Package 'escape'

October 14, 2021

Title Easy single cell analysis platform for enrichment

Version 1.2.0

Date 2020-11-05

Description A bridging R package to facilitate gene set enrichment analysis (GSEA) in the context of single-cell RNA sequencing. Using raw count information, Seurat objects, or SingleCell-Experiment format, users can perform and visualize GSEA across individual cells.

License Apache License 2.0

Encoding UTF-8

LazyData true

RoxygenNote 7.1.1

biocViews Software, SingleCell, Classification, Annotation, GeneSetEnrichment, Sequencing, GeneSignaling, Pathways

Depends R (>= 4.0)

Imports grDevices, dplyr, ggplot2, GSEABase, GSVA, SingleCellExperiment, limma, ggridges, msigdbr, stats, BiocParallel, Matrix

Suggests Seurat, SeuratObject, knitr, rmarkdown, BiocStyle, testthat, dittoSeq (>= 1.1.2)

VignetteBuilder knitr

git_url https://git.bioconductor.org/packages/escape

git_branch RELEASE_3_13

git_last_commit eac1d27

git_last_commit_date 2021-05-19

Date/Publication 2021-10-14

Author Nick Borcherding [aut, cre], Jared Andrews [aut]

Maintainer Nick Borcherding <ncborch@gmail.com>

R topics documented:

enrichIt	
getGeneSets	3
getSignificance	
masterPCAPlot	
pcaEnrichment	5
performPCA	
ridgeEnrichment	
splitEnrichment	8
	10

Index

enrichIt

Calculate gene set enrichment scores for single-cell data

Description

This function allows users to input both the single-cell RNA-sequencing counts and any gene set pathways either from the stored data or from other sources. The enrichment calculation itself uses the gsva R package and the poisson distribution for RNA.

Usage

```
enrichIt(obj, gene.sets = NULL, groups = 1000, cores = 2)
```

Arguments

obj	The count matrix, Seurat, or SingleCellExperiment object.
gene.sets	Gene sets from getGeneSets to use for the enrichment analysis. Alternatively a simple base R list where the names of the list elements correspond to the name of the gene set and the elements themselves are simple vectors of gene names representing the gene set.
groups	The number of cells to separate the enrichment calculation.
cores	The number of cores to use for parallelization.

Value

Data frame of normalized enrichmenet scores (NES)

Author(s)

Nick Borcherding, Jared Andrews

See Also

getGeneSets to collect gene sets.

getGeneSets

Examples

```
# download HALLMARK gene set collection
GS <- getGeneSets(library = "H")
GS <- GS[c(1:2)] #Reduce list size for example
seurat_ex <- suppressWarnings(SeuratObject::pbmc_small)
ES <- enrichIt(obj = seurat_ex, gene.sets = GS)
# alternatively, construct your own list of gene sets
myGS <- list(Housekeeping = c("ACTA1", "ACTN1", "GAPDH"),
Cancer = c("TP53", "BRCA2", "ERBB2", "MYC"))
```

getGeneSets

Get a collection of gene sets to perform enrichment on

Description

This function allows users to select libraries and specific gene.sets to form a GeneSetCollection that is a list of gene sets.

Usage

```
getGeneSets(species = "Homo sapiens", library = NULL, gene.sets = NULL)
```

Arguments

species	The scientific name of the species of interest in order to get correcent gene nomenclature
library	Individual collection(s) of gene sets, e.g. c("H", "C5"). See https://www. gsea-msigdb.org/gsea/msigdb/collections.jsp for all MSigDB collec- tions.
gene.sets	Select gene sets or pathways, using specific names, example: pathways = c("HALLMARK_TNFA_SIGN/ Will only be honored if library is set, too.

Value

A GeneSetCollection object containing the requested GeneSet objects.

Author(s)

Nick Borcherding, Jared Andrews

Examples

GS <- getGeneSets(library = "H")</pre>

```
getSignificance
```

Description

This functions takes the enrichment scores and performs statistical testing to evaluate the difference by group selected. The function can perform 3 tests: 1) linear model based on the limma package, 2) Welch's T test, and 3) one-way ANOVA. The output includes adjusted p-values based on the Benjamini Hochberg method.

Usage

```
getSignificance(enriched, group = NULL, fit = "linear.model")
```

Arguments

enriched	The output of enrichIt.
group	The parameter to group for the comparison, should a column of the enriched input
fit	The test used for significance, either linear.model, ANOVA, or T.test

Value

Data frame of test statistics

See Also

enrichIt for generating enrichment scores.

Examples

```
ES2 <- readRDS(url(
"https://ncborcherding.github.io/vignettes/escape_enrichment_results.rds"))
output <- getSignificance(ES2, group = "Type", fit = "linear.model")</pre>
```

masterPCAPlot	Visualize the com	ponents of the P	CA analysis of the	enrichment results
---------------	-------------------	------------------	--------------------	--------------------

Description

Graph the major gene set contributors to the pcaEnrichment.

Usage

```
masterPCAPlot(enriched, PCx, PCy, top.contribution = 10)
```

pcaEnrichment

Arguments

enriched	The output of enrichIt.
PCx	The principal component graphed on the x-axis.
РСу	The principal component graphed on the y-axis.
top.contributi	on
	The number of gene sets to graph, organized by PCA contribution.

Value

ggplot2 object sumamrizing the PCA for the enrichment scores

See Also

enrichIt for generating enrichment scores.

Examples

```
ES2 <- readRDS(url(
"https://ncborcherding.github.io/vignettes/escape_enrichment_results.rds"))
masterPCAPlot(ES2, PCx = "PC1", PCy = "PC2", top.contribution = 10)</pre>
```

pcaEnrichment	Density plot of the principal components
---------------	--

Description

Density plot of the principal components

Usage

```
pcaEnrichment(
   PCAout,
   PCx,
   PCy,
   colors = c("#0348A6", "#7AC5FF", "#C6FDEC", "#FFB433", "#FF4B20"),
   contours = TRUE,
   facet = NULL
)
```

Arguments

PCAout	The output of performPCA
PCx	The principal component graphed on the x-axis
РСу	The principal component graphed on the y-axis
colors	The color palette for the density plot
contours	Binary classifier to add contours to the density plot
facet	A parameter to separate the graph

ggplot2 object of the results of PCA for the enrichment scores

See Also

performPCA for generating PCA results.

Examples

```
ES2 <- readRDS(url(
"https://ncborcherding.github.io/vignettes/escape_enrichment_results.rds"))
PCA <- performPCA(enriched = ES2, groups = c("Type", "Cluster"))
pcaEnrichment(PCA, PCx = "PC1", PCy = "PC2", contours = TRUE)</pre>
```

performPCA

Calculate Principal Components for the Enrichment Scores

Description

Using all or selected enrichment scores of individual single-cells, this function will calculate principal components using scaled values and attach to the output columns to use to graph later.

Usage

performPCA(enriched, groups)

Arguments

enriched	The output of enrichIt.
groups	The column headers to use in future graphing functions.

Value

Data frame of principal compoenents

Author(s)

Nick Borcherding

Examples

```
ES2 <- readRDS(url(
"https://ncborcherding.github.io/vignettes/escape_enrichment_results.rds"))
PCA <- performPCA(enriched = ES2, groups = c("Type", "Cluster"))</pre>
```

ridgeEnrichment

Description

This function allows to the user to examine the distribution of enrichment across groups by generating a ridge plot.

Usage

```
ridgeEnrichment(
  enriched,
  group = "cluster",
  gene.set = NULL,
  scale.bracket = NULL,
  facet = NULL,
  add.rug = FALSE,
  colors = c("#0348A6", "#7AC5FF", "#C6FDEC", "#FFB433", "#FF4B20")
)
```

Arguments

enriched	The output of enrichIt
group	The parameter to group, displayed on the y-axis.
gene.set	The gene set to graph on the x-axis.
scale.bracket	This will filter the enrichment scores to remove extreme outliers. Values entered (1 or 2 numbers) will be the filtering parameter using z-scores of the selected gene.set. If only 1 value is given, a seocndary bracket is autommatically selected as the inverse of the number.
facet	A parameter to separate the graph.
add.rug	Binary classifier to add a rug plot to the x-axis.
colors	The color palette for the ridge plot.

Value

ggplot2 object with ridge-based distributions of selected gene.set

See Also

enrichIt for generating enrichment scores.

Examples

```
ES2 <- readRDS(url(
    "https://ncborcherding.github.io/vignettes/escape_enrichment_results.rds"))
ridgeEnrichment(ES2, gene.set = "HALLMARK_DNA_REPAIR", group = "cluster",
facet = "Type", add.rug = TRUE)</pre>
```

splitEnrichment Generate a split violin plot examine enrichment distributions

Description

This function allows to the user to examine the distribution of enrichment across groups by generating a split violin plot.

Usage

```
splitEnrichment(
  enriched,
  x.axis = NULL,
  scale.bracket = NULL,
  split = NULL,
  gene.set = NULL,
  colors = c("#0348A6", "#7AC5FF", "#C6FDEC", "#FFB433", "#FF4B20")
)
```

Arguments

enriched	The output of enrichIt
x.axis	Optional parameter for seperation.
scale.bracket	This will filter the enrichment scores to remove extreme outliers. Values entered (1 or 2 numbers) will be the filtering parameter using z-scores of the selected gene.set. If only 1 value is given, a seocndary bracket is autommatically selected as the inverse of the number.
split	The parameter to split, must be binary.
gene.set	The gene set to graph on the y-axis.
colors	The color palette for the ridge plot.

Value

ggplot2 object violin-based distributions of selected gene.set

See Also

enrichIt for generating enrichment scores.

8

splitEnrichment

Examples

```
ES2 <- readRDS(url(
    "https://ncborcherding.github.io/vignettes/escape_enrichment_results.rds"))
splitEnrichment(ES2, x.axis = "cluster", split = "Type",
gene.set = "HALLMARK_DNA_REPAIR")</pre>
```

Index

enrichIt, 2, 4-8

getGeneSets, 2, 3
getSignificance, 4

masterPCAPlot, 4

pcaEnrichment, 4, 5 performPCA, 5, 6, 6

ridgeEnrichment, 7

splitEnrichment, 8