
Package ‘StructuralVariantAnnotation’
October 14, 2021

Type Package

Title Variant annotations for structural variants

Version 1.8.2

Date 2021-08-04

Description StructuralVariantAnnotation provides a framework for
analysis of structural variants within the Bioconductor ecosystem.
This package contains
contains useful helper
functions for dealing with structural variants in VCF format.
The packages contains functions for parsing VCFs from a number
of popular callers as well as functions for dealing with
breakpoints involving two separate genomic loci encoded as
GRanges objects.

License GPL-3 + file LICENSE

Depends GenomicRanges, rtracklayer, VariantAnnotation, BiocGenerics, R
(>= 4.1.0)

Imports assertthat, Biostrings, stringr, dplyr, methods, rlang,
GenomicFeatures, IRanges, S4Vectors, SummarizedExperiment,
GenomeInfoDb,

Suggests ggplot2, devtools, testthat (>= 2.1.0), roxygen2, rmarkdown,
tidyverse, knitr, ggbio, biovizBase,
TxDb.Hsapiens.UCSC.hg19.knownGene, BSgenome.Hsapiens.UCSC.hg19,

RoxygenNote 7.1.1

Encoding UTF-8

VignetteBuilder knitr

biocViews DataImport, Sequencing, Annotation, Genetics,
VariantAnnotation

git_url https://git.bioconductor.org/packages/StructuralVariantAnnotation

git_branch RELEASE_3_13

git_last_commit 325f68f

git_last_commit_date 2021-08-05

1

2 align_breakpoints

Date/Publication 2021-10-14

Author Daniel Cameron [aut, cre] (<https://orcid.org/0000-0002-0951-7116>),
Ruining Dong [aut] (<https://orcid.org/0000-0003-1433-0484>)

Maintainer Daniel Cameron <daniel.l.cameron@gmail.com>

R topics documented:
align_breakpoints . 2
breakendRanges . 3
breakpointgr2bedpe . 4
breakpointgr2pairs . 5
breakpointGRangesToVCF . 6
breakpointRanges . 7
calculateReferenceHomology . 8
countBreakpointOverlaps . 9
extractBreakpointSequence . 10
extractReferenceSequence . 11
findBreakpointOverlaps . 12
findInsDupOverlaps . 13
findTransitiveCalls . 14
hasPartner . 15
isStructural . 16
isSymbolic . 17
numtDetect . 18
partner . 19
rtDetect . 20
simpleEventLength . 20
simpleEventType . 21
StructuralVariantAnnotation . 21

Index 23

align_breakpoints Adjusting the nominal position of a pair of partnered breakpoint.

Description

Adjusting the nominal position of a pair of partnered breakpoint.

Usage

align_breakpoints(
vcf,
align = c("centre"),
is_higher_breakend = names(vcf) < info(vcf)$PARID

)

https://orcid.org/0000-0002-0951-7116
https://orcid.org/0000-0003-1433-0484

breakendRanges 3

Arguments

vcf A VCF object.

align The alignment type.
is_higher_breakend

Breakpoint ID ordering.

Value

A VCF object with adjusted nominal positions.

breakendRanges Extracting unpartnered breakend structural variants as a GRanges

Description

Extracting unpartnered breakend structural variants as a GRanges

Usage

breakendRanges(x, ...)

S4 method for signature 'VCF'
breakendRanges(x, ...)

Arguments

x A VCF object.

... Parameters of .breakpointRanges(). See breakpointRanges for more details.

Details

The VCF standard supports single breakends where a breakend is not part of a novel adjacency and
lacks a mate. This function supports parsing single breakends to GRanges, where a dot symbol is
used in the ALT field to annotate the directional information. Single breakends provide insights to
situations when one side of the structural variant is not observed, due to e.g. low mappability, non-
reference contigs, complex multi-break operations, etc. See Section 5.4.9 of https://samtools.
github.io/hts-specs/VCFv4.3.pdf for details of single breakends.

Value

A GRanges object of SVs.

Methods (by class)

• VCF: Extracting unpartnered structural variants as GRanges.

https://samtools.github.io/hts-specs/VCFv4.3.pdf
https://samtools.github.io/hts-specs/VCFv4.3.pdf

4 breakpointgr2bedpe

Examples

vcf.file <- system.file("extdata", "gridss.vcf",
package = "StructuralVariantAnnotation")

vcf <- VariantAnnotation::readVcf(vcf.file, "hg19")
breakendRanges(vcf)
breakendRanges(vcf, nominalPosition=TRUE)

breakpointgr2bedpe Converting breakpoint GRanges to BEDPE-like dataframe

Description

Converting breakpoint GRanges to BEDPE-like dataframe

Usage

breakpointgr2bedpe(gr)

Arguments

gr A GRanges object.

Details

breakpointgr2bedpe converts a breakpoint GRanges to a BEDPE-formatted dataframe. The
BEDPE format consists of two sets of genomic loci, optional columns of name, score, strand1,
strand2 and any user-defined fields. See https://bedtools.readthedocs.io/en/latest/content/
general-usage.html for more details on the BEDPE format.

Value

A BEDPE-formatted data frame.

Examples

#coverting a GRanges object to BEDPE-like dataframe
vcf.file <- system.file("extdata", "gridss.vcf", package = "StructuralVariantAnnotation")
vcf <- VariantAnnotation::readVcf(vcf.file, "hg19")
gr <- breakpointRanges(vcf)
breakpointgr2bedpe(gr)

https://bedtools.readthedocs.io/en/latest/content/general-usage.html
https://bedtools.readthedocs.io/en/latest/content/general-usage.html

breakpointgr2pairs 5

breakpointgr2pairs Converts a breakpoint GRanges object to a Pairs object

Description

Converts a breakpoint GRanges object to a Pairs object

Converts a BEDPE Pairs containing pairs of GRanges loaded using to a breakpoint GRanges object.

Usage

breakpointgr2pairs(
bpgr,
writeQualAsScore = TRUE,
writeName = TRUE,
bedpeName = NULL,
firstInPair = NULL

)

pairs2breakpointgr(
pairs,
placeholderName = "bedpe",
firstSuffix = "_1",
secondSuffix = "_2",
nameField = "name",
renameScoreToQUAL = TRUE

)

Arguments

bpgr breakpoint GRanges object
writeQualAsScore

write the breakpoint GRanges QUAL field as the score fields for compatibility
with BEDPE rtracklayer export

writeName write the breakpoint GRanges QUAL field as the score fields for compatibility
with BEDPE rtracklayer export

bedpeName function that returns the name to use for the breakpoint. Defaults to the sourceId,
name column, or row names (in that priority) of the first breakend of each pair.

firstInPair function that returns TRUE for breakends that are considered the first in the pair,
and FALSE for the second in pair breakend. By default, the first in the pair is
the breakend with the lower ordinal in the breakpoint GRanges object.

pairs a Pairs object consisting of two parallel genomic loci.
placeholderName

prefix to use to ensure each entry has a unique ID.

firstSuffix first in pair name suffix to ensure breakend name uniqueness

6 breakpointGRangesToVCF

secondSuffix second in pair name suffix to ensure breakend name uniqueness

nameField Fallback field for row names if the Pairs object does not contain any names.
BEDPE files loaded using rtracklayer use the "name" field.

renameScoreToQUAL

renames the ’score’ column to ’QUAL’. Performing this rename results in a con-
sistent variant quality score column name for variant loaded from BEDPE and
VCF.

Details

Breakpoint-level column names will override breakend-level column names.

Value

Pairs GRanges object suitable for export to BEDPE by rtracklayer

Breakpoint GRanges object.

Examples

vcf.file <- system.file("extdata", "gridss.vcf", package = "StructuralVariantAnnotation")
bpgr <- breakpointRanges(VariantAnnotation::readVcf(vcf.file))
pairgr <- breakpointgr2pairs(bpgr)
#rtracklayer::export(pairgr, con="example.bedpe")
bedpe.file <- system.file("extdata", "gridss.bedpe", package = "StructuralVariantAnnotation")
bedpe.pairs <- rtracklayer::import(bedpe.file)
bedpe.bpgr <- pairs2breakpointgr(bedpe.pairs)

breakpointGRangesToVCF

Converts the given breakpoint GRanges object to VCF format in
breakend notation.

Description

Converts the given breakpoint GRanges object to VCF format in breakend notation.

Usage

breakpointGRangesToVCF(gr, ...)

Arguments

gr breakpoint GRanges object. Can contain both breakpoint and single breakend
SV records.

... For cbind and rbind a list of VCF objects. For all other methods ... are additional
arguments passed to methods. See VCF class in VariantAnnotation for more
details.

breakpointRanges 7

Value

A VCF object.

breakpointRanges Extracting the structural variants as a GRanges.

Description

Extracting the structural variants as a GRanges.

.breakpointRanges() is an internal function for extracting structural variants as GRanges.

Usage

breakpointRanges(x, ...)

S4 method for signature 'VCF'
breakpointRanges(x, ...)

.breakpointRanges(
vcf,
nominalPosition = FALSE,
placeholderName = "svrecord",
suffix = "_bp",
info_columns = NULL,
unpartneredBreakends = FALSE,
inferMissingBreakends = FALSE,
ignoreUnknownSymbolicAlleles = FALSE

)

Arguments

x A VCF object

... Parameters of .breakpointRanges(). See below.

vcf A VCF object.
nominalPosition

Determines whether to call the variant at the nominal VCF position, or to call
the confidence interval (incorporating any homology present). Default value is
set to FALSE, where the interval is called based on the CIPOS tag. When set to
TRUE, the ranges field contains the nominal variant position only.

placeholderName

Variant name prefix to assign to unnamed variants.

suffix The suffix to append to variant names.

info_columns VCF INFO columns to include in the GRanges object.
unpartneredBreakends

Determining whether to report unpartnered breakends. Default is set to FALSE.

8 calculateReferenceHomology

inferMissingBreakends

Infer missing breakend records from ALT field of records without matching part-
ners

ignoreUnknownSymbolicAlleles

Ignore unknown symbolic alleles. StructuralVariantAnnotation currently han-
dles INS, INV, DEL, DUP as well as the VCF specifications non-compliant
RPL, TRA symbolic alleles.

Details

Structural variants are converted to breakend notation. Due to ambiguities in the VCF specifica-
tions, structural variants with multiple alt alleles are not supported. The CIPOS tag describes the
uncertainty interval around the position of the breakend. See Section 5.4.8 of https://samtools.
github.io/hts-specs/VCFv4.3.pdf for details of CIPOS. If HOMLEN or HOMSEQ is defined
without CIPOS, it is assumed that the variant position is left aligned. A breakend on the ’+’ strand
indicates a break immediately after the given position, to the left of which is the DNA segment
involved in the breakpoint. The ’-’ strand indicates a break immediately before the given position,
rightwards of which is the DNA segment involved in the breakpoint. Unpaired variants are removed
at this stage.

Value

A GRanges object of SVs.

Methods (by class)

• VCF: Extracting structural variants as GRanges.

Examples

vcf.file <- system.file("extdata", "vcf4.2.example.sv.vcf",
package = "StructuralVariantAnnotation")

vcf <- VariantAnnotation::readVcf(vcf.file, "hg19")
breakpointRanges(vcf)
breakpointRanges(vcf, nominalPosition=TRUE)

calculateReferenceHomology

Calculates the length of inexact homology between the breakpoint se-
quence and the reference

Description

Calculates the length of inexact homology between the breakpoint sequence and the reference

https://samtools.github.io/hts-specs/VCFv4.3.pdf
https://samtools.github.io/hts-specs/VCFv4.3.pdf

countBreakpointOverlaps 9

Usage

calculateReferenceHomology(
gr,
ref,
anchorLength = 300,
margin = 5,
match = 2,
mismatch = -6,
gapOpening = 5,
gapExtension = 3

)

Arguments

gr reakpoint GRanges

ref reference BSgenome

anchorLength Number of bases to consider for homology

margin Number of additional reference bases include. This allows for inexact homology
to be detected even in the presence of indels.

match see Biostrings::pairwiseAlignment

mismatch see Biostrings::pairwiseAlignment

gapOpening see Biostrings::pairwiseAlignment

gapExtension see Biostrings::pairwiseAlignment

Value

A dataframe containing the length of inexact homology between the breakpoint sequence and the
reference.

countBreakpointOverlaps

Counting overlapping breakpoints between two breakpoint sets

Description

Counting overlapping breakpoints between two breakpoint sets

Usage

countBreakpointOverlaps(
querygr,
subjectgr,
countOnlyBest = FALSE,
breakpointScoreColumn = "QUAL",
maxgap = -1L,

10 extractBreakpointSequence

minoverlap = 0L,
ignore.strand = FALSE,
sizemargin = NULL,
restrictMarginToSizeMultiple = NULL

)

Arguments

querygr, subjectgr, maxgap, minoverlap, ignore.strand, sizemargin, restrictMarginToSizeMultiple

See findBreakpointOverlaps().

countOnlyBest Default value set to FALSE. When set to TRUE, the result count each subject
breakpoint as overlaping only the best overlapping query breakpoint. The best
breakpoint is considered to be the one with the highest QUAL score.

breakpointScoreColumn

Query column defining a score for determining which query breakpoint is con-
sidered the best when countOnlyBest=TRUE.

Details

countBreakpointOverlaps() returns the number of overlaps between breakpoint objects, based
on the output of findBreakpointOverlaps(). See GenomicRanges::countOverlaps-methods

Value

An integer vector containing the tabulated query overlap hits.

Examples

truth_vcf = VariantAnnotation::readVcf(system.file("extdata", "na12878_chr22_Sudmunt2015.vcf",
package = "StructuralVariantAnnotation"))
crest_vcf = VariantAnnotation::readVcf(system.file("extdata", "na12878_chr22_crest.vcf",
package = "StructuralVariantAnnotation"))
caller_bpgr = breakpointRanges(crest_vcf)
caller_bpgr$true_positive = countBreakpointOverlaps(caller_bpgr, breakpointRanges(truth_vcf),

maxgap=100, sizemargin=0.25, restrictMarginToSizeMultiple=0.5, countOnlyBest=TRUE)

extractBreakpointSequence

Extracts the breakpoint sequence.

Description

Extracts the breakpoint sequence.

Usage

extractBreakpointSequence(gr, ref, anchoredBases, remoteBases = anchoredBases)

extractReferenceSequence 11

Arguments

gr breakpoint GRanges

ref Reference BSgenome

anchoredBases Number of bases leading into breakpoint to extract

remoteBases Number of bases from other side of breakpoint to extract

Details

The sequence is the sequenced traversed from the reference anchor bases to the breakpoint. For
backward (-) breakpoints, this corresponds to the reverse compliment of the reference sequence
bases.

Value

Breakpoint sequence around the variant position.

extractReferenceSequence

Returns the reference sequence around the breakpoint position

Description

Returns the reference sequence around the breakpoint position

Usage

extractReferenceSequence(
gr,
ref,
anchoredBases,
followingBases = anchoredBases

)

Arguments

gr breakpoint GRanges

ref Reference BSgenome

anchoredBases Number of bases leading into breakpoint to extract

followingBases Number of reference bases past breakpoint to extract

Details

The sequence is the sequenced traversed from the reference anchor bases to the breakpoint. For
backward (-) breakpoints, this corresponds to the reverse compliment of the reference sequence
bases.

12 findBreakpointOverlaps

Value

Reference sequence around the breakpoint position.

findBreakpointOverlaps

Finding overlapping breakpoints between two breakpoint sets

Description

Finding overlapping breakpoints between two breakpoint sets

Usage

findBreakpointOverlaps(
query,
subject,
maxgap = -1L,
minoverlap = 0L,
ignore.strand = FALSE,
sizemargin = NULL,
restrictMarginToSizeMultiple = NULL

)

Arguments

query, subject Both of the input objects should be GRanges objects. Unlike findOverlaps(),
subject cannot be ommitted. Each breakpoint must be accompanied with a
partner breakend, which is also in the GRanges, with the partner’s id recorded
in the partner field. See GenomicRanges::findOverlaps-methods for details.

maxgap, minoverlap

Valid overlapping thresholds of a maximum gap and a minimum overlapping
positions between breakend intervals. Both should be scalar integers. max-
gap allows non-negative values, and minoverlap allows positive values. See
GenomicRanges::findOverlaps-methods for details.

ignore.strand Default value is FALSE. strand information is ignored when set to TRUE. See
GenomicRanges::findOverlaps-methods for details.

sizemargin Error margin in allowable size to prevent matching of events of different sizes,
e.g. a 200bp event matching a 1bp event when maxgap is set to 200.

restrictMarginToSizeMultiple

Size restriction multiplier on event size. The default value of 0.5 requires that
the breakpoint positions can be off by at maximum, half the event size. This
ensures that small deletion do actually overlap at least one base pair.

findInsDupOverlaps 13

Details

findBreakpointOverlaps() is an efficient adaptation of findOverlaps-methods() for breakend
ranges. It searches for overlaps between breakpoint objects, and return a matrix including index of
overlapping ranges as well as error stats. All breakends must have their partner breakend included
in the partner field. A valid overlap requires that breakends on boths sides meets the overlapping
requirements.

See GenomicRanges::findOverlaps-methods for details of overlap calculation.

Value

A dataframe containing index and error stats of overlapping breakpoints.

Examples

#reading in VCF files
query.file <- system.file("extdata", "gridss-na12878.vcf", package = "StructuralVariantAnnotation")
subject.file <- system.file("extdata", "gridss.vcf", package = "StructuralVariantAnnotation")
query.vcf <- VariantAnnotation::readVcf(query.file, "hg19")
subject.vcf <- VariantAnnotation::readVcf(subject.file, "hg19")
#parsing vcfs to GRanges objects
query.gr <- breakpointRanges(query.vcf)
subject.gr <- breakpointRanges(subject.vcf)
#find overlapping breakpoint intervals
findBreakpointOverlaps(query.gr, subject.gr)
findBreakpointOverlaps(query.gr, subject.gr, ignore.strand=TRUE)
findBreakpointOverlaps(query.gr, subject.gr, maxgap=100, sizemargin=0.5)

findInsDupOverlaps Finds duplication events that are reported as inserts. As sequence
alignment algorithms do no allow backtracking, long read-based vari-
ant callers will frequently report small duplication as insertion events.
Whilst both the duplication and insertion representations result in the
same sequence, this representational difference is problematic when
comparing variant call sets.

Description

WARNING: this method does not check that the inserted sequence actually matched the duplicated
sequence.

Usage

findInsDupOverlaps(query, subject, maxgap = -1L, maxsizedifference = 0L)

14 findTransitiveCalls

Arguments

query a breakpoint GRanges object

subject a breakpoint GRanges object

maxgap maximum distance between the insertion position and the duplication
maxsizedifference

maximum size difference between the duplication and insertion.

Value

Hits object containing the ordinals of the matching breakends in the query and subject

findTransitiveCalls Identifies potential transitive imprecise calls that can be explained by
traversing multiple breakpoints.

Description

Transitive calls are imprecise breakpoints or breakpoints with inserted sequence that can be ex-
plained by a sequence of breakpoints. That is, A-C calls in which additional sequence may be
between A and C that can be explained by A-B-C.

Usage

findTransitiveCalls(
transitiveGr,
subjectGr,
maximumImpreciseInsertSize = 700,
minimumTraversedBreakpoints = 2,
maximumTraversedBreakpoints = 6,
positionalMargin = 8,
insertionLengthMargin = 50,
insLen = transitiveGr$insLen,
impreciseTransitiveCalls = (transitiveGr$HOMLEN == 0 | is.null(transitiveGr$HOMLEN))

& start(transitiveGr) != end(transitiveGr),
impreciseSubjectCalls = (subjectGr$HOMLEN == 0 | is.null(subjectGr$HOMLEN)) &
start(subjectGr) != end(subjectGr),

allowImprecise = FALSE
)

Arguments

transitiveGr a breakpoint GRanges object containing imprecise calls

subjectGr breakpoints to traverse
maximumImpreciseInsertSize

Expected number of bases to traverse imprecise calls.

hasPartner 15

minimumTraversedBreakpoints

Minimum number of traversed breakpoints to consider a transitive
maximumTraversedBreakpoints

Maximum number of breakpoints to traverse when looking for an explanation
of the transitive calls

positionalMargin

Allowable margin of error when matching call positional overlaps. A non-zero
margin allows for matching of breakpoint with imperfect homology.

insertionLengthMargin

Allowable difference in length between the inserted sequence and the traversed
path length. Defaults to 50bp to allow for long read indel errors.

insLen Integer vector of same length as ‘transitiveGr‘ indicating the number of bases
inserted at the breakpoint.
Defaults to transitiveGr$insLen which will be present if the GRanges was loaded
from a VCF using breakpointRanges()

impreciseTransitiveCalls

Boolean vector of same length as ‘transitiveGr‘ indicating which calls are impre-
cise calls. Defaults to calls with a non-zero interval size that have no homology.

impreciseSubjectCalls

Boolean vector of same length as ‘subjectGr‘ indicating which calls are impre-
cise calls. Defaults to calls with a non-zero interval size that have no homology.

allowImprecise Allow traversal of imprecise calls. Defaults to FALSE as to prevent spurious
results which skip some breakpoints when traversing multiple breakpoints E.g.
An A-D transitive from an underlying A-B-C-D rearrangement will include A-
B-D and A-C-D results if allowImprecise=TRUE.

Value

‘DataFrame‘ containing the transitive calls traversed with the following columns: | column | mean-
ing | | —— | ——- | | transitive_breakpoint_name | Name of the transitive breakpoint a path was
found for | | total_distance | Total length (in bp) of the path | | traversed_breakpoint_names | ‘Char-
acterList‘ of names of breakpoint traversed in the path | | distance_to_traversed_breakpoint | ‘Inte-
gerList‘ of distances from start of path to end of traversing breakpoint |

hasPartner Determines whether this breakend has a valid partner in this GRanges

Description

Determines whether this breakend has a valid partner in this GRanges

Usage

hasPartner(gr, selfPartnerSingleBreakends = FALSE)

16 isStructural

Arguments

gr GRanges object of SV breakends
selfPartnerSingleBreakends

treat single breakends as their own partner.

Value

True/False for each row in the breakpoint GRanges

Examples

#Subset to chromosome 6 intra-chromosomal events \code{vcf}
vcf.file <- system.file("extdata", "COLO829T.purple.sv.ann.vcf.gz",

package = "StructuralVariantAnnotation")
vcf <- VariantAnnotation::readVcf(vcf.file)
gr <- breakpointRanges(vcf)
gr <- gr[seqnames(gr) == "6"]
We now need to filter out inter-chromosomal events to ensure
our GRanges doesn't contain any breakpoints whose partner
has already been filtered out and no longer exists in the GRanges.
gr <- gr[hasPartner(gr)]

isStructural Determining whether the variant is a structural variant

Description

Determining whether the variant is a structural variant

Usage

isStructural(x, ...)

S4 method for signature 'CollapsedVCF'
isStructural(x, ..., singleAltOnly = TRUE)

S4 method for signature 'ExpandedVCF'
isStructural(x, ...)

S4 method for signature 'VCF'
isStructural(x, ...)

Arguments

x A VCF object.

... Internal parameters.

singleAltOnly Whether only single ALT values are accepted. Default is set to TRUE.

isSymbolic 17

Details

The function takes a VCF object as input, and returns a logical value for each row, determining
whether the variant is a structural variant.

Value

A logical list of which the length is the same with the input object.

Methods (by class)

• CollapsedVCF: Determining whether a CollapsedVCF object is a strucrual variant. Only
single ALT values are accepted.

• ExpandedVCF: Determining whether a ExpandedVCF object is a structural variant.

• VCF: Determining whether a VCF object is a structural variant.

Examples

vcf.file <- system.file("extdata", "gridss.vcf", package = "StructuralVariantAnnotation")
vcf <- VariantAnnotation::readVcf(vcf.file, "hg19")
isStructural(vcf)

isSymbolic Determining whether the variant is a symbolic allele.

Description

Determining whether the variant is a symbolic allele.

Usage

isSymbolic(x, ...)

S4 method for signature 'CollapsedVCF'
isSymbolic(x, ..., singleAltOnly = TRUE)

S4 method for signature 'ExpandedVCF'
isSymbolic(x, ...)

Arguments

x A VCF object.

... Internal parameters.

singleAltOnly Whether only single ALT values are accepted. Default is set to TRUE.

18 numtDetect

Details

The function takes a VCF object as input, and returns a logical value for each row, determining
whether the variant is a symbolic allele.

Value

A logical list of which the length is the same with the input object.

Methods (by class)

• CollapsedVCF: Determining whether a CollapsedVCF object is a symbolic allele. Only single
ALT values are accepted.

• ExpandedVCF: Determining whether a ExpandedVCF object is a symbolic allele

Examples

vcf.file <- system.file("extdata", "gridss.vcf", package = "StructuralVariantAnnotation")
vcf <- VariantAnnotation::readVcf(vcf.file, "hg19")
isSymbolic(vcf)

numtDetect Detecting nuclear mitochondria fusion events.

Description

Detecting nuclear mitochondria fusion events.

Usage

numtDetect(gr, nonStandardChromosomes = FALSE, max_ins_dist = 1000)

Arguments

gr A GRanges object
nonStandardChromosomes

Whether to report insertion sites on non-standard reference chromosomes. De-
fault value is set to FALSE.

max_ins_dist The maxium distance allowed on the reference genome between the paired in-
sertion sites. Only intra-chromosomal NUMT events are supported. Default
value is 1000.

Details

Nuclear mitochondrial fusion (NUMT) is a common event found in human genomes. This function
searches for NUMT events by identifying breakpoints supporting the fusion of nuclear chromosome
and mitochondrial genome. Only BND notations are supported at the current stage. Possible linked
nuclear insertion sites are reported using SV IDs in the candidatePartnerId metadata column.

partner 19

Value

A GRanges object of possible NUMT loci.

Examples

vcf.file <- system.file("extdata", "MT.vcf", package = "StructuralVariantAnnotation")
vcf <- VariantAnnotation::readVcf(vcf.file, "hg19")
gr <- breakpointRanges(vcf, nominalPosition=TRUE)
numt.gr <- numtDetect(gr)

partner GRanges representing the breakend coordinates of structural variants
#@export Partner breakend for each breakend.

Description

GRanges representing the breakend coordinates of structural variants #@export Partner breakend
for each breakend.

Usage

partner(gr, selfPartnerSingleBreakends = FALSE)

Arguments

gr GRanges object of SV breakends
selfPartnerSingleBreakends

treat single breakends as their own partner.

Details

All breakends must have their partner breakend included in the GRanges.

Value

A GRanges object in which each entry is the partner breakend of those in the input object.

Examples

#reading in a VCF file as \code{vcf}
vcf.file <- system.file("extdata", "gridss.vcf", package = "StructuralVariantAnnotation")
vcf <- VariantAnnotation::readVcf(vcf.file, "hg19")
#parsing \code{vcf} to GRanges object \code{gr}
gr <- breakpointRanges(vcf)
#output partner breakend of each breakend in \code{gr}
partner(gr)

20 simpleEventLength

rtDetect Detecting retrotranscript insertion in nuclear genomes.

Description

Detecting retrotranscript insertion in nuclear genomes.

Usage

rtDetect(gr, genes, maxgap = 100, minscore = 0.3)

Arguments

gr A GRanges object

genes TxDb object of genes. hg19 and hg38 are supported in the current version.

maxgap The maxium distance allowed on the reference genome between the paired exon
boundries.

minscore The minimum proportion of intronic deletions of a transcript should be identi-
fied.

Details

This function searches for retroposed transcripts by identifying breakpoints supporting intronic
deletions and fusions between exons and remote loci. Only BND notations are supported at the
current stage.

Value

A GRangesList object, named insSite and rt, reporting breakpoints supporting insert sites and retro-
posed transcripts respectively. ’exon’ and ’txs’ in the metadata columns report exon_id and tran-
script_name from the ’genes’ object.

simpleEventLength Length of event if interpreted as an isolated breakpoint.

Description

Length of event if interpreted as an isolated breakpoint.

Usage

simpleEventLength(gr)

Arguments

gr breakpoint GRanges object

simpleEventType 21

Value

Length of the simplest explanation of this breakpoint/breakend.

simpleEventType Type of simplest explanation of event. Possible types are: | Type |
Description | | BND | Single breakend | | CTX | Interchromosomal
translocation | | INV | Inversion. | | DUP | Tandem duplication | | INS
| Insertion | | DEL | Deletion |

Description

Note that both ++ and – breakpoint will be classified as inversions regardless of whether both
breakpoint that consistitute an actual inversion exists or not

Usage

simpleEventType(gr, insertionLengthThreshold = 0.5)

Arguments

gr breakpoint GRanges object

insertionLengthThreshold

portion of inserted bases compared to total event size to be classified as an in-
sertion. For example, a 5bp deletion with 5 inserted bases will be classified as
an INS event.

Value

Type of simplest explanation of event

StructuralVariantAnnotation

StructuralVariantAnnotation: a package for SV annotation

Description

StructuralVariantAnnotation contains useful helper functions for reading and interpreting structural
variants calls. The packages contains functions for parsing VCFs from a number of popular caller
as well as functions for dealing with breakpoints involving two separate genomic loci. The package
takes a ‘GRanges‘ based breakend-centric approach.

22 StructuralVariantAnnotation

Details

* Parse VCF objects with the ‘breakpointRanges()‘ and ‘breakendRanges()‘functions. * Find break-
point overlaps with the ‘findBreakpointOverlaps()‘ and ‘countBreakpointOverlaps()‘ functions. *
Generate BEDPE files for circos plot with ‘breakpointgr2pairs()‘ function. * ...

For more details on the features of StructuralVariantAnnotation, read the vignette: ‘browseVi-
gnettes(package = "StructuralVariantAnnotation")‘

Index

.breakpointRanges (breakpointRanges), 7

align_breakpoints, 2

breakendRanges, 3
breakendRanges,VCF-method

(breakendRanges), 3
breakpointgr2bedpe, 4
breakpointgr2pairs, 5
breakpointGRangesToVCF, 6
breakpointRanges, 7
breakpointRanges,VCF-method

(breakpointRanges), 7

calculateReferenceHomology, 8
countBreakpointOverlaps, 9

extractBreakpointSequence, 10
extractReferenceSequence, 11

findBreakpointOverlaps, 12
findInsDupOverlaps, 13
findTransitiveCalls, 14

hasPartner, 15

isStructural, 16
isStructural,CollapsedVCF-method

(isStructural), 16
isStructural,ExpandedVCF-method

(isStructural), 16
isStructural,VCF-method (isStructural),

16
isSymbolic, 17
isSymbolic,CollapsedVCF-method

(isSymbolic), 17
isSymbolic,ExpandedVCF-method

(isSymbolic), 17

numtDetect, 18

pairs2breakpointgr
(breakpointgr2pairs), 5

partner, 19

rtDetect, 20

simpleEventLength, 20
simpleEventType, 21
StructuralVariantAnnotation, 21

23

	align_breakpoints
	breakendRanges
	breakpointgr2bedpe
	breakpointgr2pairs
	breakpointGRangesToVCF
	breakpointRanges
	calculateReferenceHomology
	countBreakpointOverlaps
	extractBreakpointSequence
	extractReferenceSequence
	findBreakpointOverlaps
	findInsDupOverlaps
	findTransitiveCalls
	hasPartner
	isStructural
	isSymbolic
	numtDetect
	partner
	rtDetect
	simpleEventLength
	simpleEventType
	StructuralVariantAnnotation
	Index

