Package 'lfa'

October 14, 2021
Title Logistic Factor Analysis for Categorical Data
Version 1.22.0
Date 2015-10-09
Author Wei Hao, Minsun Song, John D. Storey
Maintainer Wei Hao <whao@princeton.edu>, John D. Storey <jstorey@princeton.edu></jstorey@princeton.edu></whao@princeton.edu>
LazyData true
Description LFA is a method for a PCA analogue on Binomial data via estimation of latent structure in the natural parameter.
Imports corpcor
Depends R (>= 3.2)
Suggests knitr, ggplot2
VignetteBuilder knitr
License GPL-3
biocViews SNP, DimensionReduction, PrincipalComponent
BugReports https://github.com/StoreyLab/lfa/issues
<pre>URL https://github.com/StoreyLab/lfa</pre>
RoxygenNote 6.0.1
git_url https://git.bioconductor.org/packages/lfa
git_branch RELEASE_3_13
git_last_commit 4bc83c6
git_last_commit_date 2021-05-19
Date/Publication 2021-10-14
R topics documented:
af
af_snp
Control

2 af

	centerscale	 						 					 				4
	hgdp_subset	 											 				4
	lfa	 											 				5
	model.gof	 											 				6
	pca_af																
	read.bed																
	read.tped.recode	 											 				8
	sHWE																
	trunc.svd	 											 				9
Index																	11

af

Allele frequencies

Description

Compute matrix of individual-specific allele frequencies

Usage

```
af(X, LF, safety = FALSE)
```

Arguments

X	a matrix of SNP genotypes, i.e. an integer matrix of 0's, 1's, and 2's. Sparse matrices of class Matrix are not supported (yet).
LF	Matrix of logistic factors, with intercept. Pass in the return value from 1fa!
safety	optional boolean to bypass checks on the genotype matrices, which require a non-trivial amount of computation.

Details

Computes the matrix of individual-specific allele frequencies, which has the same dimensions of the genotype matrix. Be warned that this function could use a ton of memory, as the return value is all doubles. It could be wise to pass only a selection of the SNPs in your genotype matrix to get an idea for memory usage. Use gc to check memory usage!

Value

Matrix of individual-specific allele frequencies.

```
LF = lfa(hgdp_subset, 4)
allele_freqs = af(hgdp_subset, LF)
```

af_snp 3

af_snp

Allele frequencies for SNP

Description

Computes individual-specific allele frequencies for a single SNP.

Usage

```
af_snp(snp, LF)
```

Arguments

snp

vector of 0's, 1's, and 2's

LF

Matrix of logistic factors, with intercept. Pass in the return value from 1fa!

Value

vector of allele frequencies

center

Matrix centering

Description

C routine to row-center a matrix

Usage

```
center(A)
```

Arguments

Α

matrix

Value

matrix same dimensions A but row centered

```
center(hgdp_subset)
```

4 hgdp_subset

centerscale

Matrix centering and scaling

Description

C routine to row-center and scale a matrix. Doesn't work with missing data.

Usage

```
centerscale(A)
```

Arguments

Α

matrix

Value

matrix same dimensions A but row centered and scaled

Examples

```
centerscale(hgdp_subset)
```

hgdp_subset

HGDP subset

Description

Subset of the HGDP dataset.

Usage

```
hgdp_subset
```

Format

```
a matrix of 0's, 1's and 2's.
```

Value

genotype matrix

Source

```
Stanford HGDP http://www.hagsc.org/hgdp/files.html
```

Ifa 5

1fa Logistic factor analysis

Description

Fit a factor model of dimension d for binomial data. Returns logistic factors.

Usage

```
lfa(X, d, adjustments = NULL, override = FALSE, safety = FALSE)
```

Arguments

X	a matrix of SNP genotypes, i.e. an integer matrix of 0's, 1's, and 2's. Sparse matrices of class Matrix are not supported (yet).
d	number of logistic factors, including the intercept
adjustments	a matrix of adjustment variables to hold fixed during estimation.
override	optional boolean to bypass Lanczos bidiagonalization SVD. Usually not advised unless encountering a bug in the SVD code.
safety	optional boolean to bypass checks on the genotype matrices, which require a non-trivial amount of computation.

Details

This function performs logistic factor analysis on SNP data. As it stands, we follow the convention where d=1 is intercept only, and for d>1 we compute d-1 singular vectors and postpend the intercept.

Value

matrix of logistic factors, with the intercept at the end.

Note

Genotype matrix is expected to be a matrix of integers with values 0, 1, and 2. Note that the coding of the SNPs does not affect the algorithm.

```
LF <- lfa(hgdp_subset, 4)
dim(LF)
head(LF)</pre>
```

6 model.gof

	-		_
mod	ДΙ	o	'nτ

LFA model goodness of fit

Description

Compute SNP-by-SNP goodness-of-fit when compared to population structure. This can be aggregated to determine genome-wide goodness-of-fit for a particular value of d.

Usage

```
model.gof(X, LF, B)
```

Arguments

X	a matrix of SNP genotypes, i.e. an integer matrix of 0's, 1's, and 2's. Sparse matrices of class Matrix are not supported (yet).
LF	matrix of logistic factors
В	number of null datasets to generate - $B=1$ is usually sufficient. If computational time/power allows, a few extra B could be helpful

Details

This function returns p-values for LFA model goodness of fit based on a simulated null.

Value

vector of p-values for each SNP.

Note

Genotype matrix is expected to be a matrix of integers with values 0, 1, and 2. Currently no support for missing values. Note that the coding of the SNPs does not affect the algorithm.

```
LF <- lfa(hgdp_subset, 4)
gof_4 <- model.gof(hgdp_subset, LF, 3)
LF <- lfa(hgdp_subset, 10)
gof_10 <- model.gof(hgdp_subset, LF, 3)
hist(gof_4)
hist(gof_10)</pre>
```

pca_af 7

pca_af

PCA Allele frequencies

Description

Compute matrix of individual-specific allele frequencies via PCA

Usage

```
pca_af(X, d, override = FALSE)
```

Arguments

X a matrix of SNP genotypes, i.e. an integer matrix of 0's, 1's, and 2's. Sparse

matrices of class Matrix are not supported (yet).

d number of logistic factors, including the intercept

override optional boolean to bypass Lanczos bidiagonalization SVD. Usually not advised

unless encountering a bug in the SVD code.

Details

This corresponds to algorithm 1 in the paper. Only used for comparison purposes.

Value

Matrix of individual-specific allele frequencies.

Examples

```
LF = lfa(hgdp_subset, 4)
allele_freqs_lfa = af(hgdp_subset, LF)
allele_freqs_pca = pca_af(hgdp_subset, 4, LF)
summary(abs(allele_freqs_lfa-allele_freqs_pca))
```

read.bed

File input: .bed

Description

Reads in genotypes in .bed format with corresponding bim and fam files

Usage

```
read.bed(bed.prefix)
```

8 read.tped.recode

Arguments

bed.prefix Path leading to the bed, bim, and fam files.

Details

Use plink with -make-bed

Value

Genotype matrix

Examples

```
# assuming you have PLINK format HapMap data from: http://pngu.mgh.harvard.edu/~purcell/plink/res.shtml # run this in the unpacked folder x = NULL ## Not run: x = read.bed("hapmap_r23a")
```

read.tped.recode

Read .tped

Description

Reads a .tped format genotype matrix and returns the R object needed by 1fa.

Usage

```
read.tped.recode(tped.filename, buffer.size = 5e+08)
```

Arguments

```
tped.filename Path to your .tped file after transposing and recoding. buffer.size Number of characters to keep in the buffer
```

Details

Use -transpose and -recode12 on your plink formatted genotypes to generate the proper tped file. This is a pretty terrible function that uses a growing matrix for the genotypes so it is to your benefit to have as large a buffer.size as possible.

Value

genotype matrix with elements 0, 1, 2, and NA.

```
#assuming you have a .tped file in the right directory
x = NULL
## Not run: x = read.tped.recode("file.tped")
```

sHWE 9

sHWE

Hardy-Weinberg Equilibrium in structure populations

Description

Compute structural Hardy-Weinberg Equilibrium (sHWE) p-values on a SNP-by-SNP basis. These p-values can be aggregated to determine genome-wide goodness-of-fit for a particular value of d. See https://doi.org/10.1101/240804 for more details.

Usage

```
sHWE(X, LF, B)
```

Arguments

X a matrix of SNP genotypes, i.e. an integer matrix of 0's, 1's, and 2's. Sparse matrices of class Matrix are not supported (yet).
LF matrix of logistic factors
B number of null datasets to generate - B=1 is usualy sufficient. If computational time/power allows, a few extra B could be helpful

Value

a vector of p-values for each SNP.

Examples

```
LF <- lfa(hgdp_subset, 4)
gof_4 <- sHWE(hgdp_subset, LF, 3)
LF <- lfa(hgdp_subset, 10)
gof_10 <- sHWE(hgdp_subset, LF, 3)
hist(gof_4)
hist(gof_10)</pre>
```

trunc.svd

Truncated singular value decomposition

Description

Truncated SVD

Usage

```
## S3 method for class 'svd'
trunc(A, d, adjust = 3, tol = 1e-10, V = NULL,
    seed = NULL, ltrace = FALSE, override = FALSE)
```

10 trunc.svd

Arguments

A matrix

d number of singular vectors

adjust extra singular vectors to calculate for accuracy

tol convergence criterion
V optional initial guess

seed seed

1trace debugging output

override TRUE means we use fast.svd instead of the iterative algorithm (useful for small

data or very high d).

Details

Performs singular value decomposition but only returns the first d singular vectors/values. The truncated SVD utilizes Lanczos bidiagonalization. See references.

This function was modified from the package irlba 1.0.1 under GPL. Replacing the crossprod() calls with the C wrapper to dgemv is a dramatic difference in larger datasets. Since the wrapper is technically not a matrix multiplication function, it seemed wise to make a copy of the function.

Value

list with singular value decomposition.

Index

```
af, 2

af_snp, 3

center, 3

centerscale, 4

hgdp_subset, 4

lfa, 5, 8

model.gof, 6

pca_af, 7

read.bed, 7

read.bed, 7

read.tped.recode, 8

sHWE, 9

trunc.svd, 9
```