Package ‘decoupleR’

October 14, 2021
Type Package

Title Package to decouple gene sets from statistics
Version 1.0.0

Description Transcriptome profiling followed by differential gene
expression analysis often leads to lists of genes that are hard to
analyze and interpret. Downstream analysis tools can be used to
summarize deregulation events into a smaller set of biologically
interpretable features. In particular, methods that estimate the
activity of transcription factors (TFs) from gene expression are
commonly used. It has been shown that the transcriptional targets of a
TF yield a much more robust estimation of the TF activity than
observing the expression of the TF itself. Consequently, for the
estimation of transcription factor activities, a network of
transcriptional regulation is required in combination with a
statistical algorithm that summarizes the expression of the target
genes into a single activity score. Over the years, many different
regulatory networks and statistical algorithms have been developed,
mostly in a fixed combination of one network and one algorithm. To
systematically evaluate both networks and algorithms, we developed
decoupleR , an R package that allows users to apply efficiently any
combination provided.

License GPL-3
URL https://saezlab.github.io/decoupleR/

BugReports https://github.com/saezlab/decoupleR/issues

Depends R (>=4.0)

Imports broom, dplyr, GSVA, magrittr, Matrix, purrr, rlang, speedglm,
stats, stringr, tibble, tidyr, tidyselect, viper, withr

Suggests BiocStyle, covr, knitr, pkgdown, RefManageR, rmarkdown,
roxygen2, sessioninfo, testthat

VignetteBuilder knitr

biocViews DifferentialExpression, FunctionalGenomics, GeneExpression,
GeneRegulation, Network, Software, StatisticalMethod,
Transcription,

https://saezlab.github.io/decoupleR/
https://github.com/saezlab/decoupleR/issues

2 convert_f defaults

Config/testthat/edition 3

Encoding UTF-8

LazyData false

Roxygen list(markdown = TRUE)

RoxygenNote 7.1.1

git_url https://git.bioconductor.org/packages/decoupleR
git_branch RELEASE_3_13

git_last_commit 2d54fd6

git_last_commit_date 2021-05-19

Date/Publication 2021-10-14

Author Jesis Vélez [cre, aut] (<https://orcid.org/0000-0001-5128-3838>),
Christian H. Holland [aut] (<https://orcid.org/0000-0002-3060-5786>)

Maintainer Jesis Vélez <jvelezmagic@gmail.com>

R topics documented:

convert_f defaults e 2
CONVETL_tO_ o v v v v o e o e e e e e e e e e e e 4
decouple e e 5
filter_regulons L. e 7
TUN_@SVA . . v v v v e it e e e e e e e e e e e e e e e e e e 7
TUN_MNEAN . . . v v v e e e e e e e e e e e e e e e 8
TUNL_OTA . v v v v o e e e e e e e e e e e 10
TUN_PSCITA & v v v v v o e 12
TUN_SCITA . v v v v e et e e e e e e e e e e e e e e e 13
TUN_VIPET . . . o v v it e e e e e e e e e 15
Index 17
convert_f_defaults Rename columns and add defaults values if column not present
Description

convert_f_defaults() combine the dplyr: : rename () way of working and with the tibble: :add_column()
to add columns with default values in case they don’t exist after renaming data.

Usage

convert_f_defaults(.data, ..., .def_col_val = c(), .use_dots = TRUE)

https://orcid.org/0000-0001-5128-3838
https://orcid.org/0000-0002-3060-5786

convert_f defaults 3

Arguments

.data A data frame, data frame extension (e.g. a tibble), or a lazy data frame (e.g.
from dbplyr or dtplyr). See Methods, below, for more details.

For rename(): <tidy-select> Use new_name = old_name to rename selected
variables.

For rename_with(): additional arguments passed onto . fn.
.def_col_val Named vector with columns with default values if none exist after rename.

.use_dots Should a dot prefix be added to renamed variables? This will allow swapping of
columns.

Details

The objective of using .use_dots is to be able to swap columns which, by default, is not allowed
by the dplyr::rename() function. The same behavior can be replicated by simply using the
dplyr::select(), however, the select evaluation allows much more flexibility so that unexpected
results could be obtained. Despite this, a future implementation will consider this form of execution
to allow renaming the same column to multiple ones (i.e. extend dataframe extension).

Value
An object of the same type as .data. The output has the following properties:
* Rows are not affected.

* Column names are changed.

¢ Column order is the same as that of the function call.

Examples
df <- tibble::tibble(x =1, y =2, z = 3)
Rename columns
df <- tibble::tibble(x =1, y = 2)

convert_f_defaults(

.data = df,
new_x = X,
new.y =y,
new_z = NULL,

.def_col_val = c(new_z = 3)

convert_to_

convert_to_ Convert a network to run under the method of interest.

Description

Convert a long-format network to the suggested standard for the specified run_ {statistic}(). If the
default parameters are not modified, then the function sets its own null values for those columns.

Usage

convert_to_(network)
convert_to_scira(network, .source, .target, .mor = NULL)

convert_to_pscira(network, .source, .target, .mor = NULL)

convert_to_mean(network, .source, .target, .mor = NULL, .likelihood = NULL)

convert_to_viper(network, .source, .target, .mor = NULL, .likelihood = NULL)

convert_to_gsva(network, .source, .target)

convert_to_ora(network, .source, .target)

Arguments
network Tibble or dataframe with edges and it’s associated metadata.
.source Column with source nodes.
.target Column with target nodes.
.mor Column with edge mode of regulation (i.e. mor).

.likelihood Column with edge likelihood.

Value

* convert_to_ Return same as input.

e convert_to_gsva() Return a list of regulons suitable for GSVA: : gsva().

e convert_to_mean() Return a tibble with four columns: tf, target, mor and likelihood.

* convert_to_ora() Return a named list of regulons; tf with associated targets.

e convert_to_pscira() Returns a tibble with three columns: tf, target and mor.

e convert_to_scira() Returns a tibble with three columns: tf, target and mor.

* convert_to_viper() Return a list of regulons suitable for viper: :viper()

See Also

convert_f_defaults()

decouple 5

Examples

inputs_dir <- system.file("testdata”, "inputs”, package = "decoupleR")
network <- readRDS(file.path(inputs_dir, "input-dorothea_genesets.rds"))

convert_to_(network)

convert_to_gsva(network, tf, target)
convert_to_mean(network, tf, target, mor, likelihood)
convert_to_ora(network, tf, target)
convert_to_pscira(network, tf, target, mor)
convert_to_scira(network, tf, target, mor)
convert_to_viper(network, tf, target, mor, likelihood)

decouple Evaluate multiple statistics with same input data

Description

Calculate the TF activity per sample out of a gene expression matrix by coupling a regulon network
with a variety of statistics.

Usage

decouple(
mat,
network,
.source,
.target,
statistics,
args = list(NULL),
include_time = FALSE,
show_toy_call = FALSE

)
Arguments

mat Matrix to evaluate (e.g. expression matrix). Target nodes in rows and condi-
tions in columns. rownames(mat) must have at least one intersection with the
elements in network . target column.

network Tibble or dataframe with edges and it’s associated metadata.

.source Column with source nodes.

.target Column with target nodes.

statistics Statistical methods to be coupled.

args A list of argument-lists the same length as statistics (or length 1). The default

argument, list(NULL), will be recycled to the same length as statistics, and
will call each function with no arguments (apart from mat, network, .source
and, . target).

6 decouple

include_time Should the time per statistic evaluated be informed?

show_toy_call The call of each statistic must be informed?

Value

A long format tibble of the enrichment scores for each tf across the samples. Resulting tibble
contains the following columns:

. statistic: Indicates which method is associated with which score.
. tf: Source nodes of network.

. condition: Condition representing each column of mat.

1

2

3

4. score: Regulatory activity (enrichment score).

5. statistic_time: If requested, internal execution time indicator.
6

.. .: Columns of metadata generated by certain statistics.

See Also

Other decoupleR statistics: run_gsva(), run_mean(), run_ora(), run_pscira(), run_scira(),
run_viper()

Examples

if (FALSE) {
inputs_dir <- system.file("testdata”, "inputs"”, package = "decoupleR")

mat <- readRDS(file.path(inputs_dir, "input-expr_matrix.rds"))
network <- readRDS(file.path(inputs_dir, "input-dorothea_genesets.rds"))

decouple(
mat = mat,
network = network,
.source = "tf",
.target = "target”,
statistics = c("gsva”, "mean”, "pscira”, "scira"”, "viper"),
args = list(
gsva = list(verbose = FALSE),
mean = list(.mor = "mor”, .likelihood = "likelihood"),
pscira = list(.mor = "mor"),
scira = list(.mor = "mor"),
viper = list(
.mor = "mor",
.likelihood = "likelihood",
verbose = FALSE
)
)
)

filter_regulons 7

filter_regulons Filter network by size of regulons

Description

Keep only sources which satisfied the condition min_size >= n <= max_size, where n denotes the
number of targets per source.

Usage

filter_regulons(network, .source, min_size = 1, max_size = Inf)

Arguments
network Tibble or dataframe with edges and it’s associated metadata.
.source Column with source nodes.
min_size Minimum number of targets allowed per regulon.
max_size Maximum number of targets allowed per regulon.
Value
Filtered tibble.
Examples

inputs_dir <- system.file("testdata”, "inputs”, package = "decoupleR")
network <- readRDS(file.path(inputs_dir, "input-dorothea_genesets.rds"))
filter_regulons(network, .source = tf, min_size = 30, max_size = 50)

run_gsva GSVA wrapper

Description

This function is a convenient wrapper for the GSVA: : gsva() function.

Usage

run_gsva(mat, network, .source = .data$tf, .target = .data$target, ...)

8 run_mean

Arguments
mat Matrix to evaluate (e.g. expression matrix). Target nodes in rows and condi-
tions in columns. rownames(mat) must have at least one intersection with the
elements in network . target column.
network Tibble or dataframe with edges and it’s associated metadata.
.source Column with source nodes.
.target Column with target nodes.
Arguments passed on to GSVA: :gsva
Value

A long format tibble of the enrichment scores for each tf across the samples. Resulting tibble
contains the following columns:

1. statistic: Indicates which method is associated with which score.
2. tf: Source nodes of network.

3. condition: Condition representing each column of mat.

4

. score: Regulatory activity (enrichment score).

See Also

Other decoupleR statistics: decouple(), run_mean(), run_ora(), run_pscira(), run_scira(),
run_viper()

Examples

inputs_dir <- system.file("testdata”, "inputs”, package = "decoupleR")

mat <- readRDS(file.path(inputs_dir, "input-expr_matrix.rds"))
network <- readRDS(file.path(inputs_dir, "input-dorothea_genesets.rds"))

run_gsva(mat, network, tf, target, verbose = FALSE)

run_mean Weighted mean

Description

Calculate the activity of all regulons in network through the conditions in the mat matrix by calcu-
lating the mean over the expression of all genes.

run_mean

Usage

run_mean(
mat,
network,
.source =

.data$tf,

.target = .data$target,
.mor = .data$mor,
.likelihood = .data$likelihood,

times = 2,
seed = 42,
sparse = TRUE,
randomize_type = "rows"”
)
Arguments
mat Matrix to evaluate (e.g. expression matrix). Target nodes in rows and condi-
tions in columns. rownames(mat) must have at least one intersection with the
elements in network . target column.
network Tibble or dataframe with edges and it’s associated metadata.
.source Column with source nodes.
.target Column with target nodes.
.mor Column with edge mode of regulation (i.e. mor).
.likelihood Column with edge likelihood.
times How many permutations to do?
seed A single value, interpreted as an integer, or NULL for random number genera-
tion.
sparse Should the matrices used for the calculation be sparse?

randomize_type How to randomize the expression matrix.

Details

run_mean() calculates the activity score, but in addition, it takes advantage of the permutations
used to calculate the p-value, to provide the normalized activity score. This is represented in
the statistic column which will contain two values for each call to run_mean(); mean and
normalized_mean.

Value

A long format tibble of the enrichment scores for each tf across the samples. Resulting tibble
contains the following columns:

M

statistic: Indicates which method is associated with which score.
tf: Source nodes of network.

condition: Condition representing each column of mat.

score: Regulatory activity (enrichment score).

p_value: p-value for the score of mean method.

10 run_ora

See Also

Other decoupleR statistics: decouple(), run_gsva(), run_ora(), run_pscira(), run_scira(),
run_viper()

Examples

inputs_dir <- system.file("testdata”, "inputs"”, package = "decoupleR")

mat <- readRDS(file.path(inputs_dir, "input-expr_matrix.rds"))
network <- readRDS(file.path(inputs_dir, "input-dorothea_genesets.rds"))

run_mean(mat, network, tf, target, mor, likelihood)

run_ora Over Representation Analysis - Fisher Exact Test

Description

Performs an over-representation analysis using stats: :fisher.test().

Usage

run_ora(
mat,
network,
.source = .data$tf,
.target = .data$target,
n_up = nrow(mat),
n_bottom = 0,
n_background = NULL,
with_ties = TRUE,

)
Arguments

mat Matrix to evaluate (e.g. expression matrix). Target nodes in rows and condi-
tions in columns. rownames(mat) must have at least one intersection with the
elements in network . target column.

network Tibble or dataframe with edges and it’s associated metadata.

.source Column with source nodes.

.target Column with target nodes.

n_up Integer indicating the number of top targets to slice from mat.

n_bottom Integer indicating the number of bottom targets to slice from mat.

run_ora 11

n_background Integer indicating the background size of the sliced targets. If not specified
the number of background targets is determined by the total number of unique
targets in the union of mat and network.
with_ties Should ties be kept together? The default, TRUE, may return more rows than you

request. Use FALSE to ignore ties, and return the first n rows.

Arguments passed on to stats: :fisher.test

workspace an integer specifying the size of the workspace used in the network
algorithm. In units of 4 bytes. Only used for non-simulated p-values larger
than 2 x 2 tables. Since R version 3.5.0, this also increases the internal
stack size which allows larger problems to be solved, however sometimes
needing hours. In such cases, simulate.p.values=TRUE may be more
reasonable.

hybrid alogical. Only used for larger than 2 x 2 tables, in which cases it in-
dicates whether the exact probabilities (default) or a hybrid approximation
thereof should be computed.

hybridPars a numeric vector of length 3, by default describing “Cochran’s
conditions” for the validity of the chisquare approximation, see ‘Details’.

control a list with named components for low level algorithm control. At
present the only one used is "mult”, a positive integer > 2 with default 30
used only for larger than 2 x 2 tables. This says how many times as much
space should be allocated to paths as to keys: see file ‘fexact.c’ in the
sources of this package.

or the hypothesized odds ratio. Only used in the 2 x 2 case.

alternative indicates the alternative hypothesis and must be one of "two.sided",
"greater” or "less"”. You can specify just the initial letter. Only used in
the 2 x 2 case.

conf.int logical indicating if a confidence interval for the odds ratioin a 2 x 2
table should be computed (and returned).

conf.level confidence level for the returned confidence interval. Only used in
the 2 x 2 case and if conf.int = TRUE.

simulate.p.value alogical indicating whether to compute p-values by Monte
Carlo simulation, in larger than 2 x 2 tables.

B an integer specifying the number of replicates used in the Monte Carlo test.

Value

A long format tibble of the enrichment scores for each tf across the samples. Resulting tibble
contains the following columns:

1. statistic: Indicates which method is associated with which score.

2. tf: Source nodes of network.

3. condition: Condition representing each column of mat.

4. score: Regulatory activity (enrichment score).

See Also

Other decoupleR statistics: decouple(), run_gsva(), run_mean(), run_pscira(), run_scira(),
run_viper()

12 run_pscira

Examples

inputs_dir <- system.file("testdata”, "inputs"”, package = "decoupleR")

mat <- readRDS(file.path(inputs_dir, "input-expr_matrix.rds"))
network <- readRDS(file.path(inputs_dir, "input-dorothea_genesets.rds"))

run_ora(mat, network, tf, target)

run_pscira PSCIRA (Permutation Single Cell Inference of Regulatory Activity)

Description

Calculate the regulatory activity of each tf by multiplying the expression values of its objectives with
their corresponding associated profiles for each given condition.The result is equal to the z-score of
the found value compared to its null distribution.

Usage
run_pscira(
mat,
network,
.source = .data$tf,
.target = .data$target,
.mor = .data$mor,

sparse = TRUE,
times = 10,

seed = 42
)
Arguments

mat Matrix to evaluate (e.g. expression matrix). Target nodes in rows and condi-
tions in columns. rownames(mat) must have at least one intersection with the
elements in network . target column.

network Tibble or dataframe with edges and it’s associated metadata.

.source Column with source nodes.

.target Column with target nodes.

.mor Column with edge mode of regulation (i.e. mor).

sparse Logical value indicating if the generated profile matrix should be sparse.

times Number of replications.

seed A single value, interpreted as an integer, or NULL.

run_scira 13

Details

Estimation of regulatory activity: A linear regression of the expression profile is performed against
the "target profile" of the given TF, where in the target profile, any regulon member is assigned a
+1 for activating interactions and a -1 for inhibitory interactions. All other genes not members of
the TF’s regulon are assigned a value o @. TF activity is then defined as the t-statistic of this linear
regression.

Value

A long format tibble of the enrichment scores for each tf across the samples. Resulting tibble
contains the following columns:

1. statistic: Indicates which method is associated with which score.
2. tf: Source nodes of network.

3. condition: Condition representing each column of mat.

4

. score: Regulatory activity (enrichment score).

See Also

Other decoupleR statistics: decouple(), run_gsva(), run_mean(), run_ora(), run_scira(),
run_viper ()

Examples
inputs_dir <- system.file("testdata”, "inputs”, package = "decoupleR")

mat <- readRDS(file.path(inputs_dir, "input-expr_matrix.rds"))
network <- readRDS(file.path(inputs_dir, "input-dorothea_genesets.rds"))

run_pscira(mat, network, tf, target, mor)

run_scira SCIRA (Single Cell Inference of Regulatory Activity)

Description

Calculates TF activity according to Improved detection of tumor suppressor events in single-cell
RNA-Seq data .

Usage

run_scira(
mat,
network,
.source = .data$tf,
.target = .data$target,
.mor = .data$mor,

https://www.nature.com/articles/s41525-020-00151-y?elqTrackId=d7efb03cf5174fe2ba84e1c34d602b13
https://www.nature.com/articles/s41525-020-00151-y?elqTrackId=d7efb03cf5174fe2ba84e1c34d602b13

14 run_scira

sparse = FALSE,
fast = TRUE,
center = TRUE,
na.rm = FALSE

)
Arguments
mat Matrix to evaluate (e.g. expression matrix). Target nodes in rows and condi-
tions in columns. rownames(mat) must have at least one intersection with the
elements in network .target column.
network Tibble or dataframe with edges and it’s associated metadata.
.source Column with source nodes.
.target Column with target nodes.
.mor Column with edge mode of regulation (i.e. mor).
sparse Logical value indicating if the generated profile matrix should be sparse.
fast Logical value indicating if the lineal model must be calculated with speedglm: : speedlm.fit()
or with base stats::1m().
center Logical value indicating if mat must be centered by base: : rowMeans ().
na.rm Should missing values (including NaN) be omitted from the calculations of
base: :rowMeans()?
Details

Estimation of regulatory activity: A linear regression of the expression profile is performed against
the "target profile" of the given TF, where in the target profile, any regulon member is assigned a
+1 for activating interactions and a -1 for inhibitory interactions. All other genes not members of
the TF’s regulon are assigned a value o @. TF activity is then defined as the t-statistic of this linear
regression.

Value

A long format tibble of the enrichment scores for each tf across the samples. Resulting tibble
contains the following columns:

1. statistic: Indicates which method is associated with which score.

2. tf: Source nodes of network.

3. condition: Condition representing each column of mat.

4

. score: Regulatory activity (enrichment score).

See Also

Other decoupleR statistics: decouple(), run_gsva(), run_mean(), run_ora(), run_pscira(),
run_viper()

run_viper 15

Examples

inputs_dir <- system.file("testdata”, "inputs"”, package = "decoupleR")

mat <- readRDS(file.path(inputs_dir, "input-expr_matrix.rds"))
network <- readRDS(file.path(inputs_dir, "input-dorothea_genesets.rds"))

run_scira(mat, network, tf, target, mor)

run_viper VIPER wrapper

Description

This function is a convenient wrapper for the viper: :viper() function.

Usage
run_viper(
mat,
network,
.source = .data$tf,
.target = .data$target,
.mor = .data$mor,

.likelihood = .data$likelihood,

)
Arguments

mat Matrix to evaluate (e.g. expression matrix). Target nodes in rows and condi-
tions in columns. rownames(mat) must have at least one intersection with the
elements in network . target column.

network Tibble or dataframe with edges and it’s associated metadata.

.source Column with source nodes.

.target Column with target nodes.

.mor Column with edge mode of regulation (i.e. mor).

.likelihood Column with edge likelihood.
Arguments passed on to viper: :viper

dnull Numeric matrix for the null model, usually generated by nullTtest

pleiotropy Logical, whether correction for pleiotropic regulation should be
performed

nes Logical, whether the enrichment score reported should be normalized

method Character string indicating the method for computing the single sam-
ples signature, either scale, rank, mad, ttest or none

16 run_viper

bootstraps Integer indicating the number of bootstraps iterations to perform.
Only the scale method is implemented with bootstraps.

adaptive.size Logical, whether the weighting scores should be taken into
account for computing the regulon size

eset.filter Logical, whether the dataset should be limited only to the genes
represented in the interactome # @param mvws Number or vector indi-
cating either the exponent score for the metaViper weights, or the inflec-
tion point and trend for the sigmoid function describing the weights in
metaViper

pleiotropyArgs list of 5 numbers for the pleotropy correction indicating: reg-
ulators p-value threshold, pleiotropic interaction p-value threshold, mini-
mum number of targets in the overlap between pleiotropic regulators, penalty
for the pleiotropic interactions and the method for computing the pleiotropy,
either absolute or adaptive

cores Integer indicating the number of cores to use (only 1 in Windows-based
systems)

verbose Logical, whether progression messages should be printed in the ter-
minal
Value

A long format tibble of the enrichment scores for each tf across the samples. Resulting tibble
contains the following columns:

1. statistic: Indicates which method is associated with which score.
2. tf: Source nodes of network.

3. condition: Condition representing each column of mat.

4

. score: Regulatory activity (enrichment score).

See Also

Other decoupleR statistics: decouple(), run_gsva(), run_mean(), run_ora(), run_pscira(),
run_scira()

Examples
inputs_dir <- system.file("testdata”, "inputs”, package = "decoupleR")

mat <- readRDS(file.path(inputs_dir, "input-expr_matrix.rds"))
network <- readRDS(file.path(inputs_dir, "input-dorothea_genesets.rds"))

run_viper(mat, network, tf, target, mor, likelihood, verbose = FALSE)

Index

* convert_to_ variants stats::fisher.test(), 10
convert_to_, 4 stats::1m(), 14

* decoupleR statistics
decouple, 5 tibble: :add_column(), 2
run_gsva, 7
run_mean, 8 viper::viper, 15

run_ora, 10 viper::viper(),4, 15

run_pscira, 12
run_scira, 13
run_viper, 15

base: :rowMeans(), /4

convert_f_defaults, 2
convert_f_defaults(), 4
convert_to_, 4

convert_to_gsva (convert_to_), 4
convert_to_mean (convert_to_), 4
convert_to_ora (convert_to_), 4
convert_to_pscira (convert_to_), 4
convert_to_scira (convert_to_), 4
convert_to_viper (convert_to_), 4

decouple, 5,8, 10, 11, 13, 14, 16
dplyr::rename(), 2, 3
dplyr::select(), 3

filter_regulons, 7

GSVA::gsva, 8
GSVA::gsva(), 4,7

run_gsva, 6,7, 10, 11, 13, 14, 16
run_mean, 6, 8,8, 11, 13, 14, 16
run_ora, 6, 8, 10, 10, 13, 14, 16
run_pscira, 6,8, 10, 11,12, 14, 16
run_scira, 6, 8, 10, 11, 13,13, 16
run_viper, 6,8, 10, 11, 13, 14,15

speedglm: :speedlm.fit(), 14
stats::fisher.test, 1/

17

	convert_f_defaults
	convert_to_
	decouple
	filter_regulons
	run_gsva
	run_mean
	run_ora
	run_pscira
	run_scira
	run_viper
	Index

