom()

Description

Result when running ‘runTomTom(example_dreme)* using FlyFactorSurvey as database.

Usage

example_dreme_tomtom

Format

a runDreme results data.frame with runTomTom results columns

example_fimo Example runFimo() output

Description

Run using 100bp windows around ‘example_chip_summits‘, using E93 motif as database.

Usage

example_fimo

Format

3

A GRanges object of E93 motif positions within 100bp windows of ‘example_chip_summits

example_peaks Example ChIP-seq peaks

Description

10 ChIP-seq peaks from GSE141738

Usage

example_peaks

Format

An object of class GRanges of length 10.

10 example_tomtom

Details

A small number of transcription factor ChIP-seq peaks as a GRanges object, taken from [GSE141738](https://www.ncbi.nlm.1

Source

https://www.ncbi.nlm.nih.gov/geo/download/?acc=GSE141738&format=file&file=GSE141738

example_rnaseq RNAseq data from Early and Late Drosophila wings

Description
These data are a subset of RNAseq counts from the full FPKM table in GSE97956. Includes counts
for all Drosophila transcription factors and ~200 other random genes.

Usage

example_rnaseq

Format
A data.frame of RNAseq FPKM data

symbol The FlyBase gene symbol
time Developmental stage of RNAseq experiment
fpkm RNAseq count in Fragments per Kilobase Million (FPKM)

Source

"https://www.ncbi.nlm.nih.gov/geo/download/?acc=GSE97956 &format=file&file=GSE97956

example_tomtom Example runTomTom() output

Description

Result when running ‘runTomTom(example_dreme$motif)‘ using FlyFactorSurvey as database

Usage

example_tomtom

Format

a data.frame

force_best_match 11

force_best_match Force best tomtom match by id

Description

Although TomTom assigns a best match, this is not always the most biologically relevant match.
In these cases, it is useful to "force" the best match to another lower ranked, but still significant
TomTom match. This function allows users to select a new best match motif from the set of lower-
ranked matches in the ‘tomtom*® list column. This function also reorders the ‘tomtom* data.frame
such that the forced match is the first row of the ‘tomtom* entry.

Usage

force_best_match(res, matches)

Arguments
res results from runTomTom
matches named vector where name is the input motif name, and value is the match_name
to use as the new best match
Value

‘res‘ with new best_* columns and re-ranked tomtom data in the ‘tomtom°‘ list column for the
updated entries.

See Also

[update_best_match()]

Examples

if (meme_is_installed()){

motif <- universalmotif::create_motif ("CCRAAAW", name = "example_motif")

db <- system.file("extdata”, "flyFactorSurvey_cleaned.meme"”, package = "memes”
res <- runTomTom(motif, database = db)

res$best_match_name

res2 <- force_best_match(res, c("example_motif"” = "Eip93F_SANGER_10"))
res2$best_match_name

3

12 get_sequence

get_sequence Get sequence from GRanges

Description

A light wrapper around Biostrings::getSeq to return named DNAStringSets, from input genomic

coordinates.
Usage
get_sequence(regions, genome, score_column, ...)
Arguments
regions GRanges, or GRangesList object. Will also accept a data.frame as long as it
can be coerced to a GRanges object, or a string in the format: "chr:start-end"
(NOTE: use 1-based closed intervals, not BED format 0-based half-open inter-
vals).
genome object of any valid type in ‘showMethods(Biostrings::getSeq)‘. Commonly a

BSgenome object, or fasta file. Used to look up sequences in regions.

score_column optional name of column (in mcols() of ‘regions‘) containing a fasta score that
is added to the fasta header of each entry. Used when using [runAme()] in
partitioning mode. (default: ‘NULL")

additional arguments passed to Biostrings::getSeq.

Value

‘Biostrings::DNAStringSet* object with names corresponding to genomic coordinates. If input is a
list object, output will be a ‘Biostrings::BStringSetList‘ with list names corresponding to input list
names.

Examples

using character string as coordinates

using BSgenome object for genome

drosophila.genome <- BSgenome.Dmelanogaster.UCSC.dm6: :BSgenome.Dmelanogaster.UCSC.dm6
get_sequence("chr2lL:100-200", drosophila.genome)

using GRanges object for coordinates
data(example_peaks, package = "memes")
get_sequence(example_peaks, drosophila.genome)

has_duplicate_motifs 13

has_duplicate_motifs Check for duplicated motif matrices

Description
This function identifies whether any motif matrices in the input universalmotif list or universalmo-
tif_df are identical to each other. Note: this operation is slow on large motif lists

Usage

has_duplicate_motifs(x)

Arguments

X a universalmotif list or universalmotif df

Value

logical value indicating presence or absence of duplicated motif matrices

Examples

motif <- universalmotif::create_motif()
duplicated <- c(motif, motif)
has_duplicate_motifs(duplicated)

importAme Parse AME output

Description

This imports AME results using the "ame.tsv" output, and optionally the "sequences.tsv" output if
run with "method = fisher". AME results differ based on the method used, thus this must be set on
import or the column names will be incorrect.

Usage

importAme(path, method = "fisher”, sequences = FALSE)

Arguments
path path to ame results file ("ame.tsv")
method ame run method used (one of: c("fisher", "ranksum", "dmhg3", "dmhg4", "pear-

non

son", "spearman")). Default: "fisher".

sequences FALSE or path to sequences file (only valid for method = "fisher")

14 importDremeXML

Value

data.frame with method-specific results. See [AME results](http://meme-suite.org/doc/ame-output-
format.html) webpage for more information. If sequences is set to a path to the sequences.tsv and
method = "fisher", the list-column ‘sequences‘ will be appended to resulting data.frame.

See Also
[runAme()]

Examples

ame_tsv <- system.file("extdata”, "ame.tsv", package = "memes”, mustWork = TRUE)
importAme (ame_tsv)

importDremeXML Import Dreme output from previous run

Description

Import Dreme output from previous run

Usage

importDremeXML (dreme_xml_path)

Arguments

dreme_xml_path path to dreme.xml file

Value

data.frame with statistics for each discovered motif. The ‘motifs‘ column contains a universalmotif
object representation in PCM format of each DREME motif. If no motifs are discovered, returns
NULL.

See Also

[runDreme()]

Examples

dreme_xml <- system.file("extdata”, "dreme.xml”, package = "memes"
importDremeXML (dreme_xml)

importFimo 15

importFimo Import FIMO results

Description

Import FIMO results

Usage

importFimo(fimo_tsv)

Arguments

fimo_tsv path to fimo.tsv output file

Value

GenomicRanges object for each match position. Note unless coordinates are genomic positions,
each ‘seqnames‘ entry will be the fasta header, and start/end will be the position within that sequence
of the match.

Examples

fimo_tsv <- system.file("extdata”, "fimo.tsv", package = "memes")
importFimo(fimo_tsv)

importMeme Import MEME results

Description

This is a light wrapper around [universalmotif::read_meme()] that imports MEME results as univer-
salmotif data.frame. If MEME is run with genomic coordinates in the fasta header, in "chr:start-end"
format (base 1 indexed), the genomic coordinates of the motif match from input sequences can be
parsed from the header.

Usage

importMeme (meme_txt, parse_genomic_coord = FALSE, combined_sites = FALSE)

16 importStreme XML

Arguments

meme_txt path to "meme.txt" output

parse_genomic_coord
whether to parse sequence headers into genomic coordinates for motif position
information, only works if fasta files were written such that the sequence headers
are in the form: "chr:start-end", or some variation of this form (delimiters can be
any of: "[*[:alnum:]]+" (ie non-alphanumeric characters)), (default = FALSE).

combined_sites whether to add ‘combined_sites‘ output which contains coordinates of each se-
quence, the motif sequence (if ‘parse_genomic_coord = TRUE®), and the ‘dia-
gram‘ column raw output from MEME indicating the relative locations of motifs
in the sequence.

Value

MEME results in universalmotif data.frame format (see: [as_universalmotif_dataframe()]). ‘sites_hits*
is a nested data.frame column containing the position within each input sequence of matches to the
identified motif.

See Also

[runMeme()] [universalmotif::read_meme()]

Examples

example_meme_txt <- system.file("extdata”, "meme_full.txt"”, package = "universalmotif™”)
importMeme (example_meme_txt)

importStremeXML Import Streme output from previous run

Description

Import Streme output from previous run

Usage

importStremeXML (streme_xml_path)

Arguments

streme_xml_path
path to streme.xml file

Value

data.frame with statistics for each discovered motif. The ‘motifs‘ column contains a universalmotif
object representation in PCM format of each DREME motif. If no motifs are discovered, returns
NULL.

importTomTomXML 17

See Also

[runStreme()]

Examples

streme_xml <- system.file("extdata”, "streme.xml”, package = "memes")
importStremeXML (streme_xml)

importTomTomXML Import tomtom data from previous run

Description

Import tomtom data from previous run

Usage

importTomTomXML (tomtom_xml_path)

Arguments

tomtom_xml_path
path to tomtom.xml

Details

tomtom list column format the ‘tomtom* list column contains data.frames with the following format:
- name: name of query PWM - altname: alternate name of query PWM - match_name: name of
matched PWM - match_altname: alt name of matched PWM - match_pval: p-value of match -
match_eval: E-value of match - match_qval: g-value of match - match_offset: number of letters the
query was offset from the target match - match_strand: whether the motif was found on input strand
(+) or as reverse-complement (-) - db_name: database source of matched motif - match_motif:
universalmotif object containing the PWM that was matched

Value

will return data.frame with input motifs & results for best match. ‘tomtom‘ list column con-
tains full tomtom data for each input motif. NOTE: if tomtom detects no matches for any input
motif, currently will print a message & return NA values for ‘tomtom‘, ‘best_match_name‘, and
‘best_match_motif*.

See Also

[run'TomTom()]

Examples

tomtom_xml <- system.file("extdata”, "tomtom.xml"”, package = "memes")
importTomTomXML (tomtom_xml)

18 meme_is_installed

meme_is_installed Returns logical vector indicating valid MEME-Suite install status

Description

Checks for a valid meme install using same heirarchy as check_meme_install(). Returns TRUE if
all supported utilities are found in the meme install location, FALSE if not.

Usage

meme_is_installed(path = NULL)

Arguments
path optional path to "meme/bin/". If unset, will follow the search heirarchy listed
above.
Details

The search heirarchy is as follows:

1. the meme_path function argument if set
2. the meme_bin option
3. the MEME_BIN environment variable

4. the default location at ~/meme/bin

Value

logical(1) indicating whether meme is installed with all supported utilities

See Also

check_meme_install()

Examples

meme_is_installed()

nest_tomtom 19

nest_tomtom Nest TomTom results columns into a data.frame column named "tom-
tom"

Description

This is a convienience function for re-nesting the ‘tomtom° list column if the user unnests it. Addi-
tionally, it will update the best_match information based on the ranking of the resulting ‘tomtom*
data.frame. This avoids having out-of-date best_match information after manipulating the ‘tomtom*
entries.

Usage

nest_tomtom(data)

Arguments

data tomtom results data.frame after unnesting the ‘tomtom* column

Details

NOTE: that the resulting columns may not be in the same order, so operations like ‘identical()‘
before & after a nest/renest operation may fail even though the column values are unchanged.

Value

the input data.frame with the match_* columns nested into a column named ‘tomtom*

Examples

if (meme_is_installed()){

motif <- universalmotif::create_motif ("CCRAAAW")

db <- system.file("extdata/flyFactorSurvey_cleaned.meme"”, package = "memes")
res <- runTomTom(motif, database = db)

data <- tidyr::unnest(res, "tomtom")

identical(nest_tomtom(data), res)

}

plot_ame_heatmap Plot AME heatmap clustered by similarity in detected motifs

Description

Plot AME heatmap clustered by similarity in detected motifs

20

plot_ame_heatmap

Usage

plot_ame_heatmap(

ame,
id = motif_id,
group = NULL,
value = -logl@(adj.pvalue),
group_name = NULL,
scale_max = NA

)
Arguments
ame ame results data.frame
id column of motif ids to use (default: motif_id).
group grouping column if comparing across multiple ame runs (optional, default: NULL).
value value to display as heatmap intensity. Default: -logl10(adj.pvalue). Takes func-
tion or column name as input. If set to "normalize", will use normalized rank
within ‘group‘ as the heatmap values. **If in doubt**, prefer the -log10(adj.pvalue)
plot potentially in conjunction with adjusting ‘scale_max‘. (See "Normalized
rank visualization" section below for more details on how to interpret these data)
group_name when group = NULL, name to use for input regions. Ignored if group is set.
scale_max max heatmap value to limit upper-value of scale. Useful if distribution of ‘value‘s
vary greatly between groups. Usually a better to tweak this option than to use
value = "normalize". The cumulative distribution plot generated by ‘ame_compare_heatmap_methods()*
can be useful for selecting this value, try to pick a value which captures the
largest fraction of hits across all groups while excluding outliers.
Details

Normalized rank visualization **NOTE:** The normalized rank visualization eliminates all real
values related to statistical significance! Instead, this visualization represents the relative ranks
of hits within an AME run, which already pass a significance threshold set during ‘runAME()‘.
This means that even if several motifs have similar or even identical pvalues, their heatmap rep-
resentation will be a different color value based on their ranked order in the results list. This
also means that using the normalized rank visualization will be misleading if there are only a few
AME hits; it is only worth using if the number of hits is very large (>100). Both visualizations
can be useful and reveal different properties of the data to the user during data exploration. Use
‘ame_compare_heatmap_methods()‘ to help assess differences in the two visualizations. **If in
doubt**, prefer the ‘-log10(adj.pvalue)‘ representation.

Common mistake: if ‘value* is set to a string that is not "normalize", it will return: "Error: Discrete
value supplied to continuous scale". To use a column by name, do not quote the column name.

Value

‘ggplot* object

plot_sequence_heatmap 21

Examples

data("example_ame”, package = "memes")

Plot a single category heatmap
plot_ame_heatmap(example_ame$Decreasing)

Plot a multi category heatmap
grouped_ame <- dplyr::bind_rows(example_ame, .id = "category")
plot_ame_heatmap(grouped_ame, group = category)

plot_sequence_heatmap Visualize a heatmap of aligned sequences

Description

Sometimes it is useful to visualize individual motif matches in aggregate to understand how se-
quence variability contributes to motif matches. This function creates a heatmap where each row
represents a single sequence and each column represents a position. Cells are colored by the se-
quence at that position. Sequences are optionally aggregated into a sequence logo aligned in register
with the heatmap to visualize how sequence variability contributes to motif makeup.

Usage

plot_sequence_heatmap(
sequence,
title = NULL,
logo = TRUE,
alph = c("DNA", "RNA", "AA"),
title_hjust = 0,
heights = c(1, 5),

legend = "none”
)
Arguments

sequence character vector of sequences, plot will be ranked in order of the sequences.
Each sequence must be equal length. Alternately, sequence can be a named list
in which case each plot will be titled by the names of the list entries.

title title of the plot. Default: NULL. If sequence is a named list of sequences, title
defaults to the list entry names. Set to NULL to override this behavior. To use a
different title than the list entry name, pass a vector of names to ‘title‘.

logo whether to include a sequence logo above the heatmap

alph alphabet colorscheme to use. One of: DNA, RNA, AA.

title_hjust value from O to 1 determining the horizontal justification of the title. Default: 0.

heights ratio of logo:heatmap heights. Given as: c(logo_height, heatmap_height). Val-
ues are not absolute. Ignored when logo = FALSE.

legend passed to ggplot2::theme(legend.position). Default: "none". Values can be:

non

"none", "left", "right", "top", "bottom", or coordinates in c(x,y) format.

22 remove_duplicate_motits

Value

a ggplot object of the sequence heatmap ranked by the order of sequences

See Also

runFimo

Examples

data(example_fimo, package = "memes")

genome <- BSgenome.Dmelanogaster.UCSC.dm3: :BSgenome.Dmelanogaster.UCSC.dm3
motifs <- add_sequence(example_fimo, genome)
plot_sequence_heatmap(motifs$sequence)

Use on named list

sequences <- list("set 1" = motifs$sequence[1:100],
"set 2" = motifs$sequence[101:200])

plot_sequence_heatmap(sequences)

Use different titles for list input
plot_sequence_heatmap(sequences, title = c("A", "B"))

remove_duplicate_motifs
Remove duplicated motif entries

Description

This function identifies motif matrices which are duplicated in a universalmotif list or universalmo-
tif_df and removes them. This operation ignores motif metadata and operates by removing all
entries whose motif matrices are identical. The first instance of a duplicated motif in the input list
is the one returned.

Usage

remove_duplicate_motifs(x)

Arguments

X a universalmotif list or universalmotif df

Value

A deduplicated list or universalmotif_df

Examples

motif <- universalmotif::create_motif()
duplicated <- c(motif, motif)
remove_duplicate_motifs(duplicated)

runAme.list

23

runAme.list Motif enrichment using AME

Description

AME identifies known motifs (provided by the user) that are enriched in your input sequences.

Usage
S3 method for class 'list'
runAme (
input,
control = "shuffle”,
outdir = "auto",
method = "fisher”,

database = NULL,
meme_path = NULL,
sequences = FALSE,
silent = TRUE,

)
S3 method for class 'BStringSetList'
runAme (

input,

control = "shuffle”,

outdir = "auto",

method = "fisher”,

database = NULL,
meme_path = NULL,
sequences = FALSE,
silent = TRUE,

)
Default S3 method:
runAme (
input,
control = "shuffle”,
outdir = "auto”,
method = "fisher”,

database = NULL,
meme_path = NULL,
sequences = FALSE,
silent = TRUE,

24

runAme.list

runAme (
input,
control = "shuffle”,
outdir "auto”,
method = "fisher”,

database = NULL,
meme_path = NULL,
sequences = FALSE,
silent = TRUE,

Arguments

input

control

outdir

method

database

meme_path

sequences

silent

path to fasta, or DNAstringset (optional: DNAStringSet object names contain
fasta score, required for partitioning mode)

default: "shuffle", or set to DNAstringset or path to fasta file to use those se-
quences in discriminative mode. If input is a list of DNAStringSet objects, and
control is set to a character vector of names in input, those regions will be
used as background in discriminitive mode and AME will skip running on any
control entries (NOTE: if input contains an entry named "shuffle" and control
is set to "shuffle", it will use the input entry, not the AME shuffle algorithm).
If control is a Biostrings::BStringSetList (generated using get_sequence), all
sequences in the list will be combined as the control set. Set to NA for partition-
ing based on input fasta score (see get_sequence() for assigning fasta score).
If input sequences are not assigned fasta scores but AME is run in partitioning
mode, the sequence order will be used as the score.

Path to output directory location to save data files. If set to "auto", will use
location of input files if passing file paths, otherwise will write to a temporary
directory. default: "auto"

default: fisher (allowed values: fisher, ranksum, pearson, spearman, 3dmhg,
4dmhg)

path to .meme format file, universalmotif list object, dreme results data.frame,
or list() of multiple of these. If objects are assigned names in the list, that name
will be used as the database id in the output. It is highly recommended you
set a name if not using a file path so the database name will be informative,
otherwise the position in the list will be used as the database id. For example,
if the input is: list("motifs.meme", list_of_motifs), the database id’s will be:

"motifs.meme" and "2". If the input is list("motifs.meme", "customMotifs" =
list_of_motifs), the database id’s will be "motifs.meme" and "customMotifs".

path to "meme/bin/" (default: NULL). Will use default search behavior as de-
scribed in check_meme_install () if unset.

logical (1) add results from sequences. tsv to sequences list column to re-
turned data.frame. Valid only if method = "fisher". See AME outputs webpage
for more information (Default: FALSE).

whether to suppress stdout (default: TRUE), useful for debugging.

http://alternate.meme-suite.org/doc/ame-output-format.html

runAme.list

25

additional arguments passed to AME (see AME Flag table below)

Details

AME can be run using several modes:

1. Discriminative mode: to discover motifs enriched relative to shuffled input, or a set of provided

control sequences

2. Partitioning mode: in which AME uses some biological signal to identify the association
between the signal and motif presence.

To read more about how AME works, see the AME Tutorial

Additional AME arguments

memes allows passing any valid flag to it’s target programs via For additional details for all
valid AME arguments, see the AME Manual webpage. For convenience, a table of valid parameters,
and brief descriptions of their function are provided below:

AME Flag
kmer
seed
scoring
hit_lo_fraction
evalue_report_threshold
fasta_threshold
fix_partition
poslist
log_fscores
log_pwmscores
lingreg_switchxy
xalph
bfile
motif_pseudo
inc
exc

Value

allowed values default
integer(1) 2
integer(1) 1
, "'max", "sum", "totalhits" "avg"
numeric(1) 0.25
numeric(1) 10
numeric(1) 0.001
numeric(1) NULL
"pwm", "fasta" "fasta"
logical(1) FALSE
logical(1) FALSE
logical(1) FALSE
file path NULL (1)
"motif", "motif-file", "uniform", path to file NULL
numeric(1) 0.1
character (1) NULL
character (1) NULL

description

kmer frequency to preserve when shufflii
seed for random number generator when
Method for scoring a sequence for match
fraction of hit log odds score to exceed tc
E-value threshold for reporting a motif a
AME will classify sequences with FAST.
AME evaluates only the partition of the f
When using paritioning mode (control :
Convert FASTA scores into log-space (o
Convert PWM scores into log-space (onl
Make the x-points FASTA scores and y-t
alphabet file to use if input motifs are in.
source of 0-order background model. If'
Addd this pseudocount when converting
use only motifs with names matching thi
exclude motifs with names matching this

a data.frame of AME enrichment results. If run using a BStringsSetList input, returns a list of

data.frames.

Citation

If you use runAme () in your analysis, please cite:

Robert McLeay and Timothy L. Bailey, "Motif Enrichment Analysis: A unified framework and
method evaluation", BMC Bioinformatics, 11:165, 2010, doi:10.1186/1471-2105-11-165. full text

Licensing:

http://meme-suite.org/doc/ame-tutorial.html
http://meme-suite.org/doc/ame.html
http://www.biomedcentral.com/1471-2105/11/165

26 runDreme

The MEME Suite is free for non-profit use, but for-profit users should purchase a license. See the
MEME Suite Copyright Page for details.

Examples

if (meme_is_installed()) {

Create random named sequences as input for example
seqs <- universalmotif::create_sequences(rng.seed = 123)
names(seqs) <- seq_along(segs)

An example path to a motif database file in .meme format
motif_file <- system.file("extdata”, "flyFactorSurvey_cleaned.meme”, package = "memes")

runAme (seqs, database = motif_file)
Dreme results dataset for example
dreme_xml <- system.file("extdata”, "dreme.xml"”, package = "memes")

dreme_results <- importDremeXML (dreme_xml)

database can be set to multiple values like so:

runAme(seqs, database = list(motif_file, "my_dreme_motifs” = dreme_results))
3
runDreme Denovo motif discovery of target regions using DREME
Description

DREME discovers short, ungapped, de-novo motifs that are relatively enriched relative to a control
set of sequences. DREME can be run to discover motifs relative to a shuffled set of input sequences,
or against a separately provided set of "control" sequences.

Usage
runDreme(input, control, outdir = "auto”, meme_path = NULL, silent = TRUE, ...)
Arguments
input regions to scan for motifs. Can be any of:
* path to fasta file
* DNAStringSet object (can be generated from GRanges using get_sequence())
* List of DNAStringSet objects (generated from get_sequence())
* NOTE: if using StringSet inputs, each entry must be named (set with names ()).
* NOTE: If you want to retain the raw dreme output files, you must use a path
to fasta file as input, or specify an "outdir"
control regions to use as background for motif search. Can be any of:

* path to fasta file

http://meme-suite.org/doc/copyright.html

runDreme

outdir

meme_path

silent

Details

27

* DNAStringSet object (can be generated from GRanges using get_sequence)

* A Biostrings::BStringSetList (generated using get_sequence), in which
case all sequences in the list will be combined as the control set.

* if input is a list of DNAStringSet objects, a character vector of names in
input will use those sequences as background. runDreme will not scan
those regions as input.

¢ "shuffle" to use dreme’s built-in dinucleotide shuffle feature (NOTE: if
input is a list object with an entry named "shuffle", the list entry will be
used instead). Optionally can also pass seed = <any number> to . . . to use
as the random seed during shuffling. If no seed is passed, dreme will use
1 as the random seed, so results will be reproducible if rerunning. NOTE:
beware system-specific differences. As of v5, dreme will compile using
the default python installation on a system (either python2.7 or python3).
The random number generator changed between python2.7 and python3, so
results will not be reproducible between systems using python2.7 vs 3.

path to output directory of dreme files, or "auto" to autogenerate path. Default:
location of input fasta in dir named "\<input\>vs\<control\>". If input is DNAs-
tringset, will be temporary path. This means that if you want to save the raw
output files, you must use fasta files as input or use an informative (and unique)
outdir name. memes will not check if it overwrites files in a directory. Directo-
ries will be recursively created if needed.

optional, path to "meme/bin/" on your local machine. runDreme will search 3
places in order for meme if this flag is unset:

1. the option "meme_bin" (set with options(meme_bin = "path/to/meme/bin"))
2. the environment variable "MEME_PATH" (set in .Renviron)
3. "~/meme/bin/" as the default location

* If the user sets meme_path in the function call, this value will always be
used

whether to suppress printing dreme stdout as a message when finishing with
no errors. Can be useful for troubleshooting in situations where no motifs are
discovered, but command completes successfully. (default: TRUE)

dreme flags can be passed as R function arguments to use non-default behavior.
For a full list of valid arguments, run your local install of dreme -h, or visit the
dreme documentation website. See list below for aliases of common flags. To
set flags with no values (ex. -dna), pass the argument as a boolean value (ex.
dna = TRUE).

Properly setting the control parameter is key to discovering biologically relevant motifs. Often,
using control = "shuffle"” will produce a suboptimal set of motifs; however, some discriminative
analysis designs don’t have proper "control" regions other than to shuffle.

As of MEME version 5.2.0, DREME is deprecated. Consider runStreme () instead.

In addition to allowing any valid flag of dreme to be passed to . . ., we provide a few user-friendly
aliases for common flags which are more readable (see list below). For example, e = 1 will use a

http://meme-suite.org/doc/dreme.html

28

runDreme

max evalue cutoff of 1. This is equivalent to setting evalue = 1. For additional details about each
DREME flag, see the DREME Manual Webpage.

List of values which can be passed to . ..: NOTE: values must be referred to using their name in
the "memes alias" column, not the "DREME Flag" column.

memes alias DREME Flag description default
nmotifs m max number of motifs to discover NULL
sec t max number of seconds to run NULL
evalue e max E-value cutoff 0.05
seed S random seed if using "shuffle" as control 1
ngen g nuber of REs to generalize 100
mink mink minimum motif width to search 3
maxk maxk maximum motif width to search 7
k k set mink and maxk to this value NULL
norc norc search only the input strand for sequences FALSE
dna dna use DNA alphabet TRUE
rna rna use RNA alphabet FALSE
protein protein use protein alphabet (NOT RECCOMENDED) FALSE
Value

universalmotif_df with statistics for each discovered motif. The motif column contains a univer-
salmotif object representation in PCM format of each DREME motif. If no motifs are discovered,
returns NULL. The column values are as follows:

rank = ranked order of discovered motif

name = primary name of motif

altname = alternative name of motif

seq = consensus sequence of the motif

length = length of discovered motif

nsites = number of times the motif is found in input sequences

positive_hits = number of sequences in input containing at least 1 of the motif
negative_hits = number of sequences in control containing at least 1 of the motif
pval = p-value

eval = E-value

unerased_eval = Unerased E-Value

positive_total = number of sequences in input

negative_total = number of sequences in control

pos_frac = fraction of positive sequences with a hit

neg_frac = fraction of negative sequences with a hit

motif = a universalmotif object of the discovered motif

http://meme-suite.org/doc/dreme.html

runFimo 29

Citation

If you use runDreme () in your analysis, please cite:

Timothy L. Bailey, "DREME: Motif discovery in transcription factor ChIP-seq data", Bioinformat-
ics, 27(12):1653-1659, 2011. full text

Licensing:
The MEME Suite is free for non-profit use, but for-profit users should purchase a license. See the
MEME Suite Copyright Page for details.

Examples

if (meme_is_installed()) {

Create random named sequences as input for example
seqs <- universalmotif::create_sequences(rng.seed = 123)
names(seqs) <- seg_along(seqs)

Runs dreme with default settings, shuffles input as background
runDreme(seqs, "shuffle”)

Runs searching for max 2 motifs, e-value cutoff = 0.1, explicitly using the DNA alphabet
runDreme(seqs, "shuffle”, nmotifs = 2, e = 0.1, dna = TRUE)
3

runfFimo Find instances of motifs using FIMO

Description

FIMO scans input sequences to identify the positions of matches to each input motif. FIMO has no
sequence length or motif number restrictions.

Usage
runFimo(
sequences,
motifs,
bfile = "motif",
outdir = "auto”,

parse_genomic_coord = TRUE,
skip_matched_sequence = FALSE,
max_strand = TRUE,

text = TRUE,

meme_path = NULL,

silent = TRUE,

https://academic.oup.com/bioinformatics/article/27/12/1653/257754
http://meme-suite.org/doc/copyright.html

30 runFimo

Arguments
sequences path to fasta file, or stringset input.
motifs path to .meme format file, or universalmotif/universalmotif list input.
bfile path to background file, or special values: "motif" to use O-order frequencies
contained in the motif, or "uniform" to use a uniform letter distribution. (default:
"motif")
outdir output directory location. Only used if text = FALSE. Default: "auto" to auto-

generate directory name. Note: if not using a fasta path as input, this will be a
temporary location unless explicity set.

parse_genomic_coord
logical(1) whether to parse genomic position from fasta headers. Fasta head-
ers must be UCSC format positions (ie "chr:start-end"), but base 1 indexed
(GRanges format). If names of fasta entries are genomic coordinates and parse_genomic_coord
== TRUE, results will contain genomic coordinates of motif matches, otherwise
FIMO will return relative coordinates (i.e. positions from 1 to length of the fasta
entry).

skip_matched_sequence
logical (1) whether or not to include the DNA sequence of the match. Default:
FALSE. Note: jobs will complete faster if set to TRUE. add_sequence() can be
used to lookup the sequence after data import if parse_genomic_coord is TRUE,
so setting this flag is not strictly needed.

max_strand if match is found on both strands, only report strand with best match (default:
TRUE).
text logical (1) (default: TRUE). No output files will be created on the filesystem.

The results are unsorted and no g-values are computed. This setting allows fast
searches on very large inputs. When set to FALSE FIMO will discard 50% of
the lower significance matches if >100,000 matches are detected. text = FALSE
will also incur a performance penalty because it must first read a file to disk,
then read it into memory. For these reasons, I suggest keeping text = TRUE.

meme_path path to meme/bin/ (optional). Defaut: NULL, searches "MEME_PATH" environ-
ment variable or "meme_path" option for path to "meme/bin/".

silent logical (1) whether to suppress stdout/stderr printing to console (default: TRUE).
If the command is failing or giving unexpected output, setting silent = FALSE
can aid troubleshooting.

additional commandline arguments to fimo. See the FIMO Flag table below.

Details
Additional arguments passed to See: Fimo web manual for a complete description of FIMO
flags.
FIMO Flag allowed values default description
alpha numeric(1) 1 alpha for calculating position-specific priors. Reg
bfile "motif", "motif-file", "uniform", file path, "motif" If "motif" or "motif-file", use 0-order letter frequ
max_stored_scores integer (1) NULL maximum number of scores to be stored for com;

motif_pseudo numeric(1) 0.1 pseudocount added to motif matrix

http://meme-suite.org/doc/fimo.html?man_type=web

runMeme 31

no_qvalue logical(1) FALSE only needed when text = FALSE, do not compute
norc logical(1) FALSE Do not score reverse complement strand
prior_dist file path NULL file containing binned distribution of priors
psp file path NULL file containing position specific priors. Requires |
qv_thresh logical(1) FALSE use g-values for the output threshold
thresh numeric(1) 1le-4 output threshold for returning a match, only matc
Licensing:

The MEME Suite is free for non-profit use, but for-profit users should purchase a license. See the
MEME Suite Copyright Page for details.

Value

GRanges object containing positions of each match. Note: if parse_genomic_coords = FALSE,
each segnames entry will be the full fasta header, and start/end will be the relative position within
that sequence of the match. The GRanges object has the following additional mcols: * motif_id =
primary name of matched motif * motif_alt_id = alternate name of matched motif * score = score
of match (higher score is a better match) * pvalue = pvalue of the match * qvalue = qvalue of the
match * matched_sequence = sequence that matches the motif

Citation

If you use runFimo() in your analysis, please cite:

Charles E. Grant, Timothy L. Bailey, and William Stafford Noble, "FIMO: Scanning for occurrences
of a given motif", Bioinformatics, 27(7):1017-1018, 2011. full text

Examples

if (meme_is_installed()){

Generate some example input sequences

seq <- universalmotif::create_sequences()

sequences must have values in their fasta headers
names(seq) <- seqg_along(seq)

Create random example motif to search for

motif <- universalmotif::create_motif()

Search for motif in sequences
parse_genomic_coord set to FALSE since fasta headers aren't in "chr:start-end” format.
runFimo(seq, motif, parse_genomic_coord = FALSE)

3

runMeme Identify motifs with MEME

Description

MEME performs de-novo discovery of ungapped motifs present in the input sequences. It can be
used in both discriminative and non-discriminative modes.

http://meme-suite.org/doc/copyright.html
http://bioinformatics.oxfordjournals.org/content/early/2011/02/16/bioinformatics.btr064.full

32
Usage
runMeme (
input,
control = NA,
outdir = "auto",
alph = "dna",

parse_genomic_coord = TRUE,
combined_sites = FALSE,
silent = TRUE,

meme_path = NULL,

)
S3 method for class 'list'
runMeme (

input,

control = NA,

outdir = "auto”,

alph = "dna",

)
S3 method for class 'BStringSetList'
runMeme (

input,

control = NA,

outdir = "auto”,

alph = "dna",

parse_genomic_coord = TRUE,
combined_sites = FALSE,
silent = TRUE,

meme_path = NULL,

parse_genomic_coord = TRUE,
combined_sites = FALSE,
silent = TRUE,

meme_path = NULL,

)
Default S3 method:
runMeme (
input,
control = NA,
outdir = "auto",
alph = "dna",

parse_genomic_coord = TRUE,
combined_sites = FALSE,
silent = TRUE,

runMeme

runMeme 33

meme_path = NULL,

Arguments

input path to fasta, Biostrings::BStringSet list, or list of Biostrings::BStringSet (can
generate using get_sequence())

control any data type as in input, or a character vector of names(input) to use those
regions as control sequences. Using sequences as background requires an alter-
native objective function. Users must pass a non-default value of objfunto . ..
if using a non-NA control set (default: NA)

outdir (default: "auto") Directory where output data will be stored.

alph one of c("dna", "rna", "protein") or path to alphabet file (default: "dna").

parse_genomic_coord
logical (1) whether to parse genomic coordinates from fasta headers. Requires
headers are in the form: "chr:start-end", or will result in an error. Automatically
set to FALSE if alph = "protein”. This setting only needs to be changed if using
a custom-built fasta file without genomic coordinates in the header.

combined_sites logical(1) whether to return combined sites information (coerces output to
list) (default: FALSE)

silent Whether to suppress printing stdout to terminal (default: TRUE)
meme_path path to "meme/bin/". If unset, will use default search behavior:

1. meme_path setting in options()
2. MEME_PATH setting in .Renviron or .bashrc

additional arguments passed to MEME (see below)

Details

Note that MEME can take a long time to run. The more input sequences used, the wider the motifs
searched for, and the more motifs MEME is asked to discover will drastically affect runtime. For
this reason, MEME usually performs best on a few (<50) short (100-200 bp) sequences, although
this is not a requirement. Additional details on how data size affects runtime can be found here.

MEME works best when specifically tuned to the analysis question. The default settings are unlikely
to be ideal. It has several complex arguments documented here, which runMeme() accepts as R
function arguments (see details below).

If discovering motifs within ChIP-seq, ATAC-seq, or similar peaks, MEME may perform best if
using sequences flaking the summit (the site of maximum signal) of each peak rather than the center.
ChIP-seq or similar data can also benefit from setting revcomp = TRUE, minw =5, maxw = 20. For
more tips on using MEME to analyze ChIP-seq data, see the following tips page.

Additional arguments:

runMeme () accepts all valid arguments to meme as arguments passed to For flags without
values, pass them as flag = TRUE. The dna, rna, and protein flags should instead be passed to the
alph argument of runMeme (). The arguments passed to MEME often have many interactions with
each other, for a detailed description of each argument see MEME Commandline Documentation.

https://groups.google.com/g/meme-suite/c/7b7PBr6RzJk
http://meme-suite.org/doc/meme.html
https://groups.google.com/forum/#%21topic/meme-suite/rIbjIHbcpAE
meme-suite.org/doc/meme.html

34 runStreme

Value

MEME results in universalmotif df format (see: universalmotif::to_df()). sites_hitsis a
nested data.frame column containing the position within each input sequence of matches to the
identified motif.

Citation

If you use runMeme () in your analysis, please cite:

Timothy L. Bailey and Charles Elkan, "Fitting a mixture model by expectation maximization to
discover motifs in biopolymers", Proceedings of the Second International Conference on Intelligent
Systems for Molecular Biology, pp. 28-36, AAAI Press, Menlo Park, California, 1994. pdf

Licensing

The MEME Suite is free for non-profit use, but for-profit users should purchase a license. See the
MEME Suite Copyright Page for details.

Examples

if (meme_is_installed()) {

seqgs <- universalmotif::create_sequences("CCRAAAW", segnum = 4)
names(seqs) <- 1:length(seqs)

runMeme (seqs, parse_genomic_coord = FALSE)

}

runStreme Denovo motif discovery of target regions using STREME

Description

STREME discovers short, ungapped, *de-novo* motifs that are enriched or relatively enriched
relative to a control set of sequences. STREME can be run to discover motifs relative to a shuffled
set of input sequences, against a separately provided set of "control" sequences, or to determine
whether motifs are centrally enriched within input sequences.

Usage
runStreme(
input,
control,
outdir = "auto",
objfun = "de",
alph = "dna",

meme_path = NULL,
silent = TRUE,

https://tlbailey.bitbucket.io/papers/ismb94.pdf
http://meme-suite.org/doc/copyright.html

runStreme 35

Arguments

input regions to scan for motifs. If using ‘objfun = "cd"‘ to test for centrally enriched
motifs, be sure to include sufficient flanking sequence (e.g. +/- 500bp) for an
accurate estimate. Can be any of: - path to fasta file - DNAStringSet object (can
be generated from GRanges using ‘get_sequence()‘) - List of DNAStringSet
objects (generated from ‘get_sequence()‘) - *NOTE:* if using StringSet inputs,
each entry must be named (set with ‘names()‘). - *NOTE:* If you want to retain
the raw streme output files, you must use a path to fasta file as input, or specify
an "outdir"

control regions to use as background for motif search. These should have a similar
length distribution as the input sequences. Can be any of: - path to fasta file -
DNAStringSet object (can be generated from GRanges using get_sequence) - A
Biostrings::BStringSetList (generated using ‘get_sequence‘), in which case all
sequences in the list will be combined as the control set. - if ‘input‘ is a list
of DNAStringSet objects, a character vector of names in ‘input® will use those
sequences as background. runstreme will not scan those regions as input. -
"shuffle" to use streme’s built-in dinucleotide shuffle feature (NOTE: if ‘input*
is a list object with an entry named "shuffle", the list entry will be used instead).
Optionally can also pass ‘seed = <any number>‘ to ‘...° to use as the random
seed during shuffling. If no seed is passed, streme will use O as the random seed,
so results will be reproducible if rerunning.

outdir path to output directory of streme files, or "auto" to autogenerate path. De-
fault: location of input fasta in dir named "\<input\>_vs_\<control\>". If input
is DNAstringset, will be temporary path. This means that if you want to save
the raw output files, you must use fasta files as input or use an informative (and
unique) outdir name. memes will **not check** if it overwrites files in a direc-
tory. Directories will be recursively created if needed. (default: "auto")

objfun one of c¢("de", "cd"). Default: "de" for differential enrichment. "cd" for central
distance (control must be set to NA for "cd").

non

alph one of c("dna", "rna", "protein") or a path to a MEME format alph file. (default:
Hdnaﬂ)

meme_path path to "meme/bin"

silent Whether to suppress printing stdout & stderr to console (default: TRUE). Warn-
ings are always printed regardless of this setting.

pass any commandline options as R function arguments. For a complete list of
STREME options, see [the STREME manual](https://meme-suite.org/meme/doc/streme.html).

Details

Properly setting the ‘control‘ parameter is key to discovering biologically relevant motifs. Often,
using ‘control = "shuffle"‘ will produce a suboptimal set of motifs; however, some discriminative
analysis designs don’t have proper "control" regions other than to shuffle.

If you have fewer than 50 sequences, consider using [runMeme()] instead.
Citation

If you use ‘runStreme()‘ in your analysis, please cite:

36 runTomTom

Timothy L. Bailey, "STREME: Accurate and versatile sequence motif discovery", Bioinformatics,
2021. https://doi.org/10.1093/bioinformatics/btab203

Licensing The MEME Suite is free for non-profit use, but for-profit users should purchase a
license. See the [MEME Suite Copyright Page](http://meme-suite.org/doc/copyright.html) for de-
tails.

Value

a ‘universalmotif_df‘ of STREME Motifs

See Also

‘Tuniversalmotif::tidy-motifs*

runTomTom Run TomTom on target motifs

Description

TomTom compares input motifs to a database of known, user-provided motifs to identify matches.

Usage
runTomTom(

input,
database = NULL,
outdir = "auto”,
thresh = 10,
min_overlap = 5,
dist = "ed",
evalue = TRUE,

silent = TRUE,
meme_path = NULL,

)
Arguments

input path to .meme format file of motifs, a list of universalmotifs, or a universalmotif
data.frame object (such as the output of runDreme())

database path to .meme format file to use as reference database (or list of universalmotifs).
NOTE: p-value estimates are inaccurate when the database has fewer than 50
entries.

outdir directory to store tomtom results (will be overwritten if exists). Default: location

of input fasta file, or temporary location if using universalmotif input.

runTomTom

thresh

min_overlap

dist

evalue

silent

meme_path

Details

37

report matches less than or equal to this value. If evalue = TRUE (default), set
an e-value threshold (default = 10). If evalue = FALSE, set a value between 0-1

(default = 0.5).

only report matches that overlap by this value or more, unless input motif is
shorter, in which case the shorter length is used as the minimum value

distance metric. Valid arguments: allr | ed | kullback | pearson | sandelin
| blic1 | blic5 | 11r1 | 11r5. Default: ed (euclidean distance).

whether to use E-value as significance threshold (default: TRUE). If evalue =
FALSE, uses g-value instead.

suppress printing stderr to console (default: TRUE).

path to "meme/bin/" (optional). If unset, will check R environment variable
"MEME_DB (setin .Renviron), or option "meme_db" (set with option(meme_db

= "path/to/meme/bin"))

additional flags passed to tomtom using cmdfun formating (see table below for

details)

runTomTom will rank matches by significance and return a best match motif for each input (whose
properties are stored in the best_match_* columns) as well as a ranked list of all possible matches

stored in the tomtom list column.

Additional arguments

runTomTom() can accept all valid tomtom arguments passed to ... as described in the tomtom
commandline reference. For convenience, below is a table of valid arguments, their default values,
and their description.

TomTom Flag
bfile
motif_pseudo
xalph
norc
incomplete_scores
thresh
internal
min_overlap
time

Value

allowed values

file path
numeric
logical
logical
logical
numeric
logical
integer
integer

default
NULL
0.1
FALSE
FALSE
FALSE
0.5
FALSE
1
NULL

description

path to background model for converting frequency matrix to log-odds score
pseudocount to add to motifs

convert alphabet of target database to alphabet of query database

Do not score reverse complements of motifs

Compute scores using only aligned columns

only report matches with significance values <= this value. Unless evalue =
forces the shorter motif to be completely contained in the longer motif

only report matches that overlap by this number of positions or more. If que:
Maximum runtime in CPU seconds (default: no limit)

data.frame of match results. Contains best_match_motif column of universalmotif objects with
the matched PWM from the database, a series of best_match_* columns describing the TomTom
results of the match, and a tomtom list column storing the ranked list of possible matches to each
motif. If a universalmotif data.frame is used as input, these columns are appended to the data.frame.
If no matches are returned, tomtom and best_match_motif columns will be set to NA and a message
indicating this will print.

http://meme-suite.org/doc/tomtom.html?man_type=web
http://meme-suite.org/doc/tomtom.html?man_type=web

38 update_best_match

Citation

If you use runTomTom() in your analysis, please cite:

Shobhit Gupta, JA Stamatoyannopolous, Timothy Bailey and William Stafford Noble, "Quantifying
similarity between motifs", Genome Biology, 8(2):R24, 2007. full text

Licensing:

The MEME Suite is free for non-profit use, but for-profit users should purchase a license. See the
MEME Suite Copyright Page for details.

Examples

if (meme_is_installed()) {
motif <- universalmotif::create_motif (”"CCRAAAW")
database <- system.file("”extdata”, "flyFactorSurvey_cleaned.meme”, package = "memes")

runTomTom(motif, database)

}

update_best_match Update best match info by ranking of tomtom data

Description

This function updates the best_match columns based on the rankings on the tomtom list data. By re-
ordering the entries of a ‘tomtom* object, the best_match columns can be updated to reflect the new
rankings using [update_best_match()], where the first row of the ‘tomtom* data.frame is selected as
the best match.

Usage

update_best_match(res)

Arguments

res results from runTomTom

Value

‘res® with updated best_* columns

See Also

[force_best_match()]

http://genomebiology.com/2007/8/2/R24
http://meme-suite.org/doc/copyright.html

view_tomtom_hits 39

Examples

data("example_dreme_tomtom™)

best match is "CG2052_SANGER_2.5"

example_dreme_tomtom$best_match_name[1]

reorder the ~tomtom™ data.frame

example_dreme_tomtom$tomtom[[1]] <- dplyr::arrange(example_dreme_tomtom$tomtom[[1]1],
dplyr::desc(match_eval))

update_best_match will use the new order of rows, taking the top row as the new best match

new_res <- update_best_match(example_dreme_tomtom)

best match is now altered:

new_res$best_match_name[1]

view_tomtom_hits Compare top tomtom hits to original motif

Description

Although TomTom does a good job of matching unknown motifs to known motifs, sometimes the
top hit is not the correct assignment. It can be useful to manually inspect the hits. This function
provides a quick utility to compare matches.

Usage

view_tomtom_hits(results, top_n = "all")
Arguments

results results data.frame from [runTomTom()]

top_n number of matched motifs to return in plot (default: "all")
Details

This is intended to be a function used interactively and may not always be the best tool for creating
publication-quality figures. Results with matches return ggseqlogo outputs which can be further
manipulated using [ggplot2::theme()] calls, but results containing no matches are static plots.

Value

plot of input motif vs the top n number of tomtom matched motifs. If no match found, will plot "No
Match". Note: the "No Match" plots are not amenable to ggplot theme() manipulations, while all
others are.

Examples

results <- importTomTomXML(system.file("extdata”, "tomtom.xml”, package = "memes”))
show top 3 hits
view_tomtom_hits(results, top_n = 3)

40 write_fasta

write_fasta Write fasta file from stringset

Description

Write fasta file from stringset

Usage

write_fasta(seq, path = tempfile(fileext = ".fa"))
Arguments

seq a ‘Biostrings:: XStringSet*

path path of fasta file to write (default: temporary file)
Value

path to created fasta file

Examples

seq <- universalmotif::create_sequences()

write_fasta(seq)

Index

+ datasets
example_ame, 6
example_ame_large, 6
example_chip_summits, 7
example_dreme, 8
example_dreme_by_binding, 8
example_dreme_tomtom, 9
example_fimo, 9
example_peaks, 9
example_rnaseq, 10
example_tomtom, 10

* import
importAme, 13

add_sequence, 3
ame_compare_heatmap_methods, 4

check_meme_install, 4
check_meme_install(), I8

drop_best_match, 5

example_ame, 6
example_ame_large, 6
example_chip_summits, 7
example_dreme, 8
example_dreme_by_binding, 8
example_dreme_tomtom, 9
example_fimo, 9
example_peaks, 9
example_rnaseq, 10
example_tomtom, 10

force_best_match, 11
get_sequence, 12
has_duplicate_motifs, 13

importAme, 13
importDremeXML, 14

importFimo, 15
importMeme, 15
importStremeXML, 16
importTomTomXML, 17

meme_is_installed, 18
nest_tomtom, 19

plot_ame_heatmap, 19
plot_sequence_heatmap, 21

remove_duplicate_motifs, 22
runAme (runAme.list), 23
runAme.list, 23

runDreme, 26

runFimo, 29

runMeme, 31

runMeme (), 33

runStreme, 34
runStreme(), 27
runTomTom, 36

universalmotif::to_df(), 34
update_best_match, 38

view_tomtom_hits, 39

write_fasta, 40

41

	add_sequence
	ame_compare_heatmap_methods
	check_meme_install
	drop_best_match
	example_ame
	example_ame_large
	example_chip_summits
	example_dreme
	example_dreme_by_binding
	example_dreme_tomtom
	example_fimo
	example_peaks
	example_rnaseq
	example_tomtom
	force_best_match
	get_sequence
	has_duplicate_motifs
	importAme
	importDremeXML
	importFimo
	importMeme
	importStremeXML
	importTomTomXML
	meme_is_installed
	nest_tomtom
	plot_ame_heatmap
	plot_sequence_heatmap
	remove_duplicate_motifs
	runAme.list
	runDreme
	runFimo
	runMeme
	runStreme
	runTomTom
	update_best_match
	view_tomtom_hits
	write_fasta
	Index

