Package ‘alsace’

October 14, 2021
Type Package

Title ALS for the Automatic Chemical Exploration of mixtures
Version 1.28.0

Author Ron Wehrens

Maintainer Ron Wehrens <ron.wehrens@gmail.com>

Description Alternating Least Squares (or Multivariate Curve
Resolution) for analytical chemical data, in particular
hyphenated data where the first direction is a retention time
axis, and the second a spectral axis. Package builds on the
basic als function from the ALS package and adds functionality
for high-throughput analysis, including definition of time
windows, clustering of profiles, retention time correction,
etcetera.

URL https://github.com/rwehrens/alsace

License GPL (>=2)

Depends R (>=2.10), ALS, ptw (>=1.0.6)

Suggests lattice, knitr

VignetteBuilder knitr

BiocViews Metabolomics, Preprocessing

git_url https://git.bioconductor.org/packages/alsace

git_ branch RELEASE_3_13

git_last_commit 03344al

git_last_commit_date 2021-05-19

Date/Publication 2021-10-14

R topics documented:

alsace-package
COMPONENES o o sttt e e e e e e e e e e e e
correctPeaks

https://github.com/rwehrens/alsace

alsace-package

correctRT 6
doALS 7
filterPeaks 9
fitpeaks Lo L 10
getAllPeaks 12
getPeakTable e 13
103 0 A 14
PIEPIOCESS © . o v v v e e e e e e e e e e e e e e e e e e 15
showALSresult e 16
TBA e e 18
teaMerged L L 19
windowso 19
Index 22
alsace-package Alternating Least Squares in an Analytic Chemistry Environment
Description

Add-on to the ALS package that implements Alternating Least Squares (or Multivariate Curve
Resolution, MCR). This implementation is specifically geared to data from systems like HPLC-
DAD where measurements are always positive. In addition, it provides extra functionality to deal
with large data sets, and additional postprocessing tools including visualization.

Details

Package: alsace
Type: Package
Version: 1.0

Date: 2013-07-08

License: GPL (>=2)

The main function of the package is also the one that contributes the least new material: doALS is
simply a wrapper for ALS, provided by the ALS package. More important novel material are the
visualization, preprocessing and postprocessing functions: showALSresult, preprocess, windows,
combineComps,... See the manual pages of these functions for more information.

It should be noted that the examples are only meant to illustrate the use of the functions in the
package, and do not constitute the final analysis of the data provided. Indeed, really meaningful
results can only be obtained by either careful definition of additional constraints, or the addition of
more data.

Author(s)

Ron Wehrens

Maintainer: Ron Wehrens <ron.wehrens @fmach.it>

components 3

References

R. Wehrens: Chemometrics with R. Springer Verlag, Heidelberg (2011)

R. Wehrens, E. Carvalho et al.: High-throughput carotenoid profiling using multivariate curve res-
olution. Anal. Bioanal. Chem., 15:5075-5086 (2013)

components Functions to assess and refine ALS components

Description

One of the inherent drawbacks of the MCR-ALS method is that in the vast majority of cases there is
no one unique set of components describing the data, a situation known as "rotational ambiguity".
This implies that in some cases a spectrum of a chemical compound can be described by a linear
combination of two ALS components. This can sometimes be recognised by looking at elution
profiles. In addition, in cases where the number of components is too large, some components may
only describe noise or very small and irrelevant features. The functions clarified here allow one to
find which components only correspond with minor features, to remove components, and to merge

components.

Usage
smallComps(obj, Ithresh)
removeComps(obj, toRemove, ...)
combineComps(obj, compList, weights, ...)

suggestCompCombis(obj, indices, Ithresh = @, corthresh = 0.9,
clusterHeight = 9.6)

Arguments

obj The R object containing the als model

Ithresh Intensity cutoff: all components with a maximal intensity (in the elution profiles)
below this value will be termed "small".

toRemove The indices of the components to remove from the ALS model. A new call to
doALS will be done with the smaller set of components.
Additional arguments to doALS, e.g. maxiter =1 if no full set of iterations is
required.

compList A list indicating which components need to be combined. Using list(c(1,c(2,3),4))
will lead to a three-component model, where components 1 and 4 are unchanged
and components 2 and 3 are combined.

weights Weights for the components to be combined. If not provided, equal weights will
be assumed.

indices A list indicating in which (groups of) samples correlations will be calculated.
See details.

corthresh Correlation threshold: components with elution profiles showing a higher cor-

relation than this threshold may be candidates for merging.
clusterHeight Similarity threshold at which to cut the dendrogram (see details).

4 components

Details

Function suggestCompCombis checks correlations in elution profiles that could point to a situation
where one chemical compound is described by two or more ALS components. For every sample in
which this correlation is higher than the threshold, a "hit" will be recorded for these two components.
After checking all samples and all combinations, the hit matrix will be used as a similarity measure
in a hierarchical clustering. The dendrogram will be cut at a specific height, leading to groups of
components, sometimes containing more than one element. In such a case, these components could
be considered for merging.

If injections of pure standards are present, they probably should not be used in isolation to check
for coelution; rather, suggestions for combined components can be validated looking at the elution
profiles of the standards.

Value

Functions removeComps and combineComps return ALS objects with fewer components than the
original object. Function smallComps returns a list of two elements:

smallComps the indices of the small components

maxCvalues the maximal values found in the concentration profiles across all samples for
each of the components.

Author(s)
Ron Wehrens

Examples

data(tea)

new.lambdas <- seq(260, 500, by = 2)

tea <- lapply(tea.raw, preprocess)

tea.split <- splitTimeWindow(tea, c(12, 14), overlap = 10)

X1 <- tea.split[[31]
X1.opa <- opa(Xl, 10)

X1l.als <- doALS(X1, Xl.opa)
smallC <- smallComps(Xl.als, 5)
smallC

X1.als2 <- removeComps(Xl.als, smallC$smallC)
summary (X1.als)

summary(X1l.als2)

smaller models, but with a higher fit error...

another way to decrease the number of components, this example

not particularly deep, just to show how it can be done:

X1.als3 <- combineComps(Xl.als, list(1, 2, 3:4, 5, c(6, 10), 6, 7:9))
summary(X1.als3)

correctPeaks 5

correctPeaks Correct peak positions according to a ptw warping model

Description
Once an appropriate warping model has been established, corrected retention times can be predicted
for each peak. These are stored in a separate column in the list of peak tables.

Usage

correctPeaks(peakList, modList)

Arguments
peakList A nested list of peak tables: the first level is the sample, and the second level is
the component. Every component is described by a matrix where every row is
one peak, and the columns contain information on retention time, full width at
half maximum (FWHM), peak width, height, and area.
modList A list of ptw models.
Value

The input list of peak tables is returned with extra columns containing the corrected retention time.

Author(s)
Ron Wehrens

See Also

correctRT

Examples

data(teaMerged)

pks <- getAllPeaks(teaMerged$CList, span = 11)

warping.models <- correctRT(teaMerged$CList, reference = 2,
what = "models")

pks.corrected <- correctPeaks(pks, warping.models)

original profiles and peaks, in black and gray

plot(teaMerged, mat.idx = 3, what = "profiles”, comp.idx = 2,
showWindows = FALSE, col = "gray")

abline(v = pks[[3]1CC211L,"rt"1)

shifted profiles and peaks, in red and pink

CList.corrected <- correctRT(teaMerged$CList, reference = 2)

lines(as.numeric(rownames(CList.corrected[[3]1)),
CList.corrected[[3]1]1[,2], col = "pink")

abline(v = pks.corrected[[3]J[[2]1]1[,"rt.cor"], col = "red")

6 correctRT

note that the rightmost peak in the uncorrected data is no longer
within the range of the data

correctRT Retention time correction for ALS chromatographic profiles

Description

Correction of retention time differences of ALS concentration profiles using parametric time warp-

ing.
Usage
correctRT(CList, reference,
what = c("corrected.values”, "models"),
init.coef = c(0, 1, @), ...)
Arguments
CList List of matrices containing concentration profiles.
reference Index of the sample that is to be considered the reference sample.
what What to return: either the time-corrected profiles (useful for visual inspection)
or the warping models (for further programmatic use).
init.coef Starting values for the optimisation.
Optional arguments for the ptw function. The only argument that cannot be
changed is warp. type: this is always equal to "global”.
Value

A list of warped concentration profiles, mirroring the CList list element from the ALS object.

Author(s)

Ron Wehrens

See Also

ptw, correctPeaks

doALS 7

Examples

data(teaMerged)
CList.corrected <- correctRT(teaMerged$CList, reference = 2)

original.profiles <- sapply(teaMerged$CList, identity, simplify = "array")
corrected.profiles <- sapply(CList.corrected, identity, simplify = "array")

def.par <- par(no.readonly = TRUE)
par(mfrow = c(2,4))
for (i in 1:4)
matplot(dimnames(original.profiles)[[1]1],
original.profiles[,i,], type = "1", 1ty =1,
xlab = "Time (min.)", ylab = "Response"”,
main = paste(”Component”, i))
for (i in 1:4)
matplot(dimnames(original.profiles)[[1]],
corrected.profiles[,i,], type = "1", 1ty =1,
xlab = "Time (min.)", ylab = "Response"”,

main = paste(”Component”, i, "- warped”))
par(def.par) ## reset defaults
doALS Wrapper function for als, plus some support functions

Description

Wrapper function for the als function in the ALS package, providing a simple interface with sen-
sible defaults for hyphenated data.

Usage

doALS(X1, PureS, maxiter = 100, verbose)
S3 method for class 'ALS'

print(x, ...)
S3 method for class 'ALS'
summary (object, ...)

S3 method for class 'ALS'
plot(x, what = c("spectra”, "profiles"), showWindows = TRUE,

mat.idx, comp.idx, xlab, ylab, main, ...)
getTime(x)
getWavelength(x)
Arguments
X1 a list of (numerical) data matrices. Missing values are not allowed.
X, object an object of class ALS.

PureS Initial estimates of pure spectral components.

maxiter
verbose
what

showWindows

mat.idx

comp. idx

doALS

maximum number of iterations in ALS.
show als feedback during optimisation.
Show spectra or elution profiles

If showing elution profiles, the window borders and the overlap areas between
the windows can be shown (by default). Simply set this parameter to FALSE if
this is undesired.

If showing elution profiles, one can provide the index of the sample(s) that
should be shown. For every sample one plot will be made. Default is to show
all.

Indices of components to be shown. Default is to show all components.

xlab, ylab, main, ...

Details

self-explanatory optional arguments

The plot method can be used to plot the spectral components (one plot for the model) or the elution
profiles (one plot for each data matrix, so usually several plots). The summary method also returns
fit statistics like LOF, R2 and RMS. Extractor functions getTime and getWavelength provide the
vectors of time points and wavelengths from the ALS object.

Value

Function doALS returns an object of class "ALS", a list with the following fields:

CList

rss
resid
iter

summ. stats

a list of matrices with the elution profiles in the columns. Every matrix in this
list corresponds with a matrix in the input.

a matrix with the spectral components in the columns. These are common for
all data matrices.

residual sum of squares.
a list of residual matrices.
number of iterations.

summary statistics, providing more information about the fit quality.

See the als function for more details; only the summ.stats field is not part of the original als

output.

Author(s)

Ron Wehrens

See Also

als,showALSresult

filterPeaks 9

Examples

data(tea)

new.lambdas <- seq(260, 500, by = 2)

tea <- lapply(tea.raw, preprocess, dim2 = new.lambdas)
tea.split <- splitTimeWindow(tea, c(12, 14), overlap = 10)

X1 <- tea.split[[2]]
X1.opa <- opa(Xl, 4)

X1l.als <- doALS(X1, Xl.opa)

X1.als

summary(X1.als)

plot(Xl.als, "spectra")

par(mfrow = c(1, 3))

plot(Xl.als, "profiles”, ylim = c(@, 600), mat.idx = 1:3)

filterPeaks Filter peak lists

Description

Utility function to remove peaks from a peak list, e.g. because their intensity is too low. Currently
one can filter on peak height, peak area, and width at half maximum.

Usage

filterPeaks(peakList, minHeight, minArea, minWHM, maxWHM)

Arguments
peakList A nested list of peak tables: the first level is the sample, and the second level is
the component. Every component is described by a matrix where every row is
one peak, and the columns contain information on retention time, full width at
half maximum (FWHM), peak width, height, and area.
minHeight Minimum peak height.
minArea Minimum peak area.
minWHM Minimal width at half maximum.
maxWHM Maximum width at half maximum.
Value

A peak list similar to the input peakList, but with all rows removed from the peak tables that are not
satisfying the criteria.

Author(s)
Ron Wehrens

10 fitpeaks

See Also

getAllPeaks

Examples

data(teaMerged)

pks <- getAllPeaks(teaMerged$CList, span = 11)

only retain peaks with a peak height of at least 2

pks.filtered <- filterPeaks(pks, minHeight = 2)

plot(teaMerged, mat.idx = 3, what = "profiles”, comp.idx = 2,
showWindows = FALSE, col = "blue")

abline(v = pks[[311[[211[,"rt"], col = "gray", lty = 2)

abline(v = pks.filtered[[31][[211[,"rt"]1)

fitpeaks Fit chromatographic peaks with a gaussian profile

Description

Find chromatographic peaks, and fit peak parameters using a gaussian profile. The algorithm is
extremely simple and could be replaced by a more sophisticated algorithm. In particular one can
expect bad fits if peaks are overlapping significantly.

Usage

findpeaks(y, span = NULL)
fitpeaks(y, pos)

Arguments
y response (numerical vector)
span number of points used in the definition of what constitutes a "local" maximum.
If not given, a default value of 20 percent of the number of time points is used.
pos locations of local maxima in vector y
Details

Finding peaks with function findpeaks is based on the position of local maxima within a window
of width span.

Peak parameters are calculated using fitpeaks, assuming a normal distribution. Peak width is
given as a standard deviation, calculated from the full width at half maximum (FWHM); the peak
area is given by the ratio of the peak height and the density.

fitpeaks 11

Value

Function findpeaks simply returns the locations of the local maxima, expressed as indices.

Function fitpeaks returns a matrix, whose columns contain the following information:

rt location of the maximum of the peak (x)
sd width of the peak (x)

FWHM full width at half maximum (x)

height height of the peak (y)

area peak area

Again, the first three elements (rt, sd and FWHM) are expressed as indices, so not in terms of the
real retention times. The transformation to "real" time is done in function getAl1Peaks.

Note

Function findpeaks was modelled after code suggested by Brian Ripley on the R help list.

Author(s)
Ron Wehrens

See Also
getAllPeaks

Examples

data(tea)

new.lambdas <- seq(260, 500, by = 2)

tea <- lapply(tea.raw, preprocess, dim2 = new.lambdas)
tea.split <- splitTimeWindow(tea, c(12, 14), overlap = 10)

X1 <- tea.split[[2]]
X1.opa <- opa(X1l, 4)

X1l.als <- doALS(X1l, Xl.opa)

tpoints <- getTime(X1l.als)

plot(tpoints, Xl.als$CList[[2]1][,2], type = "1", col = "gray")
pk.pos <- findpeaks(X1l.als$CList[[2]][,2], span = 11)

abline(v = tpoints[pk.pos], col = 4)

pks <- fitpeaks(Xl.als$CList[[2]]1[,2], pk.pos)
apply(pks, 1,
function(pkmodel) {
lines(tpoints,
dnorm(1:1length(tpoints), pkmodel["rt"], pkmodel["sd"]) =*
pkmodel["area"],
col = 2)
invisible()

12 getAllPeaks

b))

reasonably close fit, apart from the small peak in the middle...

getAllPeaks Extract all peaks from the chromatographic profiles of an ALS object

Description

Extractor function to find all peaks in the chromatographic profiles of an ALS object. Peaks are
located as local maxima within the given span (function findpeaks) and at the given positions a
gaussian curve is fit (function fitpeaks).

Usage
getAllPeaks(CList, span = NULL, eps = 1e-01)

Arguments
CList A list of profile matrices, each of the same dimensions (timepoints times com-
ponents).
span The span used for identifying local maxima in the individual components. If not
given, the default of findpeaks is used.
eps Minimal value for the peak width, basically used to eliminate peaks with zero
width.
Value

The result is a list, with each element corresponding to one data file, and containing data for the
fitted peaks for each of the ALS components. Note that this function presents the "rt", "sd" and
"FWHM" fields in real time units.

Author(s)
Ron Wehrens

Examples

data(teaMerged)

pks <- getAllPeaks(teaMerged$CList, span = 11)

show component 2 from the second file

par(mfrow = c(2,1))

plot(teaMerged, what = "profiles”, showWindows = FALSE,
mat.idx = 2, comp.idx = 2)

and show where the peaks are picked

abline(v = pks[[211[[211C,"rt"], col = "gray")

same for component 6

plot(teaMerged, what = "profiles”, showWindows = FALSE,
mat.idx = 2, comp.idx = 6, col = "red")

abline(v = pks[[2]1C[6]1L,"rt"], col = "pink")

getPeakTable 13

getPeakTable Convert MCR results into an ordered peak table

Description

Function returns a matrix of intensities, where rows correspond to (aligned) features and columns to
objects (samples, injections, ...). The function performs a complete linkage clustering of retention
times across all samples, and cuts at a height given by the user (which can be interpreted as the
maximal inter-cluster retention time difference). If two peaks from the same sample are assigned to
the same cluster, and error message is given.

Usage

getPeakTable(peakList, response = c("area”, "height"),
use.cor = TRUE, maxdiff = 0.2, plotIt = FALSE, ask = plotIt)

Arguments
peakList A nested list of peak tables: the first level is the sample, and the second level is
the component. Every component is described by a matrix where every row is
one peak, and the columns contain information on retention time, full width at
half maximum (FWHM), peak width, height, and area.
response An indicator whether peak area or peak height is to be used as intensity measure.
Default is peak area.
use.cor Logical, indicating whether to use corrected retention times (by default) or raw
retention times (not advised!).
maxdiff Height at which the complete linkage dendrogram will be cut. Can be interpreted
as the maximal inter-cluster retention time difference.
plotIt Logical. If TRUE, for every component a stripplot will be shown indicating the
clustering.
ask Logical. Ask before showing new plot?
Details

If one sees warnings about peaks from the same sample sharing a cluster label, one option is to
reduce the maxdiff variable - this, however, will increase the number of clusters. Another option
is to filter the peaks on intensity: perhaps one of the two peaks in the cluster is only a very small
feature.

Value

The function returns a data frame where the first couple of columns contain meta-information on
the features (component, peak, retention time) and the other columns contain the intensities of the
features in the individual injections.

14 opa

Author(s)
Ron Wehrens

Examples

data(teaMerged)

pks <- getAllPeaks(teaMerged$CList, span = 11)

warping.models <- correctRT(teaMerged$CList, reference = 2,
what = "models")

pks.corrected <- correctPeaks(pks, warping.models)

pkTab <- getPeakTable(pks.corrected, response = "area")
opa Finding the most dissimilar variables in a data matrix: the Orthogonal
Projection Approach
Description

This function finds the set of most dissimilar rows in a data matrix. If no initial selection is pre-
sented, the first object is selected by comparison with the vector of column means. As a distance
function the determinant of the crossproduct matrix is used.

Usage

opa(x, ncomp, initXref = NULL)

Arguments

X Data matrix (numerical). May not contain missing values.

ncomp Number of rows to be selected.

initXref Optional matrix to be expanded - should be a subset of the rows to select.
Value

The function returns a submatrix of X, where the columns contain the (unit-length scaled) spectra
from the input data that are most dissimilar.

Author(s)
Ron Wehrens

References

F. Questa Sanchez et al.: Algorithm for the assessment of peak purity in liquid chromatography
with photodiode-array detection. Analytica Chimica Acta 285:181-192 (1994)

R. Wehrens: Chemometrics with R. Springer Verlag, Heidelberg (2011)

preprocess 15

Examples

data(tea)
tea <- lapply(tea.raw, preprocess, maxI = 100)

ncomp <- 7
spectra <- opa(tea, ncomp)

myPalette <- colorRampPalette(c("black”, "red”, "blue"”, "green"))

mycols <- myPalette(ncomp)

matplot(as.numeric(rownames(spectra)), spectra, type = "1", 1ty =1,
xlab = expression(lambda), ylab = "", col = mycols)

legend("topright”, legend = paste("Comp."”, 1:ncomp), col = mycols,
1ty = 1, ncol = 2, bty = "n")

preprocess Preprocessing smooth time-wavelength data

Description

Standard preprocessing of response matrices where the first axis is a time axis, and the second
a spectral axis. An example is HPLC-DAD data. For smooth data, like UV-VIS data, there is the
option to decrease the size of the matrix by interpolation. By default, the data are baseline-corrected
in the time direction and smoothed in the spectral dimension.

Usage

preprocess(X, diml, dim2, remove.time.baseline = TRUE,

spec.smooth = TRUE, maxI, ...)
Arguments

X A numerical data matrix, missing values are not allowed. If rownames or col-
names attributes are used, they should be numerical and signify time points and
wavelengths, respectively.

diml A new, usually shorter, set of time points (numerical). The range of these should
not be outside the range of the original time points, otherwise the function stops
with an error message.

dim2 A new, usually shorter, set of wavelengths (numerical). The range of these

should not be outside the range of the original wavelengths, otherwise the func-
tion stops with an error message.

remove.time.baseline
logical, indicating whether baseline correction should be done in the time direc-
tion. Default is TRUE.

spec.smooth logical, indicating whether smoothing should be done in the spectral direction.
Default is TRUE.
maxI if given, the maximum intensity in the matrix is set to this value.

further optional arguments to the baseline.corr function.

16 showALSresult

Value

The function returns the preprocessed data matrix, with rownames and colnames indicating the time
points and wavelengths, respectively.

Author(s)

Ron Wehrens

Examples

data(tea)
tpoints <- as.numeric(rownames(tea.raw[[1]1]))
lambdas <- as.numeric(colnames(tea.raw[[1]]))

limit retention time and wavelength ranges, and do smoothing and
baseline correction
new.time <- seq(13, 14.1, by = .05)
new.wavelengths <- seq(400, 500, by = 2)
tea.rawl.processed <-
preprocess(tea.raw[[1]], diml = new.time, dim2 = new.wavelengths)

plot(tpoints, tea.raw[[1]][,lambdas == 470],

xlim = range(new.time), type = "1", col = "gray",
main = "Chromatogram at 470 nm”, xlab = "Time (min.)",
ylab = ")
lines(new.time, tea.rawl.processed[,new.wavelengths == 470], col = "red")

n

legend("topleft”, 1ty = 1, col = c("gray”, "red"), bty = "n”,
legend = c("Original data”, "Preprocessed data"))

plot(lambdas, tea.raw[[1]][tpoints == 13.7,1],
xlim = range(new.wavelengths),
ylim = c(@, max(tea.raw[[1]][tpoints == 13.7,1)),
type = "1", col = "gray”,

main = "Spectrum at 13.7 min."”, xlab = expression(lambda),
ylab = Nll)
lines(new.wavelengths, tea.rawl.processed[new.time == 13.7,], col = "red")

legend("topleft”, 1ty = 1, col = c("gray”, "red"), bty = "n",
legend = c("Original data"”, "Preprocessed data”))

showALSresult Plot ALS results in a more elaborate way

Description

Simultaneous visualization of pure components (spectra and time profiles) and either raw data, fitted
data or residuals.

showALSresult

Usage

17

showALSresult(xals, xlst,

Arguments

xals

x1st
tp

wl

mat.idx
img.col

zlim

xlab, ylab
compound. col

logsc

plotPureC
titles

annotation

PureChght

PureCwdth

show. img

Author(s)

Ron Wehrens

See Also

plot.ALS

tp = getTime(xals), wl = getWavelength(xals),
mat.idx = 1:length(xlst),

img.col = terrain.colors(10), zlim, xlab, ylab,
compound.col = T:ncol(xals$S), logsc = TRUE,
plotPureC = c("both"”, "spec”, "conc”, "none"),
titles, annotation = show.img,

PureChght = 0.33, PureCwdth = min(nplot, 5)/5 - 0.1,
show.img = TRUE)

The fitted ALS object. Not needed if plotPureC equals "none"”: in that case
only the data are shown.

The data: the list of matrices on which the ALS object is based.

Optional vector of time points. If missing, will be determined using function
getTime.

Optional vector of wavelengths. If missing, will be determined using function
getWavelength.

Indices of the samples to be visualized.

Color vector for image.

Range of the image colors.

Axis annotation strings.

Colors to be used for components in the pure specta/profile plots.

Logical, indicating whether the images should be logscaled vefore visualization.
Default: TRUE.

Determines which part (if any) of the pure components is shown.

Titles for the plots for the individual samples. If not given, the names of the
x1st elements will be used.

if a text string, this will be shown in the top right corner panel. If anything else
but FALSE, a color bar will be drawn. The default is to show the color bar for
images and not to show it for contour plots.

Height, relative to the height of the data panels, of the top row of pure concen-
tration profiles

Width, relative to the width of the data panels, of the right column of pure spectra

logical, indicating whether image is used (the default) or contour

18 tea

Examples

data(teaMerged)

ncomp <- ncol(teaMerged$S)
myPalette <- colorRampPalette(c(”black”, "red", "blue", "green"))
mycols <- myPalette(ncomp)

maxResid <- max(abs(range(teaMerged$resid)))

showALSresult(teaMerged, teaMerged$resid,
compound.col = mycols, logsc = FALSE, img.col = cm.colors(9),
mat.idx = 2:4, zlim =c(-maxResid, maxResid))

tea HLPC-DAD data for grape extracts conserved with TEA

Description

Five (very much compressed) HPLC-DAD data matrices of grape extracts after several storage
times. All extracts come from the same pooled sample. Since the raw data are given (no smoothing
or baseline subtraction has been done, only subsetting of the time and wavelength axes), the object
is called tea.raw.

Usage

data(tea)

Format

The UV-Vis data (tea.raw) are given as a list of five matrices, each of dimension 97 times 209
(time x wavelength). The names of the list indicate the day of measurement - day O is represented
by two measurements.

Source

Provided by Elisabete Carvalho.

References

This is part of the data that have been used in: R. Wehrens, E. Carvalho, D. Masuero, A. de Juan
and S. Martens: High-throughput carotenoid profiling using multivariate curve resolution. Anal.
Bioanal. Chem. 15:5057-5086 (2013)

Examples

data(tea)

tpoints <- as.numeric(rownames(tea.raw[[1]]))

lambdas <- as.numeric(colnames(tea.raw[[1]]))

contour(tpoints, lambdas, tea.raw[[1]], col = terrain.colors(15),
xlab = "Retention time (min.)", ylab = "Wavelength (nm)")

teaMerged 19

teaMerged Results of an ALS analysis on individual windows

Description

Object of class ALS: the result of the analysis of the tea data, using three time windows with an
overlap parameter of 10. The three ALS models have been merged into one ALS object, which can
be inspected and used for further analysis.

Usage

data(teaMerged)

Examples

generation of the data
data(tea)
new.lambdas <- seq(260, 500, by = 2)
tea <- lapply(tea.raw,
preprocess,
dim2 = new.lambdas)
tea.split <- splitTimeWindow(tea, c(12, 14), overlap = 10)
tea.alslist <- lapply(tea.split,
function(X1l) {
X1.opa <- opa(X1l, 4)
doALS(X1, X1.opa)
»
teaMerged <- mergeTimeWindows(tea.alslist)
This is the object saved in teaMerged.RData

ncomp <- ncol(teaMergeds$S)
myPalette <- colorRampPalette(c("”black”, "red", "blue", "green"))
mycols <- myPalette(ncomp)

plot(teaMerged, what = "spectra”, col = mycols)

legend("top"”, col = mycols, 1ty = 1, bty = "n",
legend = paste(”C"”, 1:ncol(teaMerged$S)))

ncol = 2,

windows Splitting and merging of data across the time axis.

Description

Often MCR data sets can be analysed much more quickly and efficiently when split into several
smaller time windows. For interpretation purposes, the results after analysis can be merged again.

20 windows

Usage

splitTimeWindow(datalist, splitpoints, overlap = 0)
mergeTimeWindows(obj, simSThreshold = .9, simCThreshold = .9, verbose = FALSE)

Arguments

datalist A list of (numerical) data matrices

splitpoints A numerical vector of cut points. In case the time axis extends beyond the range
of the cut points, additional cut points are added at the beginning or at the end
of the time axis to ensure that all time points are taken into account.

overlap Number of points in the overlap region between two consecutive windows. De-
fault: O (non-overlapping windows).

obj Either experimental data that have been split up in different time windows (a list

of matrices), or a list of ALS objects. See details section.

simSThreshold, simCThreshold
similarity thresholds to determine whether two patterns are the same (correla-
tion). The two thresholds are checking the spectral and chromatographic compo-
nents, respectively. If no overlap is present between time windows, simCThreshold
is not used.

verbose logical: print additional information?

Details

When splitting data files, the non-overlapping areas should be at least as big as the overlap areas. If
not, the function stops with an error message. Note that the example below is only meant to show
the use of the function: the data do not have enough time resolution to allow for a big overlap.

Value

Function splitTimeWindows splits every matrix in a list of data matrices into submatrices corre-
sponding to time windows. This is represented as a list of lists, where each top level element is one
time window. Such a time window can then be presented to the ALS algorithm.

Function mergeTimeWindows can be used to merge data matrices as well as ALS result objects. In
the first case, for each series of data matrices corresponding to different time windows, one big con-
catenated matrix will be returned. In the second case, exactly the same will be done for the residual
matrices and concentration profiles in the ALS object. Spectral components are assumed to be
different in different time windows, unless they have a correlation higher than simSThreshold,
in which case they are merged. If overlapping time windows are used, an additional require-
ment is that the similarity between the concentration profiles in the overlap area must be at least
simCThreshold. This similarity again is measured as a correlation.

Author(s)

Ron Wehrens

windows 21

Examples

splitting and merging of data files

data(tea)

tea.split <- splitTimeWindow(tea.raw, c(12, 14))
names(tea.split)

sapply(tea.split, length)

lapply(tea.split, function(x) sapply(x, dim))
rownames(tea.split[[1JI[[1]11)[1:10]

rownames (tea.split[[211[[1]11)[1:10]

tea.merge <- mergeTimeWindows(tea.split)
all.equal(tea.merge, tea.raw) ## should be TRUE

tea.split2 <- splitTimeWindow(tea.raw, c(12, 14), overlap = 10)
lapply(tea.split2, function(x) sapply(x, dim))

tea.merge2 <- mergeTimeWindows(tea.split2)

all.equal(tea.merge2, tea.raw) ## should be TRUE

merging of ALS results

data(teaMerged)

ncomp <- ncol(teaMerged$S)

myPalette <- colorRampPalette(c(”black”, "red", "blue", "green"))
mycols <- myPalette(ncomp)

show spectra - plotting only a few of them is much more clear...
plot(teaMerged, what = "spectra”, col = mycols, comp.idx = c(2, 6))
legend("top"”, col = mycols[c(2, 6)], 1ty =1, bty = "n",

legend = paste("C", c(2, 6)))

show concentration profiles - all six files
plot(teaMerged, what = "profiles”, col = mycols)
only the second file
plot(teaMerged, what = "profiles”, mat.idx = 2, col = mycols)
legend("topleft”, col = mycols, 1ty = 1, bty = "n",
legend = paste(”C"”, 1:ncol(teaMerged$S)))
Note that components 2 and 6 are continuous across the window borders
- these are found in all three windows

Index

+ datasets
tea, 18
teaMerged, 19

* manip
components, 3
correctPeaks, 5
correctRT, 6
doALS, 7
filterPeaks, 9
fitpeaks, 10
getAllPeaks, 12
getPeakTable, 13
opa, 14
preprocess, 15
showALSresult, 16
windows, 19

+ package
alsace-package, 2

ALS, 2

als, 8

alsace (alsace-package), 2
alsace-package, 2

combineComps, 2
combineComps (components), 3
components, 3
correctPeaks, 5, 6
correctRT, 5,6

doALS, 2,7

filterPeaks, 9
findpeaks, 12

findpeaks (fitpeaks), 10
fitpeaks, 10, 12

getAllPeaks, 10, 11,12
getPeakTable, 13
getTime (doALS), 7
getWavelength (doALS), 7

22

mergeTimeWindows (windows), 19
opa, 14

plot.ALS, 17
plot.ALS (doALS), 7
preprocess, 2, 15
print.ALS (doALS), 7
ptw, 6

removeComps (components), 3

showALSresult, 2, 8, 16
smallComps (components), 3
splitTimeWindow (windows), 19
suggestCompCombis (components), 3
summary.ALS (doALS), 7

tea, 18
teaMerged, 19

windows, 2, 19

	alsace-package
	components
	correctPeaks
	correctRT
	doALS
	filterPeaks
	fitpeaks
	getAllPeaks
	getPeakTable
	opa
	preprocess
	showALSresult
	tea
	teaMerged
	windows
	Index

