
Package ‘PrecisionTrialDrawer’
October 14, 2021

Type Package

Title A Tool to Analyze and Design NGS Based Custom Gene Panels

Version 1.8.0

Date 2018-10-01

Author Giorgio Melloni, Alessandro Guida, Luca Mazzarella

Maintainer Giorgio Melloni <melloni.giorgio@gmail.com>

Description A suite of methods to design umbrella and basket trials for precision oncology.

License GPL-3

Depends R (>= 3.6)

Imports graphics, grDevices, stats, utils, methods, cgdsr, parallel,
stringr, reshape2, data.table, RColorBrewer, BiocParallel,
magrittr, biomaRt, XML, httr, jsonlite, ggplot2, ggrepel, grid,
S4Vectors, IRanges, GenomicRanges, LowMACAAnnotation,
googleVis, shiny, shinyBS, DT, brglm, matrixStats

Suggests BiocStyle, knitr, rmarkdown, dplyr

VignetteBuilder knitr

biocViews SomaticMutation, WholeGenome, Sequencing, DataImport,
GeneExpression

RoxygenNote 6.1.0

git_url https://git.bioconductor.org/packages/PrecisionTrialDrawer

git_branch RELEASE_3_13

git_last_commit 8690c66

git_last_commit_date 2021-05-19

Date/Publication 2021-10-14

R topics documented:
PrecisionTrialDrawer-package . 2
appendRepo . 3
CancerPanel-class . 4

1

2 PrecisionTrialDrawer-package

coocMutexPlot . 6
coveragePlot . 9
coverageStackPlot . 11
cpArguments . 14
cpData . 15
cpDataSubset . 17
cpDesign . 18
cpFreq . 19
cpObj . 22
cpObj2 . 23
dataExtractor . 23
filterFusions . 25
filterMutations . 26
getAlterations . 28
newCancerPanel . 29
panelDesigner . 32
panelexample . 34
panelOptimizer . 35
propPowerSampleSize . 37
saturationPlot . 41
showCancerStudy . 44
showTumorType . 45
subsetAlterations . 46
survPowerSampleSize . 47
survPowerSampleSize1Arm . 52

Index 57

PrecisionTrialDrawer-package

PrecisionTrialDrawer: a package to analyze and design custom can-
cer panels

Description

PrecisionTrialDrawer is a package that a allows the design and study of a cancer panel to create
pilot sets for a clinical trial.

Details

It allows simulations on real TCGA data to design a possible clinical trial, both as basket or umbrella
design.

Furthermore, it can provide an easy function to calculate genomic space occupied by the cancer
panel in a commonly used bed format ready to be submitted to a NGS company.

Author(s)

Giorgio Melloni, Alessandro Guida

appendRepo 3

References

Cbioportal web site MD Anderson TCGA Fusion Portal

Examples

Retrieve a Cancer Panel
data(cpObj)
Show the number of covered samples
coveragePlot(cpObj

, alterationType=c("mutations" , "copynumber")
, grouping=c("group" , "tumor_type"))

appendRepo appendRepo: Add extra population data

Description

Function that allows to add extra samples for running simulations. If the user wants to add custom
data to an existing cBioportal dataset, this function allows to append new samples to the panel to
increase its inference power. This function takes care of appending to the panel a list of alterations
compatible with the @dataFull slot (the slot that stores the cBioportal downloaded info).

Usage

appendRepo(object, repos)

Arguments

object An instance of class CancerPanel

repos A list() in format compatible to @dataFull slot

Details

dataFull slot is a named list of 4 elements: "fusions" , "mutations" , "copynumber" , "expression".
Each element is a list itself of two named elements: "data" (a data.frame), "Samples" (a list of
character vectors). They must be all present, but they can be NULL if no data are provided. Check
example to check correct format of colnames inside each data type.

At the end of the appending, subsetAlterations is automatically run.

Value

An updated instance of class CancerPanel

Author(s)

Giorgio Melloni , Alessandro Guida

www.cbioportal.org
http://54.84.12.177/PanCanFusV2

4 CancerPanel-class

References

data origin for mutations, copynumber and expression data

data origin for fusion data

See Also

getAlterations subsetAlterations

Examples

Retrieve example data
data(cpObj)
Check format of slot dataFull
str(cpData(cpObj))
Create two new mutations
newmutations <- data.frame(

entrez_gene_id=c(7157 , 7157)
,gene_symbol=c("TP53" , "TP53")
,case_id=c("new_samp1" , "new_samp2")
,mutation_type=c("Nonsense_Mutation" , "Nonsense_Mutation")
,amino_acid_change=c("R306*" , "Y126*")
,genetic_profile_id=c("mynewbreaststudy" , "mynewbreaststudy")
,tumor_type=c("brca" , "brca")
,amino_position=c(306 , 126)
,genomic_position=c("17:7577022:G,A" , "17:7578552:G,C")
,stringsAsFactors=FALSE
)

newsamples <- c("new_samp1" , "new_samp2")
A dataFull slot style list should look like this
toBeAdded <- list(fusions=list(data=NULL , Samples=NULL)

, mutations=list(data=newmutations
, Samples=list(brca=newsamples))

, copynumber=list(data=NULL , Samples=NULL)
, expression=list(data=NULL , Samples=NULL)
)

cpObjplus <- appendRepo(cpObj , toBeAdded)

CancerPanel-class Class CancerPanel

Description

Class CancerPanel defines an object (S4 class) that contains data and custom arguments to run
panel simulations and panel designs.

Value

Class object

www.cbioportal.org
www.tumorfusions.org

CancerPanel-class 5

Objects from the Class

Objects can be created by calls of the form newCancerPanel(panel,padding_length ,utr).

Constructor

newCancerPanel(panel=data.frame, padding_length=numeric , utr=logical)

Slots

arguments Object of class list containing the all panel related information. It is filled during the
CancerPanel object construction.

dataFull Object of class list containing all the alterations for all the genes in the panel and every
tumor type requested. It is filled by the getAlterations method.

dataSubset Object of class list containing all the alteration requested. It is filled by the subsetAlterations
method. Every alteration type is defined by a slot; all slots have the same data.frame layout.

Methods

show show(object = "CancerPanel"): ...

getAlterations getAlterations(object = "CancerPanel"): ...

subsetAlterations subsetAlterations(object = "CancerPanel"): ...

panelDesigner panelDesigner(object = "CancerPanel"): ...

cpArguments cpArguments(object = "CancerPanel"): ...

cpData cpData(object = "CancerPanel"): ...

cpDataSubset cpDataSubset(object = "CancerPanel"): ...

coveragePlot coveragePlot(object = "CancerPanel"): ...

coverageStackPlot coverageStackPlot(object = "CancerPanel"): ...

saturationPlot saturationPlot(object = "CancerPanel"): ...

coocMutexPlot coocMutexPlot(object = "CancerPanel"): ...

survPowerSampleSize survPowerSampleSize(object = "CancerPanel"): ...

survPowerSampleSize1Arm survPowerSampleSize(object = "CancerPanel"): ...

cpFreq cpFreq(object = "CancerPanel"): ...

panelOptimizer panelOptimizer(object = "CancerPanel"): ...

appendRepo appendRepo(object = "CancerPanel"): ...

dataExtractor dataExtractor(object = "CancerPanel"): ...

propPowerSampleSize propPowerSampleSize(object = "CancerPanel"): ...

filterMutations filterMutations(object = "CancerPanel"): ...

filterFusions filterFusions(object = "CancerPanel"): ...

See Also

newCancerPanel

6 coocMutexPlot

Examples

showClass("CancerPanel")

coocMutexPlot Plot cooccurence and mutual exclusivity between pairs of drugs or
genes

Description

This plot reports how two features, like drugs or genes, can be considered close or distant in terms
of occurrence on the same set of samples. In case of genes, for example, it consider the number of
times a gene is altered together with another one or in a mutual exclusive fashion. In case of drugs,
all the drug target are pulled together and you can appreciate if they act on the same of different
targets.

Usage

coocMutexPlot(object
, var=c("drug","group","gene_symbol")
, alterationType=c("copynumber" , "expression" , "mutations" , "fusions")
, grouping=c(NA , "drug" , "group" , "alteration_id" , "tumor_type")
, tumor_type=NULL
, collapseMutationByGene=FALSE
, collapseByGene=FALSE
, tumor.weights=NULL
, style=c("cooc" , "dendro")
, prob = c("hyper","firth")
, drop=FALSE
, noPlot=FALSE
, pvalthr=0.05
, plotrandom=TRUE
, ncolPlot=FALSE
, ...)

Arguments

object a CancerPanel object

var One of the following: "drug", "group", "gene_symbol". This parameter will set
which variable is used in the plot

alterationType what kind of alteration to include. It can be one or more between "copynumber",
"expression", "mutations", "fusions". Default is to include all kind of alterations.

grouping One of the following: "drug", "group", "alteration_id" , "tumor_type". This
parameter draws a plot for every level of the chosen grouping. if set to NA, the
panel is not split and the plot is one.

tumor_type A character vector of tumor types to include in the plot among the one included
in the object

coocMutexPlot 7

collapseMutationByGene

A logical that collapse all mutations on the same gene for a single patient as a
single alteration.

collapseByGene A logical that collapse all alterations on the same gene for a single patient as a
single alteration. e.g. if a sample has TP53 both mutated and deleted as copy-
number, it will count for one alteration only.

tumor.weights A named vector of integer values containing an amount of samples to be ran-
domly sampled from the data. Each element should correspond to a different
tumor type and is named after its tumor code. See details

style If ’cooc’, the default, it performs pairwise cooccurence and mutual exclusivity
test and the plot is a pvalue upper triangle heatmap. If dendro, it performs
hierarchical clustering using binary distance between ’var’ subjects.

prob One of the following: "hyper" or "firth". Two ways of calculating cooccurrence
mutex pvalues. The first uses the hypergeometric distribution as in the Fisher
test. The second uses a penalized logistic regression and is particularly indicated
when the alterations are rare.

drop Logical indicating if the table of cooccurence should include (FALSE) or not
include (TRUE) the samples that are never altered for any element of the var of
interested. Default FALSE. See details.

noPlot if TRUE, the plot is not shown and data to create it are reported.

pvalthr In the plot, every square under the threshold is depicted in gray

plotrandom If TRUE, all elements of var are reported, even if they have no significant pair

ncolPlot Number of columns required for a multiplot. With default = FALSE, the func-
tion calculates the optimal configuration based on the number of plots that need
to be printed

... Further arguments passed to hclust function

Details

This plot explores if there is cooccurrence or mutual exclusivity between features selected in the
panel. It is particularly useful to evaluate the opportunity to add a new gene or a new drug in
an umbrella design. Two drugs that acts on mutual exclusive pathways are more suitable for an
umbrella design that seek at enlarging the spectrum of covered samples, even though one of the two
drugs has few affected samples. On the other hand, if a drug has been proven to be more effective
or reliable and its target are alterated together with another drug, there is no point in adding the less
effective cure. Another way of seeing this feature is by using clustering adding option ’dendro’ to
style parameter. The reported plot will lack of pvalues but it is more general including distances
between hierarchically aggregated drugs or genes.

If noPlot is TRUE, the method returns a data.frame with 6 columns in case of style ’cooc’:

sp1_name the first ’var’ value for the mut-ex analysis

sp2_name the second ’var’ value for the mut-ex analysis

pVal.MutEx pvalue associated with mutual exclusivity evaluation

pVal.Cooc pvalue associated with cooccurence evaluation

OR corrected odds ratio, of the confusion matrix between sp1 and sp2

8 coocMutexPlot

grouping grouping variable chosen by the user

If noPlot is TRUE, the method returns a list of hclust objects in case of style ’dendro’

The option drop can completely change the results, so check exactly what is your initial question.
Let’s imagine a coocMutex plot by gene. If drop=FALSE, all the samples tested for mutations
on those genes are included. Otherwise, only the samples with at least one mutation in the genes
of interested will be included. The default is to keep all the samples but this procedure is biased
towards cooccurrence. This is caused by the fact that mutations are rare, so the cooccurrence of no
mutations is generally very high and it counts as no-mutations.

By default, coocMutexPlot will use all the available data from the object, using all the samples
for the requested alterationTypes. Nevertheless, one could be interested in creating a compound
design that is composed by a certain number of samples per tumor type. This is the typical situation
of basket trials, where you seek for specific alteration, rather than specific tumor types and your
trial can be stopped when the desired sample size for a given tumor type is reached. By adding
tumor.weights, we can achieve such target. Unfortunately, there are two main drawbacks in doing
so:

1. small sample size: by selecting small random samples, the real frequency can be distorted. to
avoid this, it is better to run several small samples and then aggregate the results

2. recycling: if the sample size for a tumor type requested by the user is above the available
number of cBioportal samples, the samples are recycled. This has the effect of stabilizing the
frequencies but y_measure = "absolute" will have no real meaning when the heterogeneity of
the samples is lost.

Value

In case of style ’cooc’, an upper triangle discrete heatmap if noPlot is FALSE, a data.frame oth-
erwise. In case of style ’dendro’, a dendrogram if noPlot is FALSE, a list of patient by alteration
matrices.

Author(s)

Giorgio Melloni, Alessandro Guida

References

code re-written from package cooccur implementation of penalized glm, here logistic regression

See Also

saturationPlot

Examples

Load example CancerPanel object
data(cpObj)
Plot cooccurence and mutual exclusivity between pairs of genes by tumor type
coocMutexPlot(cpObj

, var="gene_symbol"
, grouping="tumor_type"
, alterationType="mutations")

https://CRAN.R-project.org/package=cooccur
https://CRAN.R-project.org/package=brglm

coveragePlot 9

coveragePlot A series of bar charts representing the number of samples harbouring
at least one or more alterations

Description

Given a CancerPanel object, it returns one or more bar charts representing the number of samples
covered by at least 1, 2 ,3 or more alterations using specified data. Each plot is controlled by the
grouping parameter.

Usage

coveragePlot(object
, alterationType = c("copynumber", "expression", "mutations", "fusions")
, grouping = c(NA,"drug","group","gene_symbol","alteration_id","tumor_type")
, tumor_type=NULL
, alterationType.agg=TRUE
, collapseMutationByGene = TRUE
, collapseByGene = FALSE
, tumor.weights=NULL
, tumor.freqs=NULL
, maxNumAlt = 10
, colNum=NULL
, cex.main="auto"
, noPlot = FALSE)

Arguments

object A CancerPanel object filled with genomic data.

alterationType A character vector containing one or more of the following: "copynumber",
"expression", "mutations", "fusions".

grouping A character vector containing one or more of the following: NA, "drug", "group",
"gene_symbol", "alteration_id", "tumor_type".

tumor_type A character vector of tumor types to include in the plot among the one included
in the object

alterationType.agg

logical value. If TRUE, the default, the frequencies displayed are calculated
over all the samples that were tested for all the alterationType requested. If
FALSE all the samples tested for the specified alteration_id stratum are used. It
sorts an effect if ’alterationType’ length is > 1 and ’alteration_id’ is in grouping
parameter. See details.

collapseMutationByGene

A logical that collapse all mutations on the same gene for a single patient as a
single alteration.

10 coveragePlot

collapseByGene A logical that collapse all alterations on the same gene for a single patient as a
single alteration. e.g. if a sample has TP53 both mutated and deleted as copy-
number, it will count for one alteration only.

tumor.weights A named vector of integer values containing an amount of samples to be ran-
domly sampled from the data. Each element should correspond to a different
tumor type and is named after its tumor code. See details

tumor.freqs A named vector of values between 0 and 1 which sum 1. It contains the expected
proportion of patients that are planned to be recruited. See Details

maxNumAlt This number represents the maximum number on X axis.

colNum If set, represents the number of columns in plotting layout. If NULL, best square
representation is chosen instead.

cex.main a numerical value or "auto". This parameter can set the size of each plot main
title. Default is "auto", for automatic resizing.

noPlot If TRUE, the plot is not shown but just the data used to drawn it.

Details

According to the chosen alterationType, the package will look for all the samples with available
data for all the selected alterationType. For example, if alterationType = c("mutations" , "copy-
number"), only common samples with both mutation and copynumber data are used by default.
If alterationType.agg is set to FALSE and "alteration_id" is in grouping, the default behaviour
changes. "mutations" plot will be displayed with the frequencies relative to all the samples tested
for mutations and "copynumber" with all the samples tested for CNA. If "tumor_type" is in group-
ing variable, each plot is evaluated on the samples relative to the tumor type. The number of plots
depends on the multiplication of the levels of the grouping variable. If you put too many grouping
variable, it is better to draw a coverageStackPlot or to redirect the output to a file.

By default, coveragePlot will use all the available data from the object, using all the samples for
the requested alterationTypes. Nevertheless, one could be interested in creating a compound de-
sign that is composed by a certain number of samples per tumor type. This is the typical situation
of basket trials, where you seek for specific alteration, rather than specific tumor types and your
trial can be stopped when the desired sample size for a given tumor type is reached. By adding
tumor.weights, we can achieve such target (see examples). Unfortunately, there are two main draw-
backs in doing so:

1. small sample size: by selecting small random samples, the real frequency can be distorted. to
avoid this, it is better to run several small samples and then aggregate the results

2. recycling: if the sample size for a tumor type requested by the user is above the available
number of cBioportal samples, the samples are recycled. This has the effect of stabilizing the
frequencies but y_measure = "absolute" will have no real meaning when the heterogeneity of
the samples is lost.

A user balanced design can be also obtained using tumor.freqs parameter. In this case the fraction
of altered samples are first calculated tumor-wise and then reaggregated using the weights provided
by tumor.freqs. If the fraction of altered samples are 0.3 and 0.4 for breast cancer and lung cancer
respectively, if you set tumor.freqs = c(brca=0.9 , luad=0.1), the full design will have a frequency
equal to 0.3*0.9 + 0.4*0.1 = 0.31, that is basically equal to the one of breast samples. If this
parameter is not set, the total amount of samples available is used with unpredictable balancing. In

coverageStackPlot 11

the examples, brca and luad data are used. Breast samples are at least twice as much as luad samples
and tumor.freqs can help with a more balanced simulation.

Both tumor.freqs and tumor.weights can achieve a balanced design according to user specification.
To have a quick idea of the sample size required, it is better to use the former. For having an
idea about the possible distribution of sample size giving a few samples (for example a minimum
and a maximum sample size) it is better to run the function with tumor.weights several times and
aggregate the results to obtain mean values, confidence intervals etc.

Value

If noPlot=FALSE, this method returns a bar chart or a series of bar charts. Y-axis represents the
number of samples, X-axis the incremental number of alterations per sample. In case tumor.freqs
is set, the Y-axis represents the relative frequency that is reported as text on the top of the bars. If
noPlot=TRUE, it returns a named list:

plottedTable a matrix with absolute number of samples plotted. Every column represents
how many samples retain at least 1, 2, 3 ... alterations. Every row is a different
plot for one of the specified grouping levels. If tumor.freqs is used, relative
frequencies are reported instead.

Samples a numeric vector corresponding to the rows of plottedTable representing the
number of reference sample for each plot. If tumor.freqs is used, Samples is
NULL.

Author(s)

Giorgio Melloni, Alessandro Guida

See Also

saturationPlot coverageStackPlot

Examples

Load example CancerPanel object
data(cpObj)
Plot the coverage of this panel by tumor type and drug
Using mutations and copynumber data
coveragePlot(cpObj , alterationType=c("mutations" , "copynumber")

, grouping=c("tumor_type" , "drug")
, maxNumAlt=5)

coverageStackPlot A stacked and beside bar chart representing a breakdown of covered
samples

Description

Given a CancerPanel object, it returns one bar chart representing the number of samples covered by
at least 1 alteration under ’var’ divided by ’grouping’

12 coverageStackPlot

Usage

coverageStackPlot(object
, alterationType=c("copynumber" , "expression" , "mutations" , "fusions")
, var=c("drug","group","gene_symbol","alteration_id","tumor_type")
, grouping=c(NA,"drug","group","gene_symbol","alteration_id","tumor_type")
, tumor_type=NULL
, collapseMutationByGene=TRUE
, collapseByGene=TRUE
, tumor.weights=NULL
, tumor.freqs=NULL
, plotFreq = FALSE
, noPlot=FALSE
, html=FALSE)

Arguments

object A CancerPanel object filled with genomic data.

alterationType A character vector containing one or more of the following: "copynumber",
"expression", "mutations", "fusions".

var a character vector of length 1 containing one or more of the following: "drug",
"group", "gene_symbol", "alteration_id" , "tumor_type". This parameter is com-
pulsory and decide the classes of the bars.

grouping a character vector of length 1 containing one or more of the following: NA,
"drug", "group", "gene_symbol", "alteration_id", "tumor_type". This parameter
decide the breakdown of var. If not set, it is considered NA and only ’var’ is
plotted with no stacking.

tumor_type a character vector containing tumor types to be plotted

collapseMutationByGene

A logical that collapse all mutations on the same gene for a single patient as a
single alteration.

collapseByGene A logical that collapse all alterations on the same gene for a single patient as a
single alteration. e.g. if a sample has TP53 both mutated and deleted as copy-
number, it will count for one alteration only.

tumor.weights A named vector of integer values containing an amount of samples to be ran-
domly sampled from the data. Each element should correspond to a different
tumor type and is named after its tumor code. See details

tumor.freqs A named vector of values between 0 and 1 which sum 1. It contains the expected
proportion of patients that are planned to be recruited. See Details

plotFreq If TRUE, the plot return the relative frequencies instead of the absolute number
of samples.

noPlot If TRUE, the plot is not shown but just the data used to drawn it.

html If TRUE, an html interactive version of the plot is reported using googleVis.

coverageStackPlot 13

Details

This plot is a more compact (although less informative) version of the coveragePlot. According to
the chosen alterionType, the package will look for all the samples with available data for all the
selected alterationType. For example, if alteratonType = c("mutations" , "copynumber"), only
common samples with both mutation and copynumber data are used. If both ’var’ and ’grouping’ are
set, the plot will show two bars for every level of ’var’. The first one is a breakdown by ’grouping’,
while the second one is the total number of unique samples covered by at least one alteration. The
first bar of the two is generally higher, because the breakdown does not sum up. For example, if we
show a coverage stack plot of "drug" divided by "gene_symbol", the first bar will show the number
of covered samples by every gene (considering a sample twice if is altered in more than one gene).
The second bar is the total number of covered samples for the drug. The legend is not plotted if
grouping is set to NA.

By default, coverageStackPlot will use all the available data from the object, using all the samples
for the requested alterationTypes. Nevertheless, one could be interested in creating a compound de-
sign that is composed by a certain number of samples per tumor type. This is the typical situation of
basket trials, where you seek for specific alteration, rather than specific tumor types and trial can be
stopped when the desired sample size for a given tumor type is reached. By adding tumor.weights,
we can achieve such target (see examples). Unfortunately, there are two main drawbacks in doing
so:

1. small sample size: by selecting small random samples, the real frequency can be distorted. to
avoid this, it is better to run several small samples and then aggregate the results

2. recycling: if the sample size for a tumor type requested by the user is above the available
number of cBioportal samples, the samples are recycled. This has the effect of stabilizing the
frequencies but y_measure = "absolute" will have no real meaning when the heterogeneity of
the samples is lost.

A user balanced design can be also obtained using tumor.freqs parameter. In this case the fraction
of altered samples are first calculated tumor-wise and then reaggregated using the weights provided
by tumor.freqs. If the fraction of altered samples are 0.3 and 0.4 for breast cancer and lung cancer
respectively, if you set tumor.freqs = c(brca=0.9 , luad=0.1), the full design will have a frequency
equal to 0.3*0.9 + 0.4*0.1 = 0.31, that is basically equal to the one of breast samples. If this
parameter is not set, the total amount of samples available is used with unpredictable balancing. In
the examples, brca and luad data are used. Breast samples are at least twice as much as luad samples
and tumor.freqs can help with a more balanced simulation.

Both tumor.freqs and tumor.weights can achieve a balanced design according to user specification.
To have a quick idea of the sample size required, it is better to use the former. For having an
idea about the possible distribution of sample size giving a few samples (for example a minimum
and a maximum sample size) it is better to run the function with tumor.weights several times and
aggregate the results to obtain mean values, confidence intervals etc.

Value

If noPlot=FALSE, this method returns a bar chart. Y-axis represents the number of samples, X-axis
the number of alterations per sample. In case tumor.freqs is set, the Y-axis represents the relative
frequency that is reported as text on the top of the bars. If noPlot=TRUE, it returns a named list:

plottedTable a matrix with absolute number of samples plotted. Every column is a level of
’var’ while every row represents one of the possible breakdown (’grouping’).

14 cpArguments

Author(s)

Giorgio Melloni, Alessandro Guida

See Also

saturationPlot coveragePlot

Examples

Load example CancerPanel object
data(cpObj)
Plot the number of covered samples
Using mutations and copynumber data
coverageStackPlot(cpObj , alterationType=c("mutations" , "copynumber")

, var="drug"
, grouping="gene_symbol"
, tumor_type="brca")

Show an interactive version of the plot
Save the html code first
myHtmlPlot <- coverageStackPlot(cpObj

, alterationType=c("mutations" , "copynumber")
, var="drug"
, grouping="gene_symbol"
, tumor_type="brca"
, noPlot=FALSE
, html=TRUE)

Plot the code above
plot(myHtmlPlot)

cpArguments Method that returns the arguments slot in a CancerPanel object.

Description

This method returns a list with the panel general information after the creation of the object.

Usage

cpArguments(object)

Arguments

object a CancerPanel object

Details

The length of the output list is always defined by 5 elements. For example, if there are no rs
numbers present in the panel, the data.frame in dbSNP_rs element will be simply empty. The
first 4 elements are filled at the very creation of the object with newCancerPanel. The tumor_type
element is filled after data request with getAlterations.

cpData 15

Value

A list of 5 elements, one for each alteration type:

genedata a data.frame with the cds and cds plus utr of the requested genes.

dbSNP_rs a data.frame with all the rs number translated in genomic hg19 positions.

panel a data.frame with the original panel information plus the length of each alter-
ation.

drugs a character vector containing unique drug names as reported in the panel.

tumor_type a character vector with the tumor types requested in the panel.

Author(s)

Giorgio Melloni , Alessandro Guida

References

Source of gene length and exon structure.

See Also

cpData cpDataSubset

Examples

Load example CancerPanel object
data(cpObj2)
Show slot dataSubset
str(cpArguments(cpObj2))

cpData Method that returns the dataFull slot in a CancerPanel object.

Description

This method returns a list with an element for each alteration type contained in the class CancerPanel
slot dataFull

Usage

cpData(object)

Arguments

object a CancerPanel object

16 cpData

Details

The length of the output list is always defined by 4 elements even if no data, for a certain alteration
type, were requested.In case no data were requested or if there are no data for a certain tumor type,
the slot is filled with NULL values. Every element is a list of 2 elements:

• data A data.frame in a format specific for the alteration type.

• Samples The second element is a list of vectors containing the names of the samples for
each tumor type.

Value

A list of 4 elements, one for each alteration type:

mutations A list of 2 elements containing the mutation alterations for each gene requested
in the panel.

copynumber A list of 2 elements containing the copynumber alterations for each gene re-
quested in the panel.

expression A list of 2 elements containing the expression alterations for each gene requested
in the panel.

fusions A list of 2 elements containing the fusions alterations for each gene requested in
the panel.

Author(s)

Giorgio Melloni , Alessandro Guida

References

data origin for mutations, copynumber and expression data data origin for fusion data

See Also

cpDataSubset

Examples

Load example CancerPanel object
data(cpObj2)
Show slot dataSubset
str(cpData(cpObj2))

www.cbioportal.org
http://54.84.12.177/PanCanFusV2

cpDataSubset 17

cpDataSubset Method that returns the dataSubset slot in a CancerPanel object.

Description

This method returns a list with an element for each alteration type. It shows the content of the slot
dataSubset in the CancerPanel object.

Usage

cpDataSubset(object)

Arguments

object a CancerPanel object

Details

The slot showed with this getter is a list of length 4 even if no data for a certain alteration type were
requested. In case no data were requested or if there are no data for a certain tumor type, the slot is
filled with a NULL value. If data are present but there are no alteration for the specified tumor types
the slot is filled with a 0 rows data.frame.

Value

A list of 4 elements, one for each alteration type:

mutations a data.frame containing exactly the mutation alterations requested in the panel.

copynumber a data.frame containing exactly the copynumber alterations requested in the
panel.

expression a data.frame containing exactly the expression alterations requested in the panel.

fusions a data.frame containing exactly the fusions alterations requested in the panel.

Author(s)

Giorgio Melloni , Alessandro Guida

References

data origin for mutations, copynumber and expression data

data origin for fusion data

See Also

cpData

www.cbioportal.org
www.tumorfusions.org

18 cpDesign

Examples

Load example CancerPanel object
data(cpObj2)
Show slot dataSubset
str(cpDataSubset(cpObj2))

cpDesign Example of a cancer panel design export

Description

Bed style export of cpObj

Usage

data(cpDesign)

Format

A design is a list composed by four elements:

GeneIntervals: all CDS and CDS + UTR for all the genes in the panel

TargetIntervals: all requested target regions (specific single mutations) divided and collapsed
by gene symbol

FullGenes: gene symbols of the genes considered for their full sequence

BedStylePanel: the entire panel in bed format, merged by chromosome, start and end.

Source

Derived from running panelDesigner on cpObj

Examples

#Load cpDesign and show its structure
data(cpDesign)
str(cpDesign)

cpFreq 19

cpFreq Calculate frequencies of mutations, copynumber, fusion or expression
on a CancerPanel object

Description

Given a CancerPanel object, it returns a data.frame with absolute or relative frequencies of alteration
per gene

Usage

cpFreq(object
, alterationType=c("copynumber" , "expression" , "mutations" , "fusions")
, mutations.specs=c(NA ,"mutation_type","amino_acid_change"

,"amino_position","genomic_position")
, fusions.specs=c("bygene" , "byfusionpair")
, tumor_type=NULL
, tumor.weights=NULL
, tumor.freqs=NULL
, collapseMutationByGene=TRUE
, freq=c("relative" , "absolute")
)

Arguments

object A CancerPanel object filled with genomic data.

alterationType A character vector containing one of the following: "copynumber", "expres-
sion", "mutations", "fusions".

mutations.specs

If alterationType is mutations, this parameters allows further subsetting of fre-
quency of mutation. See details

fusions.specs If "bygene", frequencies of fusion events are calculated by gene, if "byfusion-
pair" , the calculation are run by the pair gene1__gene2

tumor_type A character vector of tumor types to include in the plot among the one included
in the object

tumor.weights A named vector of integer values containing an amount of samples to be ran-
domly sampled from the data. Each element should correspond to a different
tumor type and is named after its tumor code. See details

tumor.freqs A named vector of values between 0 and 1 which sum 1. It contains the expected
proportion of patients that are planned to be recruited. See Details

collapseMutationByGene

A logical that collapse all mutations on the same gene for a single patient as a
single alteration.

freq return the absolute number of samples with an alteration or the relative number
according to the selected cohort

20 cpFreq

Details

This simple frequency calculator allows an exploratory analysis on the frequency of alteration by
gene. Using mutations.specs, the user can also calculate the mutation frequency by:

1. mutation_type: each gene is divided by missense , frameshift, splice site etc.

2. amino_acid_change: each gene is divided by amino acid change (V600E , R258H, etc.)

3. amino_position: each gene is stratified by aminoacidic position (600, 258, etc.)

4. genomic_position: each gene is subdivided by exact mutation at genomic level (1:10000:A,C
etc.)

Both mutations.specs and fusions.specs sort no effect for copynumber and expression. The
table reported for copynumber and expression is different from mutations and fusions. It reports,
for every gene, the relative or absolute number of patients with "amplification" , "deletion" and
"normal" CNA and "up" , "down" "normal" level of expression.

By default, cpFreq will use all the available data from the object, using all the samples for the
requested alterationTypes. Nevertheless, one could be interested in creating a compound design that
is composed by a certain number of samples per tumor type. This is the typical situation of basket
trials, where you seek for specific alteration, rather than specific tumor types and your design can be
stopped when the desired sample size for a given tumor type is reached. By adding tumor.weights,
we can achieve such target (see examples). Unfortunately, there are two main drawbacks in doing
so:

1. small sample size: by selecting small random samples, the real frequency can be distorted. to
avoid this, it is better to run several small samples and then bootstrap them

2. recycling: if the sample size for a tumor type requested by the user is above the available
number of cBioportal samples, the samples are recycled. This has the effect of stabilizing the
frequencies but y_measure = "absolute" will have no real meaning when the heterogeneity of
the samples is lost.

A user balanced design can be also obtained using tumor.freqs parameter. In this case the fraction
of altered samples are first calculated tumor-wise and then reaggregated using the weights provided
by tumor.freqs. If the fraction of altered samples are 0.3 and 0.4 for breast cancer and lung cancer
respectively, if you set tumor.freqs = c(brca=0.9 , luad=0.1), the full design will have a frequency
equal to 0.3*0.9 + 0.4*0.1 = 0.31, that is basically equal to the one of breast samples. If this
parameter is not set, the total amount of samples available is used with unpredictable balancing.
Note that the result can only be expressed as relative frequency.

Both tumor.freqs and tumor.weights can achieve a balanced design according to user specification.
For having a quick idea of the sample size required, it is better to use the former. For having
an idea about the possible distribution of sample size giving a finite number of samples it is bet-
ter to run the function with tumor.weights several times and aggregate the results. By default,
survPowerSampleSize will use all the available data from the object, using all the samples for the
requested alterationTypes. Nevertheless, one could be interested in creating a compound design that
is composed by a certain number of samples per tumor type. This is the typical situation of basket
trials, where you seek for specific alteration, rather than specific tumor types and your design can be
stopped when the desired sample size for a given tumor type is reached. By adding tumor.weights,
we can achieve such target (see examples). Unfortunately, there are two main drawbacks in doing
so:

cpFreq 21

1. small sample size: by selecting small random samples , the real frequency can be distorted. to
avoid this, it is better to run several small samples and then bootstrap them

2. recycling: if the sample size for a tumor type requested by the user is above the available
number of cBioportal samples, the samples are recycled. This has the effect of stabilizing the
frequencies but y_measure = "absolute" will have no real meaning when the heterogeneity of
the samples is lost.

A user balanced design can be also obtained using tumor.freqs parameter. In this case the fraction
of altered samples are first calculated tumor-wise and then reaggregated using the weights provided
by tumor.freqs. If the fraction of altered samples are 0.3 and 0.4 for breast cancer and lung cancer
respectively, if you set tumor.freqs = c(brca=0.9 , luad=0.1), the full design will have a frequency
equal to 0.3*0.9 + 0.4*0.1 = 0.31, that is basically equal to the one of breast samples. If this
parameter is not set, the total amount of samples available is used with unpredictable balancing.

Both tumor.freqs and tumor.weights can achieve a balanced design according to user specification.
For having a quick idea of the sample size required, it is better to use the former. For having an
idea about the possible distribution of sample size giving a few samples (for example a minimum
and a maximum sample size) it is better to run the function with tumor.weights several times and
aggregate the results.

Value

the function returns a object of class data.frame

Author(s)

Giorgio Melloni, Alessandro Guida

See Also

coveragePlot coverageStackPlot

Examples

Load example CancerPanel object
data(cpObj)

Calculate relative frequencies of mutations by gene in breast cancer
cpFreq(cpObj , alterationType="mutations", tumor_type="brca")

Calculate relative frequencies of mutations by gene and amino_acid_change
in both breast and lung cancer
cpFreq(cpObj , alterationType="mutations"

, tumor_type=NULL
, mutations.specs="amino_acid_change")

Calculate the absolute number of samples with amplified
deleted or normal gene
Using lung cancer available data
cpFreq(cpObj , alterationType="copynumber"
, tumor_type="luad" , freq="absolute")

22 cpObj

Calculate frequencies of fusion pairs in all tumor types
cpFreq(cpObj , alterationType="fusions" , fusions.specs="byfusionpair")

Now calculate mutation freq by gene using
90% of luad and 10% of brca samples
cpFreq(cpObj , alterationType="mutations", tumor.freqs=c(brca=0.9 , luad=0.1))

cpObj Example of a cancer panel

Description

A CancerPanel object used in PrecisionTrailDrawer

Usage

data(cpObj)

Format

A CancerPanel object with 3 slots and data from every cBioportal study on lung adenocarcinoma
(LUAD) and breast carcinoma (BRCA):

arguments: Object of class "list" containing panel contents information. it id filled at the panel
construction.

dataFull: Object of class "list" containing a slot for every alteration type. it is filled with getAl-
terations method and contains all the alterations for all the genes in the panel and every tumor
type requested.

dataSubset: Object of class "list" containing a slot for every alteration type. it is filled with
subsetAlterations method and reports all the alterations for every requested specific alteration.
All slots have the same data.frame layout.

Source

data origin for BRCA and LUAD

Examples

#Load cpObj and show its structure
data(cpObj)
str(cpObj)

www.cbioportal.org

cpObj2 23

cpObj2 Example of a cancer panel

Description

A CancerPanel object used in PrecisionTrailDrawer

Usage

data(cpObj2)

Format

A CancerPanel object with 3 slots and data from every cBioportal study on lung adenocarcinoma
(LUAD) and breast carcinoma (BRCA):

arguments: Object of class "list" containing panel contents information. it id filled at the panel
construction.

dataFull: Object of class "list" containing a slot for every alteration type. it is filled with getAl-
terations method and contains all the alterations for all the genes in the panel and every tumor
type requested.

dataSubset: Object of class "list" containing a slot for every alteration type. it is filled with
subsetAlterations method and reports all the alterations for every requested specific alteration.
All slots have the same data.frame layout.

Source

data origin for BRCA and LUAD

Examples

#Load cpObj2 and show its structure
data(cpObj2)
str(cpObj2)

dataExtractor dataExtractor: extract data from a CancerPanel object

Description

Given user specified options, return specific data from a CancerPanel object, including alteration
and Samples

www.cbioportal.org

24 dataExtractor

Usage

dataExtractor(object
, alterationType=c("copynumber" , "expression" , "mutations" , "fusions")
, tumor_type=NULL
, collapseMutationByGene=TRUE
, collapseByGene=FALSE
, tumor.weights=NULL)

Arguments

object An instance of class CancerPanel

alterationType what kind of alteration to include. It can be one or more between "copynumber",
"expression", "mutations", "fusions". Default is to include all kind of alterations.

tumor_type only plot one or more tumor types among the ones available in the object.
collapseMutationByGene

A logical that collapse all mutations on the same gene for a single patient as a
single alteration.

collapseByGene A logical that collapse all alterations on the same gene for a single patient as a
single alteration. e.g. if a sample has TP53 both mutated and deleted as copy-
number, it will count for one alteration only.

tumor.weights A named vector of integer values containing an amount of samples to be ran-
domly sampled from the data. Each element should correspond to a different
tumor type and is named after its tumor code. See details

Details

This function is used internally by most of the methods of the package and provide a common data
extractor for a CancerPanel object. It is a low level function to retrieve data for other custom usages,
in particular via tumor.weights.

Value

A named list with data, samples and tumors not present in the CancerPanel object is returned.

Author(s)

Giorgio Melloni , Alessandro Guida

See Also

getAlterations subsetAlterations

Examples

Retrieve example data
data(cpObj)
Extract CNA and mutation data
mydata <- dataExtractor(cpObj

filterFusions 25

, alterationType=c("copynumber" , "mutations")
, tumor_type="brca")
It is particularly useful for bootstrap simulations
Here we extract 10 random samples composed by 30 brca and 40 luad
myboot <- replicate(10
, dataExtractor(cpObj
, alterationType="mutations"
, tumor.weights=c("brca"=30 , "luad"=40)
))

filterFusions filterFusions: remove or keep specified fusions

Description

This method allows to keep only or to exclude certain fusions according to three different filtering
formats

Usage

filterFusions(object , filtered , mode = c("exclude" , "keep"))

Arguments

object An instance of class CancerPanel

filtered A character vector used as filter

mode If "exclude", fusions are removed from the object. If "keep", fusions specified
in filtered are the only ones maintained.

Details

filtered vector must be in fusion format GENE1__GENE2.

At the end of the filtering procedure, subsetAlterations is automatically run.

Value

An updated instance of class CancerPanel

Author(s)

Giorgio Melloni , Alessandro Guida

References

data origin for mutations , copynumber and expression data

data origin for fusion data

www.cbioportal.org
www.tumorfusions.org

26 filterMutations

See Also

getAlterations subsetAlterations filterMutations

Examples

Retrieve example data
data(cpObj)
Create a data.frame to filter
myFilter <- c("ERC1__RET", "TRIM33__RET", "EML4__ALK")
Keep only myFilter fusions
cpObjKeep <- filterFusions(cpObj , filtered = myFilter , mode = "keep")
Exclude myFilter fusions
cpObjExclude <- filterFusions(cpObj , filtered = myFilter , mode = "exclude")

filterMutations filterMutations: remove or keep specified mutations

Description

This method allows to keep only or to exclude certain mutations according to three different filtering
formats

Usage

filterMutations(object
, filtered=NULL
, bed = NULL
, mode = c("exclude" , "keep")
, tumor_type=NULL)

Arguments

object An instance of class CancerPanel

filtered A data.frame used as filter

bed A data.frame in bed format (chr start end)

mode If "exclude", mutations are removed from the object. If "keep", mutations spec-
ified in filtered are the only ones maintained.

tumor_type A vector of tumor_type names. The filter will be active only on the specified
tumor types

Details

filtered data.frame can come in three different formats:

1. "gene_symbol" , "amino_position" Ex. BRAF 600

2. "gene_symbol" , "amino_acid_change" Ex. BRAF V600E

filterMutations 27

3. "genomic_poistion" Ex. 3:1234567:A,C

bed file must be composed by 3 columns: chrN, start 0-base , end 1-base

At the end of the filtering procedure, subsetAlterations is automatically run.

Value

An updated instance of class CancerPanel

Author(s)

Giorgio Melloni , Alessandro Guida

References

data origin for mutations , copynumber and expression data

data origin for fusion data

See Also

getAlterations subsetAlterations filterFusions

Examples

Retrieve example data
data(cpObj)
Create a data.frame to filter
myFilter <- data.frame(gene_symbol = c("BRAF" , "PIK3CA")

, amino_position = c(600 , 118))
Keep only myFilter mutations
cpObjKeep <- filterMutations(cpObj , filtered = myFilter , mode = "keep")
Exclude myFilter mutations
cpObjExclude <- filterMutations(cpObj , filtered = myFilter , mode = "exclude")

Create a bed file
myBed <- data.frame(chr = paste0("chr" , c(7 , 17))

, start = c(140534632 , 41244326)
, end = c(140534732 , 41244426) , stringsAsFactors=FALSE)

Keep only myFilter mutations
cpObjKeep <- filterMutations(cpObj , bed = myBed , mode = "keep")
Exclude myBed mutations
cpObjExclude <- filterMutations(cpObj , bed = myBed , mode = "exclude")

www.cbioportal.org
www.tumorfusions.org

28 getAlterations

getAlterations Retrieve genomic data for each gene in the panel

Description

This method updates the CancerPanel object with data from cBioportal and MD Anderson fusion
database

Usage

getAlterations(object, tumor_type = NULL, repos = NULL
, mutation_type = c("all_nonsynonymous" , "all_mutations"

, "missense" , "truncating")
, expr_z_score = 2
, BPPARAM = bpparam("SerialParam")
, gene_block=50)

Arguments

object A CancerPanel object

tumor_type a vector of tumor types from the ones available using showTumorType or in the
first column of showCancerStudy. See details

repos a list containing custom data to be used in the object

mutation_type decide the kind of mutations to retrieve. Only non synonymous, only missense,
only truncating or all the mutations. The default is to retrieve only non synony-
mous

expr_z_score a number that expresses the threshold at which a gene is considered upregulated
or downregulated

BPPARAM parameter for bplapply to parallelize part of the code

gene_block Set how many genes at a time are requested to cBioPortal. Default 50

Details

This method fills the slot dataFull in a cancer panel object. It retrieves data by gene from cBioportal
and MD Anderson fusion database according to the specifications of the panel. This slot is com-
posed by a list of 4 elements, one for each alterationType: ’fusions’ , ’mutations’ , ’copynumber’ ,
’expression’. Every element is a list of 2 elements: data , Samples. The first element is a data.frame
in a format specific for the alteration type. The second element is a list of vectors containing the
names of all the samples analyzed for each tumor type (both altered and "wild-type").

tumor_type parameter can be either a list of tumor types (’brca’ , ’luad’) or specific cancer studies (
’brca_tcga_pub2015’ , ’luad_tcga_pub’) but not the two things together. Check availability with the
functions mentioned above. In case of cancer studies selection, fusions are retrieved from cancer
type definition (’brca_tcga_pub2015’ becomes simply ’brca’) since they come from a different
source.

newCancerPanel 29

The expression value are expressed as up or down according to the threshold in ’expr_z_score’. A
gene is considered upregulated if its z-score is over 2 or downregulated if is lower than -2.

The copynumber values are expressed as ’amp’ or ’del’ according to GISTIC definition. A gene is
reported as amplified or deleted if its value after GISTIC evaluation is 2 or -2.

A message about the current tumor in download is prompted for every study. If the message appears
more than once, it probably means that the genes you requested were more than 100 and so the query
was actually split in two or more chunks to avoid an overload on cbioportal database.

Value

The method returns the original CancerPanel object with the slot dataFull updated.

Author(s)

Giorgio Melloni , Alessandro Guida

References

data origin for mutations, copynumber and expression data

data origin for fusion data

See Also

cgdsr-getCancerStudies subsetAlterations showTumorType showCancerStudy

Examples

#Load panelexample
data(cpObj2)
Retrieve data from AML
cpObj <- getAlterations(cpObj2 , tumor_type=c("laml"))

newCancerPanel CancerPanel object constructor

Description

Given a data.frame with your panel specifications, it creates a CancerPanel object to be used for
both simulations and panel design.

Usage

newCancerPanel(panel
, rules=NULL
, padding_length = 100
, utr = FALSE
, canonicalTranscript=TRUE
, myhost="www.ensembl.org"
)

www.cbioportal.org
www.tumorfusions.org

30 newCancerPanel

Arguments

panel A data.frame describing your panel with alterations, associated drugs and rela-
tive genes involved.

padding_length An integer that defines how much to extend the targeted regions. paddind_lenght
value is subtracted from the start coordinate of the targeted region in the panel
and, at the same time, it is also added to the end coordinate of the panel. The
result is an extension of the target region by the padding_length value in both
5’ and 3’ direction.

utr If TRUE, the genomic coordinates will also include the UTR regions.
canonicalTranscript

if FALSE, every exon of every transcript of the gene is taken into consideration
in calculating gene length. Default to TRUE is to select the canonical transcript
(see references)

myhost In case of a biomart breakdown, choose a different host than the default en-
sembl.org. check availability on biomart mirrors

rules a data.frame similar to the panel that implement a set of rules so that specific
associations between genes/mutations/actionability are overwritten. See Details

Details

This constructor accepts a data.frame, tibble or data.table with the following columns:

drug - character vector A character vector of drug names or drug compounds. It is required, but
it can be also filled with NA if no compound is associated with the alterations or the user is not
interested in this feature.

gene_symbol - character vector A character vector of HGNC gene symbols. In case of specific
fusion gene, the format is ’gene1__gene2’.

alteration - character vector A character vector with one of the following values: SNV (Single
Nucleotide Variation) or CNA (Somatic Copy Number Alteration), expression (up or down
gene expression), fusion (hybrid gene formed from two previously separated genes). This
represents the class of alteration.

exact_alteration - character vector According to the alteration column, it can be one of the
cases described in the table below.

mutation_specification - character vector This column refines the location of the alteration
type defined in the previous column. In case the record in alteration is set to ’SNV’, the
location of the mutation must be specified according to the available options shown in the
table below. In case of an alteration type different from ’SNV’ the value must be left blank
("") or NA.

group - character vector (Optional) A character vector describing a specific group for the alter-
ation. In the panelexample, we use it to divide the alterations between druggable (Actionable)
and non druggable (Driver). Another possible use is to perform comparisons between different
panels.

Possible values for a cancer panel to specify the alterations are:

http://www.ensembl.org/info/about/mirrors.html

newCancerPanel 31

alteration exact_alteration mutation_specification
CNA amplification ""
CNA deletion ""
expression up ""
expression down ""
SNV "" ""
SNV mutation_type missense
SNV mutation_type truncating
SNV amino_acid_position 300-300
SNV amino_acid_position 300-350
SNV amino_acid_variant V600E
SNV genomic_position 13:20000-40000
SNV genomic_position 13:20000-20000
SNV genomic_variant 13:20000:A,C
SNV dbSNP_rs rs1234567
fusion "" ""

drug values NA or empty are transformed to "no_drug", that is a reserved value. group values NA
or empty are transformed to "no_group", that is a reserved value. gene_symbol is mandatory for
any alteration type because alterations are retrieved from cBioPortal using this key. In case of rs
IDs, the closest gene symbol is the ideal annotation, even if the position is intergenic and generally
not associated with any gene.

rules parameter implements a set of negation rules.

A data.frame like the following can be used in the rules parameter. The data.frame is the same as
above but it adds tumor_type and in_out columns:

drug gene_symbol alteration exact_alteration mutation_specification group tumor_type in_out
Erlotinib EGFR SNV amino_acid_variant T790M Driver exclude
Erlotinib KRAS SNV Driver exclude
Erlotinib Driver luad include
Olaparib Driver brca include

The new column tumor_type can contain a single tumor_type code or an empty string (which
means that the rule is valid for any tumor type). The other new column is in_out which can only
contain ’include’ or ’exclude’ values.

The first two rows implement a resistance rule. Any sample with a T790M mutaion on EGFR
or a KRAS mutation cannot be associated with Erlotinib because it generates resistance to EGFR
inhibitors. The effect is that every sample with either a EGFR T790M mutation or any KRAS mu-
tation will no longer be associated with Erlotinib (it will be considered ’no_drug’) but the mutation
will not be filtered out. In the group slot, the user can put what group the patient with that drug
association will be changed into (in the example from Actionable to Driver). We set the rule as
exclusion (in_out=exclude) for any tumor type.

The other two rows are more stringent and contain a drug inclusion/exclusion rule. Erlotinib can
only be associated with luad and Olaparib only to brca (in_out=include). No matter what tumor
type will be used in the future, these rules will always be applied so that any tumor type that is not
luad or brca will be excluded.

32 panelDesigner

Value

This method returns a CancerPanel object with the slot arguments updated.

Author(s)

Giorgio Melloni , Alessandro Guida

References

source of gene length and exon structure

source of official gene symbols and mapping with ensembl

canonical transcript definition according to ENSEMBL

biomart mirrors

See Also

panelDesigner

Examples

Load the panel example
data(panelexample)
Create a CancerPanel object for the first 3 lines
mypanel <- newCancerPanel(panelexample[1:3 ,] , canonicalTranscript=FALSE)

panelDesigner Estimate panel design according to user specifications

Description

This function takes a CancerPanel object and returns the regions ready to be submitted for sequenc-
ing

Usage

panelDesigner(object
, alterationType = c("copynumber", "expression", "mutations", "fusions")
, padding_length = 100
, merge_window = 50
, utr = FALSE
, canonicalTranscript=TRUE
, BPPARAM=bpparam("SerialParam")
, myhost="www.ensembl.org")

www.biomart.org
http://www.genenames.org
http://www.ensembl.org/Help/Glossary?id=346
http://www.ensembl.org/info/about/mirrors.html

panelDesigner 33

Arguments

object a CancerPanel Object

alterationType by default, the design of the panel is created by mixing all the different types of
alterations. With this parameter you can separate the design by alteration type.

padding_length elongation on both side in case of single spot genomic request

merge_window if two ranges are very close to each other what is the minimum length accepted
for them to be separated and not merged?

utr if TRUE, the genes ranges in the panel design are taken as CDS plus utr. Default
is to take just the coding sequence

canonicalTranscript

if FALSE, every exon of every transcript of the gene is taken into consideration
in calculating gene length. Default to TRUE is to select the canonical transcript

BPPARAM an object of class BiocParallelParam to distribute REST API queries from En-
sembl and HGNC. Serialization is the default.

myhost In case of a biomart breakdown, choose a different host than the default en-
sembl.org. check availability on biomart mirrors

Details

In the majority of cases, copynumber and mutations data are retrieved using different technologies
and the design should be separated. Use ’alterationType’ parameter to create multiple libraries. In
case of fusions, the design will take into account all the genes that form the fusion. The technology
used to find fusion genes can rely on RNA rather than DNA, so in this case it is better to avoid
this function. A similar idea can be applied for expression data. ’merge_window’ parameter is
generally calculated by the sequencing company, so set it to 0 if you don’t want to decide it upfront.
The ability of the machine to capture a region and the cost associated with a change in this measure
depends on the technology itself. It can be very difficult to find the proper trade-off between library
size and number of ranges. The larger is the intronic region accepted, the larger is the library size
because you will accept a lot of off-targets. On the other end, the more regions in your library, the
higher will be the number of amplicons used.

Value

A list of 4 elements:

GeneIntervals a data.frame containing all gene wise intervals on cds and cds plus utr
TargetIntervals

if the panel contains specific regions, it is a data.frame of non-full gene se-
quences as requested in the panel

FullGenes a character vector of genes that will be sequenced for their entire length

BedStylePanel a bed style data.frame with chromosome start and end of the collapse of GeneIn-
tervals and TargetIntervals

Author(s)

Giorgio Melloni, Alessandro Guida

http://www.ensembl.org/info/about/mirrors.html

34 panelexample

References

bed file format according to ensembl

canonical transcript definition according to ENSEMBL

See Also

newCancerPanel

Examples

#Load a Cancer Panel Object
data(cpObj2)
Design your panel for expression data only
Parallelize part of the code using BiocParallel backend for Unix systems
if(tolower(Sys.info()["sysname"])=="windows"){

mydesign <- panelDesigner(cpObj2
, alterationType="mutations")

} else {
mydesign <- panelDesigner(cpObj2

, alterationType="mutations"
, BPPARAM=BiocParallel::MulticoreParam(workers=2)
)

}
Retrieve bed style sequences
head(mydesign[['BedStylePanel']])

panelexample Example of a cancer panel

Description

A data frame containing a cancer panel data.frame to create a CancerPanel object

Usage

data(panelexample)

Format

A data.frame of 6 columns:

1. drug: character vector of drug names or any chemical identifiers

2. gene_symbol: character vector HGNC official gene symbol

3. alteration: a character vector of accepted alteration type, ’SNV’, ’CNA’, ’expression’, ’fusion’

4. exact_alteration: a character vector that identifies the exact alteration depending on alteration
value. For example, alteration ’CNA’ could correspond to exact_alteration ’amplification’ or
’deletion’

http://www.ensembl.org/info/website/upload/bed.html
http://www.ensembl.org/Help/Glossary?id=346

panelOptimizer 35

5. mutation_specification: a character vector that must be empty if alteration is not ’SNV’ and
identifies the exact alteration in various format

6. group: a character vector that is useful for custom annotation of each single row in the panel.
In the example is used to identify actionable from driver variants

Examples

#Load panelexample and show its structure
data(panelexample)
str(panelexample)

panelOptimizer A function that open a shiny app to optimize panel size while retaining
the majority of mutations

Description

Given a CancerPanel object, it automatically reads the genes and panel information and allows a
custom subsetting of the panel to retain the largest amount of mutations while saving genomic space

Usage

panelOptimizer(object)

Arguments

object A CancerPanel object filled with genomic data.

Details

This function reads the panel objects and retrieves all the genes requested for SNV and full se-
quence. It also collects all the mutation data and the tumor types available and performs an analysis
on the position of the mutations on the canonical protein sequence for every gene.

At function call, a shiny app with four tabs is opened. Select a gene and the tumor types to use and
click Run.

On the first and second tabs, the user is guided in the choice of most appropriate regions using an
in-house Bioconductor package called LowMACA. LowMACA creates a null model where all the muta-
tions on each gene are randomly permutated along the sequence. Every position that exceeds the
threshold of 95% confidence interval is considered not random and represents an hotspot. The user
can also decide to use a bandwidth in this calculation and apply a Gaussian density to the distribu-
tion of mutations along the sequence. Alterations that are closed to each other in the sequence will
be aggregated to form significant regions. If the LowMACA analysis succeded, a table will appears
under the plot in the first tab and on the second tab a list of significant positions is also shown. Click
on Store LowMACA yellow button and all the regions identified by the algorithm will be stored in
the fourth tab (Optimize Panel).

If you want to select your own custom regions, go to the third tab (Manual Selection). You can click
on the red dots and retrieve information on specific mutations. If you drag a region with the mouse,

36 panelOptimizer

a table will appear below, with the same information as the LowMACA analysis. Click on Store
yellow button to keep the region selected and move it to the fourth tab.

For a new analysis on a different gene, just select the gene and click Run again.

When satisfied, just click on Close and save or simply close the browser page. All the regions
selected will be merged and returned in standard output.

Value

A list of three elements after closing the shiny session.

1. regions a data.frame with the regions selected, the percentage of space occupied and percent-
age of mutations captured

2. mergedRegions merged protein regions by gene from user section

3. panel if no regions were selected, it reports the original panel, otherwise it substitutes the gene
requested in full sequence with the regions in mergedRegions

Author(s)

Giorgio Melloni, Alessandro Guida

See Also

entropy lmPlot

Examples

Only run this example in interactive R sessions
if (interactive()) {

Load example CancerPanel object
data(cpObj)
Optimize the space on the shiny app.
All changes mad on the app will be saved
newpanel <- panelOptimizer(cpObj)
If some changes have been made, recreate a new CancerPanel object
if(!is.null(newpanel$regions)){
cpObjOptimized <- newCancerPanel(newpanel$panel)
Fill the object with the same data of the non optimized panel
cpObjOptimized <- getAlterations(cpObjOptimized , repos=cpData(cpObj))
Subset alterations on the new panel directives
cpObjOptimized <- subsetAlterations(cpObjOptimized)

}
}

propPowerSampleSize 37

propPowerSampleSize Calculate sample size or power required in a 2-sample or 1-sample
proportion equality study

Description

This plot method returns a scatter plot of required sample size at screening by statistical power
divided by couples of case-control probabilities.

Usage

propPowerSampleSize(object
, var=c(NA , "drug" , "group" , "gene_symbol" , "alteration_id" , "tumor_type")
, alterationType=c("copynumber" , "expression" , "mutations" , "fusions")
, tumor_type=NULL
, stratum=NULL
, tumor.weights=NULL
, tumor.freqs=NULL
, pCase=NULL
, pControl=NULL
, side = c(2,1)
, type=c("chisquare" , "arcsin" , "exact")
, alpha=0.05
, power=NULL
, sample.size=NULL
, case.fraction=0.5
, collapseMutationByGene=TRUE
, collapseByGene=FALSE
, round.result=TRUE
, priority.trial=NULL
, priority.trial.order=c("optimal" , "as.is")
, priority.trial.verbose=TRUE
, noPlot=FALSE)

Arguments

object a CancerPanel object

var one among NA , "drug" , "group" , "gene_symbol" , "alteration_id" or "tu-
mor_type". It defines the arms of the studies to be projected. With var=NA,
the projection of the entire panel is displayed.

alterationType what kind of alteration to include. It can be one or more between "copynumber",
"expression", "mutations", "fusions". Default is to include all kind of alterations.

tumor_type only plot one or more tumor types among the ones available in the object.

stratum a character vector containing one or more specific elements of var to be plotted
instead of all the arms of the study. If it is not present, a warning is raised and
the full design is returned.

38 propPowerSampleSize

tumor.weights A named vector of integer values containing an amount of samples to be ran-
domly sampled from the data. Each element should correspond to a different
tumor type and is named after its tumor code. See details

tumor.freqs A named vector of values between 0 and 1 which sum 1. It contains the expected
proportion of patients that are planned to be screened. See Details

pCase a numerical vector of one or more postulated proportions for cases (between 0
and 1)

pControl a numerical vector of one or more postulated proportions for controls of the
same length of pCase (between 0 and 1)

side perform a 2-tail or 1-tail calculation. Default 2

type calculate sample size using chisquare, arcsin or exact method. chisquare is used
for a 2-sample equality while the other two are used in case in case pControl is
fixed (1-sample case). case.fraction has no effect using arcsin or exact type.

alpha a numerical value between 0 and 1 that reports the type I error threshold. Default
0.05 (5%)

power a numerical vector of values between 0 and 1 that expresses the level of type II
error. It is used to estimate sample size

sample.size a positive integer numerical vector that reports the postulated sample size at
screening. It is used to estimate the power of the study.

case.fraction a numerical value between 0 and 1 representing the fraction of total sample size
allocated to group ’Case’. Group control have an allocation of 1 - case.fraction

collapseMutationByGene

A logical that collapse all mutations on the same gene for a single patient as a
single alteration.

collapseByGene A logical that collapse all alterations on the same gene for a single patient as a
single alteration. e.g. if a sample has TP53 both mutated and deleted as copy-
number, it will count for one alteration only.

round.result logical indicating if the sample size should be rounded with ceiling or not.

priority.trial A character vector of drugs or group levels to start the design of a priority trial.
See Details.

priority.trial.order

Either "optimal" or "as.is". If "optimal" is used, the screening starts from the
rarest drug or group level up to the most common to guarantee minimal sample
size at screening. In case of "as.is", the order of priority.trial remains unchanged.

priority.trial.verbose

If TRUE, the result of a priority.trial will be a complete report in a 5-element
list.

noPlot if TRUE, the plot is not shown and data are reported instead.

Details

This method estimates sample size or power on the basis of one of the two information. Using
multiple sample sizes or power, power curves are reported simulating different scenarios. Power
or sample size are required but not both at the same time. HR must be also set but if a vector

propPowerSampleSize 39

is provided, the plot will show multiple curves according to the various hazard ratios. ’p.event’,
’alpha’ and ’case.fraction’ are instead fixed for all the arms of the study (represented by the ’var’
parameter).

If noPlot=TRUE, a data.frame with 6 column is reported instead:

Var levels of chosen variable

ScreeningSampleSize total sample size estimation at screening on the basis of frequency of alter-
ation

EligibleSampleSize sample size estimated as sum of cases and controls after screening

Beta tested beta values

Power tested 1 - beta values

Proportion.In.Case.Control couples of pCase - pControl tested

The algorithm estimates sample size on the basis of no a priori probability of finding a case or
control subject ("EligibleSampleSize" column). In a basket or umbrella design, this number must
be multiplied by the frequency of alteration that we expect to find based on the simulation run on
the panel. If our panel can cover the 50% of the samples with a target therapy and 100 samples are
required to reach 80% power, we have to screen at least 200 patients in order to reach the desired
number of cases in the sample size ("ScreeningSampleSize" column).

Similarly, if you want to estimate the power of the panel given an estimated sample size, we first
multiply ’sample.size’ by the frequency of expected alterations and then perform power estimation.
’sample.size’ is therefore intended at screening.

When ’var’ variable is set, the algorithm provides the estimated sample size for each stratum of the
variable. For example, if we set it to ’drug’, a power curve for each drug type is displayed, without
taking into account possible overlaps. If a sample shows multiple targettable alterations, it will be
reused for every drug type that targets those alterations.

By default, propPowerSampleSize will use all the available data from the object, using all the
samples for the requested alterationTypes. Nevertheless, one could be interested in creating a com-
pound design that is composed by a certain number of samples per tumor type. This is the typical
situation of basket trials, where you seek for specific alteration, rather than specific tumor types
and your design can be stopped when the desired sample size for a given tumor type is reached.
By adding tumor.weights, we can achieve such target (see examples). Unfortunately, there are two
main drawbacks in doing so:

1. small sample size: by selecting small random samples, the real frequency can be distorted. to
avoid this, it is better to run several small samples and then bootstrap them

2. recycling: if the sample size for a tumor type requested by the user is above the available
number of cBioportal samples, the samples are recycled. This has the effect of stabilizing the
frequencies but y_measure = "absolute" will have no real meaning when the heterogeneity of
the samples is lost.

A user balanced design can be also obtained using tumor.freqs parameter. In this case the fraction
of altered samples are first calculated tumor-wise and then reaggregated using the weights provided
by tumor.freqs. If the fraction of altered samples are 0.3 and 0.4 for breast cancer and lung cancer
respectively, if you set tumor.freqs = c(brca=0.9 , luad=0.1), the full design will have a frequency
equal to 0.3*0.9 + 0.4*0.1 = 0.31, that is basically equal to the one of breast samples. If this
parameter is not set, the total amount of samples available is used with unpredictable balancing.

40 propPowerSampleSize

Both tumor.freqs and tumor.weights can achieve a balanced design according to user specification.
To have a quick idea of the sample size required, it is better to use the former. To get an idea about
the possible distribution of sample size giving a few samples (for example a minimum and a max-
imum sample size) it is better to run the function with tumor.weights several times and aggregate
the results.

If priority.trial is set, a cascade design is build up. Given a set of parameter (power, pCase, pControl
, alpha, etc.) an Eligible Sample Size (ESS) is calculated that is the same across drugs/groups. The
total Screening Sample Size (SSS) is calculated following this scheme:

1. Start screening with the first drug/group, reaching the sample size necessary to reach ESS

2. From the samples not eligible for the first drug/group, test the second drug/group and collects
as many samples as possible up to ESS

3. Continue using the samples not eligible to the end of all drugs/levels. Stop if there are no
leftovers.

4. If all the drugs/groups have reached ESS, stop. Otherwise start a new screening with the first
drug/group that has not reached ESS

5. Repeat from point 2 up to completion

If priority.trial.order is set, the user can decide if the drugs/group levels must follow a precise order
(as.is) or if the screening can start from the rarest drug/group level up to the most common (opti-
mal). Following the optimal priority trial guarantees the best possible allocation with the minimum
screening.

Value

If noPlot = FALSE (default) a scatter plot is returned. If noPlot = TRUE, a data.frame is returned.
In case priority.trial is set, a list of length-5-lists is reported. See vignette for details.

Author(s)

Giorgio Melloni, Alessandro Guida

References

Chow S, Shao J, Wang H. 2008. Sample Size Calculations in Clinical Research. 2nd Ed. Chapman
& Hall/CRC Biostatistics Series. page 85/89

See Also

coveragePlot survPowerSampleSize

Examples

Load example CancerPanel object
data(cpObj)
Show the study design by tumor type:
3 pCase - pControl couples and 4 power levels
The full design is weighted using tumor.freqs
The final sample size is composed by 90% luad and 10% brca

saturationPlot 41

propPowerSampleSize(cpObj
, var = "tumor_type"
, pCase = c(0.7, 0.8 , 0.9)
, pControl = rep(0.5 , 3)
, power=c(0.5 , 0.6 , 0.7 , 0.8 , 0.9)
, tumor.freqs = c(brca=0.1 , luad=0.9))

Return power levels giving sample sizes at screening
propPowerSampleSize(cpObj

, var = NA
, pCase = c(0.7, 0.8 , 0.9)
, pControl = rep(0.5 , 3)
, sample.size=c(100 , 300 , 500 , 1000)
, noPlot=FALSE)

saturationPlot Plot your panel along with incremental genomic space occupied
adding one piece at a time

Description

This plot method returns a scatter plot with genomic space on X axis and average/absolute number
of alterations on Y axis. The way the plot is built is incremental. We add one feature at a time
starting from the most altered and we see how many samples we include at each step and how much
space is occupied.

Usage

saturationPlot(object
, alterationType = c("copynumber", "expression", "mutations", "fusions")
, grouping = c(NA, "drug", "group", "alteration_id", "tumor_type")
, adding = c("alteration_id", "gene_symbol", "drug", "group")
, tumor_type = NULL
, y_measure = c("mean", "absolute")
, adding.order=c("absolute", "rate")
, sum.all.feature=FALSE
, collapseMutationByGene=TRUE
, collapseByGene=FALSE
, labelling=TRUE
, tumor.weights=NULL
, main=""
, legend=c("in" , "out")
, noPlot = FALSE)

Arguments

object a CancerPanel object

alterationType what kind of alteration to include. It can be one or more between "copynumber",
"expression", "mutations", "fusions". Default is to include all kind of alterations.

42 saturationPlot

grouping One of the following: "drug", "group", "alteration_id", "tumor_type". This pa-
rameter draws a curve for every level of the chosen grouping. if set to NA, the
panel is not split and the plot is a single curve.

adding One of the following: "alteration_id", "gene_symbol", "drug", "group". This
parameter will set which variable is added at every point of the plot. see details

tumor_type only plot one or more tumor types among the ones available in the object.

y_measure if ’mean’, the measure on Y axis is the mean number of alterations per sample.
Confidence interval of the measure is also reported. If ’absolute’, the relative
frequency of samples covered by at least one alteration is reported, similarly to
coveragePlot.

adding.order This parameter modifies the order of entrance of the adding variable. If ’abso-
lute’, the adding variable starts from the most altered up to the less frequently
altered. If ’rate’, the order of entrance, from left to right is based on the number
of alterations divided by the length in kb.

sum.all.feature

logical. if TRUE every gene length of the panel is summed up by the adding
variable. The effect is that if a gene is considered both for SNV and CNA, it is
counted twice.

collapseMutationByGene

A logical that collapse all mutations on the same gene for a single patient as a
single alteration.

collapseByGene A logical that collapse all alterations on the same gene for a single patient as a
single alteration. e.g. if a sample has TP53 both mutated and deleted as copy-
number, it will count for one alteration only.

labelling if FALSE, the dots are not labelled. It is useful for very large comparative plots.
Default TRUE.

tumor.weights A named vector of integer values containing an amount of samples to be ran-
domly sampled from the data. Each element should correspond to a different
tumor type and is named after its tumor code. See details

main Set a name for the plot

legend if ’in’ the legend is plotted in the top left corner, if ’out’, outside of the plotting
area

noPlot if TRUE, the plot is not shown and data to create it are reported instead.

Details

This plot is particularly useful to evaluate the panel piece by piece. At the last point, we can observe
the maximum coverage or maximum mean value of the panel, as reported in the coveragePlot. If
we go back one point at a time, we can appreciate how many samples we gained by adding a new
drug or a new gene to the panel. It is often the case that our panel is redundant for certain drugs or
genes and there is no point in wasting sequencing space for a gene that is poorly altered and doesn’t
allow further improvement to our clinical trial.

By default, saturationPlot will use all the available data from the object, using all the samples
for the requested alterationTypes. Nevertheless, one could be interested in creating a compound

saturationPlot 43

design that is composed by a certain number of samples per tumor type. This is the typical situ-
ation of basket trials, where you seek for specific alteration, rather than specific tumor types and
your design can be stopped when the desired sample size for a given tumor type is reached. By
adding tumor.weights, we can achieve such target (see examples). Unfortunately, there are two
main drawbacks in doing so:

1. small sample size: by selecting small random samples, the real frequency can be distorted. to
avoid this, it is better to run several small samples and then bootstrap them

2. recycling: if the sample size for a tumor type requested by the user is above the available
number of cBioportal samples, the samples are recycled. This has the effect of stabilizing the
frequencies but y_measure = "absolute" will have no real meaning when the heterogeneity of
the samples is lost.

If noPlot is TRUE, the method returns a data.frame with 8 or 9 columns, depending on how the
adding.order parameter was set:

gene_symbol , drug , alteration_id or group the adding variable chosen by the user

grouping the grouping variable chosen by the user

Mean the value plotted on Y axis if ’mean’ is chosen as y_measure parameter

Coverage the value plotted on Y axis if ’absolute’ is chosen as y_measure parameter

SD standard deviation of Mean

SE standard error of Mean

CI confidence interval of Mean

Space genomic space in kBases ordered by grouping variable

num_of_variants_per_KB if adding.order=’rate’, this additional column is added. It represents
the number of alteration divided by the feature length

Value

An incremental scatter plot if noPlot is FALSE, a data.frame otherwise.

Author(s)

Giorgio Melloni, Alessandro Guida

See Also

coveragePlot

Examples

Load example CancerPanel object
data(cpObj)
Plot the saturation of this panel by tumor type adding one drug at a time
Using mutations and copynumber data
saturationPlot(cpObj

, alterationType=c("mutations" , "copynumber")
, adding="drug"

44 showCancerStudy

, grouping="tumor_type"
, y_measure="absolute")

Plot with no grouping giving more weight to lung cancer samples
Note that we ask for more samples than the availables in luad dataset
the code will recycle the samples to account for this forced disequilibrium
saturationPlot(cpObj

, alterationType=c("mutations" , "copynumber")
, adding="gene_symbol"
, y_measure="mean"
, tumor.weights=c(brca=500 , luad=2000))

showCancerStudy List of cancer studies included in the cBioportal

Description

Show all the possible cancer studies accepted by PrecisionTrialDrawer

Usage

showCancerStudy(tumor_type=NULL)

Arguments

tumor_type a valid tumor type barcode in TCGA standard coding

Details

This method is a wrapper around cgdsr-getCancerStudies and show all the cancer studies in-
cluded in the cBioPortal. If you specify the tumor_type, follow the list of showTumorType. Even
though the cancer studies are present, it doesn’t mean that there are data for every alteration. A
tumor type could have mutation data but not copynumber or viceversa. Furthermore, fusion data
have a different source and could not be included in the list.

Value

A named vector of all the cancer studies available in cgdsr package that can be passed to the method
getAlterations.

Author(s)

Giorgio Melloni, Alessandro Guida

See Also

getAlterations showTumorType cgdsr-getCancerStudies

showTumorType 45

Examples

myCanStudies <- showCancerStudy()
head(myCanStudies)

showTumorType List of tumor type barcode

Description

Show all the possible tumor types accepted by PrecisionTrialDrawer

Usage

showTumorType()

Details

This method is a wrapper around cgdsr-getCancerStudies and show all the barcodes for the
tumor types included in the cBioPortal. Even though the tumor types are present, it doesn’t mean
that there are data for every alteration. A tumor type could have mutation data but not copynumber
or viceversa. Furthermore, fusion data have a different source and could not be included in the list.

Value

A data.frame of all the tumor types available in cgdsr package that can be passed to the method
getAlterations. Every element is the aggregation of all the available sequenced data from all the
studies involved in a particular tumor type.

Author(s)

Giorgio Melloni, Alessandro Guida

See Also

getAlterations showCancerStudy cgdsr-getCancerStudies

Examples

myTumTypes <- showTumorType()
head(myTumTypes)

46 subsetAlterations

subsetAlterations Retrieve exactly the the alteration requested in the panel after a getAl-
terations method

Description

As soon as all the data are retrieved from local or remote repositories, this method simply subsets
the alterations as exactly requested by the panel and put them in a format that is common to all
kinds of alterations

Usage

subsetAlterations(object , rules)

Arguments

object a CancerPanel object

rules a data.frame with the same columns as the panel plus tumor_type and in_out.
Check newCancerPanel function

Details

This method will raise an error if no data are available in the slot dataFull. The method is com-
pulsory to draw all plots since it attaches to each alteration all the panel characteristics, like for
example druggability and group.

Value

This method returns the object itself with the slot dataSubset updated. This slot is formed by a list
of 4 elements:

mutations a data.frame containing exactly the mutation alterations requested in the panel

copynumber a data.frame containing exactly the copynumber alterations requested in the
panel

expression a data.frame containing exactly the expression alterations requested in the panel

fusions a data.frame containing exactly the fusions alterations requested in the panel

excluded a data.frame containing the samples that are resistant to a drug, if rules is set

Each of the first 4 element is a data.frame with the following columns:

drug drug associated with the alteration, if any

group group associated with the alteration, if present

gene_symbol gene associated with the alteration. In case of fusions, a fusion gene in the
format gene1__gene2

tumor_type tumor_type in which the alterations were found

case_id sample IDs in which the alterations were found

survPowerSampleSize 47

alteration_id type of alteration with autonumeric identifier. e.g. a specific fusion is fus_1,
fus_2 etc.

Please note that the number of alterations per alteration type can have more rows than the original
dataFull slot. This is because the same alteration can be a target of multiple drugs or belong to more
than one group and is therefore repeated.

Author(s)

Giorgio Melloni, Alessandro Guida

References

data origin for mutations, copynumber and expression data

data origin for fusion data

See Also

getAlterations newCancerPanel

Examples

Load example CancerPanel object
data(cpObj)
Launch subsetAlterations excluding certain mutations
from being considered actionable
rules <- data.frame(

drug=c("Erlotinib" , "Erlotinib", "Erlotinib","Erlotinib","Olaparib")
, gene_symbol=c("EGFR" , "KRAS", "" , "", "")
, alteration=c("SNV" , "SNV", "" , "", "")
, exact_alteration=c("amino_acid_variant" , "", "" , "", "")
, mutation_specification=c("T790M" , "" , "" , "", "")
, group=c("Driver" , "Driver", "Driver" , "Driver", "Driver")
, tumor_type=c("luad" , "luad" , "luad" , "coadread","brca")
, in_out=c("exclude" , "exclude" , "include" , "include" , "include")
, stringsAsFactors = FALSE)

cpObj <- subsetAlterations(cpObj , rules = rules)
See the updated slot
str(cpDataSubset(cpObj))

survPowerSampleSize Calculate sample size or power required in a 2-sample time-to-event
(survival) study

Description

This plot method returns a scatter plot of required sample size at screening by statistical power
divided by hazard ratio levels.

www.cbioportal.org
www.tumorfusions.org

48 survPowerSampleSize

Usage

survPowerSampleSize(object
, var=c(NA , "drug" , "group" , "gene_symbol" , "alteration_id" , "tumor_type")
, alterationType=c("copynumber" , "expression" , "mutations" , "fusions")
, tumor_type=NULL
, stratum=NULL
, tumor.weights=NULL
, tumor.freqs=NULL
, HR=NULL
, HR0=1
, ber=0.85
, med=NULL
, fu=2
, acc=NULL
, alpha=0.05
, power=NULL
, sample.size=NULL
, side=c(2,1)
, case.fraction=0.5
, collapseMutationByGene=TRUE
, collapseByGene=FALSE
, round.result=TRUE
, priority.trial=NULL
, priority.trial.order=c("optimal" , "as.is")
, priority.trial.verbose=TRUE
, noPlot=FALSE)

Arguments

object a CancerPanel object

var one among NA , "drug" , "group" , "gene_symbol" , "alteration_id" or "tu-
mor_type". It defines the arms of the studies to be projected. With var=NA,
the projection of the entire panel is displayed.

alterationType what kind of alteration to include. It can be one or more between "copynumber",
"expression", "mutations", "fusions". Default is to include all kind of alterations.

tumor_type only plot one or more tumor types among the ones available in the object.

stratum a character vector containing one or more specific elements of var to be plotted
instead of all the arms of the study. If it is not present, a warning is raised and
the full design is returned.

tumor.weights A named vector of integer values containing an amount of samples to be ran-
domly sampled from the data. Each element should correspond to a different
tumor type and is named after its tumor code. See details

tumor.freqs A named vector of values between 0 and 1 which sum 1. It contains the expected
proportion of patients that are planned to be screened. See Details

HR a numerical vector of one or more postulated Hazard Ratio (case group/control
group).

survPowerSampleSize 49

HR0 a numerical vector of the same length of HR that postulate the Hazard Ratio of
the null hypothesis. Default is 1, no difference in risk between the two groups.

ber a numerical value > 0. baseline event rate is the expected number of events per
unit of time in control group. Default 0.85

med a numerical value between > 0. median survival time in control group. If set, it
takes precedence over ber as one can derive ber from med and viceversa. Default
NULL.

fu average follow-up time for the study. Default is 2
acc accrual time for the study. Defualt is NULL so that only follow-up time is

considered
alpha a numerical value between 0 and 1 that reports the type I error threshold. Default

0.05 (5%)
power a numerical vector of values between 0 and 1 that expresses the level of 1 - type

II error. It is used to estimate sample size
sample.size a positive integer numerical vector that reports the postulated sample size at

screening. It is used to estimate the power of the study.
side perform a 2-tail or 1-tail calculation. Default 2
case.fraction a numerical value between 0 and 1 representing the fraction of total sample size

allocated to group ’A’
collapseMutationByGene

A logical that collapse all mutations on the same gene for a single patient as a
single alteration.

collapseByGene A logical that collapse all alterations on the same gene for a single patient as a
single alteration. e.g. if a sample has TP53 both mutated and deleted as copy-
number, it will count for one alteration only.

round.result logical indicating if the sample size should be rounded with ceiling or not.
priority.trial A character vector of drugs or group levels to start the design of a priority trial.

See Details.
priority.trial.order

Either "optimal" or "as.is". If "optimal" is used, the screening starts from the
rarest drug or group level up to the most common to guarantee minimal sample
size at screening. In case of "as.is", the order of priority.trial remains unchanged.

priority.trial.verbose

If TRUE, the result of a priority.trial will be a complete report in a 5-element
list.

noPlot if TRUE, the plot is not shown and data are reported instead.

Details

This method estimates sample size or power on the basis of one of the two information. Using
multiple sample sizes or power, power curves are reported simulating different scenarios. Power
or sample size are required but not both at the same time. HR must be also set but if a vector
is provided, the plot will show multiple curves according to the various hazard ratios. ’p.event’,
’alpha’ and ’case.fraction’ are instead fixed for all the arms of the study (represented by the ’var’
parameter).

If noPlot=TRUE, a data.frame with 6 column is reported instead:

50 survPowerSampleSize

Var levels of chosen variable

ScreeningSampleSize total sample size estimation at screening on the basis of frequency of alter-
ation

EligibleSampleSize sample size estimated as sum of cases and controls after screening

Beta tested beta values

Power tested 1 - beta values

HazardRatio levels of hazard ratio tested

The algorithm estimates sample size on the basis of no a priori probability of finding a case or
control subject ("EligibleSampleSize" column). In a basket or umbrella design, this number must
be multiplied by the frequency of alteration that we expect to find based on the simulation run on
the panel. If our panel can cover the 50% of the samples with a target therapy and 100 samples are
required to reach 80% power, we have to screen at least 200 patients in order to reach the desired
number of cases in the sample size ("ScreeningSampleSize" column).

Similarly, if you want to estimate the power of the panel given an estimated sample size, we first
multiply ’sample.size’ by the frequency of expected alterations and then perform power estimation.
’sample.size’ is therefore intended at screening.

When ’var’ variable is set, the algorithm provides the estimated sample size for each stratum of the
variable. For example, if we set it to ’drug’, a power curve for each drug type is displayed, without
taking into account possible overlaps. If a sample shows multiple targettable alterations, it will be
reused for every drug type that targets those alterations.

By default, survPowerSampleSize will use all the available data from the object, using all the
samples for the requested alterationTypes. Nevertheless, one could be interested in creating a com-
pound design that is composed by a certain number of samples per tumor type. This is the typical
situation of basket trials, where you seek for specific alteration, rather than specific tumor types
and your design can be stopped when the desired sample size for a given tumor type is reached.
By adding tumor.weights, we can achieve such target (see examples). Unfortunately, there are two
main drawbacks in doing so:

1. small sample size: by selecting small random samples, the real frequency can be distorted. to
avoid this, it is better to run several small samples and then bootstrap them

2. recycling: if the sample size for a tumor type requested by the user is above the available
number of cBioportal samples, the samples are recycled. This has the effect of stabilizing the
frequencies but y_measure = "absolute" will have no real meaning when the heterogeneity of
the samples is lost.

A user balanced design can be also obtained using tumor.freqs parameter. In this case the fraction
of altered samples are first calculated tumor-wise and then re aggregated using the weights provided
by tumor.freqs. If the fraction of altered samples are 0.3 and 0.4 for breast cancer and lung cancer
respectively, if you set tumor.freqs = c(brca=0.9 , luad=0.1), the full design will have a frequency
equal to 0.3*0.9 + 0.4*0.1 = 0.31, that is basically equal to the one of breast samples. If this
parameter is not set, the total amount of samples available is used with unpredictable balancing.

Both tumor.freqs and tumor.weights can achieve a balanced design according to user specification.
For having a quick idea of the sample size required, it is better to use the former. To get an idea
about the possible distribution of sample size giving a few samples (for example a minimum and a
maximum sample size) it is better to run the function with tumor.weights several times and aggre-
gate the results.

survPowerSampleSize 51

If priority.trial is set, a cascade design is build up. Given a set of parameter (power, HR, alpha,
etc.) an Eligible Sample Size (ESS) is calculated that is the same across drugs/groups. The total
Screening Sample Size (SSS) is calculated following this scheme:

1. Start screening with the first drug/group, reaching the sample size necessary to reach ESS

2. From the samples not eligible for the first drug/group, test the second drug/group and collects
as many samples as possible up to ESS

3. Continue using the samples not eligible to the end of all drugs/levels. Stop if there are no
leftovers.

4. If all the drugs/groups have reached ESS, stop. Otherwise start a new screening with the first
drug/group that has not reached ESS

5. Repeat from point 2 up to completion

If priority.trial.order is set, the user can decide if the drugs/group levels must follow a precise order
(as.is) or if the screening can start from the rarest drug/group level up to the most common (opti-
mal). Following the optimal priority trial guarantees the best possible allocation with the minimum
screening.

Value

If noPlot = FALSE (default) a scatter plot is returned. If noPlot = TRUE, a data.frame is returned.
In case priority.trial is set, a 5-element list is reported. See vignette for details.

Author(s)

Giorgio Melloni, Alessandro Guida

References

Schoenfeld DA. Sample-size formula for the proportional-hazards regression model. Biometrics
1983;39:499-503.

See Also

coveragePlot propPowerSampleSize

Examples

Load example CancerPanel object
data(cpObj)
Show the full design:
3 hazard ratios and 4 power levels
survPowerSampleSize(cpObj

, var = NA
, HR = c(1.5 , 1.7, 2, 3)
, power = c(0.6 , 0.7 , 0.8 , 0.9))

Design a priority trial to reach sufficient statistical power across drugs
Use 4 drugs and find the optimal sample size at screening
survPowerSampleSize(cpObj , var = "drug"

, HR = c(0.5 , 0.8 , 0.9)

52 survPowerSampleSize1Arm

, power = c(0.7 , 0.8)
, priority.trial = c("Idelalisib" , "Olaparib"
, "Trastuzumab" , "Vandetanib")
, priority.trial.order = "optimal")

survPowerSampleSize1Arm

Calculate sample size or power required in a 1-sample time-to-event
(survival) study

Description

This plot method returns a scatter plot of required sample size at screening by statistical power
divided by median case survival time levels.

Usage

survPowerSampleSize1Arm(object
, var=c(NA , "drug" , "group" , "gene_symbol" , "alteration_id" , "tumor_type")
, alterationType=c("copynumber" , "expression" , "mutations" , "fusions")
, tumor_type=NULL
, stratum=NULL
, tumor.weights=NULL
, tumor.freqs=NULL
, MED1=NULL
, MED0=NULL
, fu=2
, acc=NULL
, alpha=0.05
, power=NULL
, sample.size=NULL
, side=c(2,1)
, collapseMutationByGene=TRUE
, collapseByGene=FALSE
, round.result=TRUE
, priority.trial=NULL
, priority.trial.order=c("optimal" , "as.is")
, priority.trial.verbose=TRUE
, noPlot=FALSE)

Arguments

object a CancerPanel object

var one among NA , "drug" , "group" , "gene_symbol" , "alteration_id" or "tu-
mor_type". It defines the arms of the studies to be projected. With var=NA,
the projection of the entire panel is displayed.

survPowerSampleSize1Arm 53

alterationType what kind of alteration to include. It can be one or more between "copynumber",
"expression", "mutations", "fusions". Default is to include all kind of alterations.

tumor_type only plot one or more tumor types among the ones available in the object.

stratum a character vector containing one or more specific elements of var to be plotted
instead of all the arms of the study. If it is not present, a warning is raised and
the full design is returned.

tumor.weights A named vector of integer values containing an amount of samples to be ran-
domly sampled from the data. Each element should correspond to a different
tumor type and is named after its tumor code. See details

tumor.freqs A named vector of values between 0 and 1 which sum 1. It contains the expected
proportion of patients that are planned to be screened. See Details

MED1 numeric value or vector. median survival time for case group.

MED0 numeric value or vector. historical control survival time

fu average follow-up time for the study. Default is 2

acc accrual time for the study. Defualt is NULL so that only follow-up time is
considered

alpha a numerical value between 0 and 1 that reports the type I error threshold. Default
0.05 (5%)

power a numerical vector of values between 0 and 1 that expresses the level of 1 - type
II error. It is used to estimate sample size

sample.size a positive integer numerical vector that reports the postulated sample size at
screening. It is used to estimate the power of the study.

side perform a 2-tail or 1-tail calculation. Default 2

collapseMutationByGene

A logical that collapse all mutations on the same gene for a single patient as a
single alteration.

collapseByGene A logical that collapse all alterations on the same gene for a single patient as a
single alteration. e.g. if a sample has TP53 both mutated and deleted as copy-
number, it will count for one alteration only.

round.result logical indicating if the sample size should be rounded with ceiling or not.

priority.trial A character vector of drugs or group levels to start the design of a priority trial.
See Details.

priority.trial.order

Either "optimal" or "as.is". If "optimal" is used, the screening starts from the
rarest drug or group level up to the most common to guarantee minimal sample
size at screening. In case of "as.is", the order of priority.trial remains unchanged.

priority.trial.verbose

If TRUE, the result of a priority.trial will be a complete report in a 5-element
list.

noPlot if TRUE, the plot is not shown and data are reported instead.

54 survPowerSampleSize1Arm

Details

This method estimates sample size or power on the basis of one of the two information. Using
multiple sample sizes or power, power curves are reported simulating different scenarios. Power
or sample size are required but not both at the same time. HR must be also set but if a vector
is provided, the plot will show multiple curves according to the various hazard ratios. ’p.event’,
’alpha’ and ’case.fraction’ are instead fixed for all the arms of the study (represented by the ’var’
parameter).

If noPlot=TRUE, a data.frame with 6 column is reported instead:

Var levels of chosen variable

ScreeningSampleSize total sample size estimation at screening on the basis of frequency of alter-
ation

EligibleSampleSize sample size estimated as sum of cases and controls after screening

Beta tested beta values

Power tested 1 - beta values

MedianSurvivalCase levels of postulated median survival time tested

The algorithm estimates sample size on the basis of no a priori probability of finding a case or
control subject ("EligibleSampleSize" column). In a basket or umbrella design, this number must
be multiplied by the frequency of alteration that we expect to find based on the simulation run on
the panel. If our panel can cover the 50% of the samples with a target therapy and 100 samples are
required to reach 80% power, we have to screen at least 200 patients in order to reach the desired
number of cases in the sample size ("ScreeningSampleSize" column).

Similarly, if you want to estimate the power of the panel given an estimated sample size, we first
multiply ’sample.size’ by the frequency of expected alterations and then perform power estimation.
’sample.size’ is therefore intended at screening.

When ’var’ variable is set, the algorithm provides the estimated sample size for each stratum of the
variable. For example, if we set it to ’drug’, a power curve for each drug type is displayed, without
taking into account possible overlaps. If a sample shows multiple targettable alterations, it will be
reused for every drug type that targets those alterations.

By default, survPowerSampleSize1Arm will use all the available data from the object, using all
the samples for the requested alterationTypes. Nevertheless, one could be interested in creating a
compound design that is composed by a certain number of samples per tumor type. This is the
typical situation of basket trials, where you seek for specific alteration, rather than specific tumor
types and your design can be stopped when the desired sample size for a given tumor type is reached.
By adding tumor.weights, we can achieve such target (see examples). Unfortunately, there are two
main drawbacks in doing so:

1. small sample size: by selecting small random samples, the real frequency can be distorted. to
avoid this, it is better to run several small samples and then bootstrap them

2. recycling: if the sample size for a tumor type requested by the user is above the available
number of cBioportal samples, the samples are recycled. This has the effect of stabilizing the
frequencies but y_measure = "absolute" will have no real meaning when the heterogeneity of
the samples is lost.

survPowerSampleSize1Arm 55

A user balanced design can be also obtained using tumor.freqs parameter. In this case the fraction
of altered samples are first calculated tumor-wise and then re aggregated using the weights provided
by tumor.freqs. If the fraction of altered samples are 0.3 and 0.4 for breast cancer and lung cancer
respectively, if you set tumor.freqs = c(brca=0.9 , luad=0.1), the full design will have a frequency
equal to 0.3*0.9 + 0.4*0.1 = 0.31, that is basically equal to the one of breast samples. If this
parameter is not set, the total amount of samples available is used with unpredictable balancing.

Both tumor.freqs and tumor.weights can achieve a balanced design according to user specification.
For having a quick idea of the sample size required, it is better to use the former. To get an idea
about the possible distribution of sample size giving a few samples (for example a minimum and a
maximum sample size) it is better to run the function with tumor.weights several times and aggre-
gate the results.

If priority.trial is set, a cascade design is build up. Given a set of parameter (power, HR, alpha,
etc.) an Eligible Sample Size (ESS) is calculated that is the same across drugs/groups. The total
Screening Sample Size (SSS) is calculated following this scheme:

1. Start screening with the first drug/group, reaching the sample size necessary to reach ESS

2. From the samples not eligible for the first drug/group, test the second drug/group and collects
as many samples as possible up to ESS

3. Continue using the samples not eligible to the end of all drugs/levels. Stop if there are no
leftovers.

4. If all the drugs/groups have reached ESS, stop. Otherwise start a new screening with the first
drug/group that has not reached ESS

5. Repeat from point 2 up to completion

If priority.trial.order is set, the user can decide if the drugs/group levels must follow a precise order
(as.is) or if the screening can start from the rarest drug/group level up to the most common (opti-
mal). Following the optimal priority trial guarantees the best possible allocation with the minimum
screening.

Value

If noPlot = FALSE (default) a scatter plot is returned. If noPlot = TRUE, a data.frame is returned.
In case priority.trial is set, a 5-element list is reported. See vignette for details.

Author(s)

Giorgio Melloni, Alessandro Guida

References

Lawless, Jerald F. Statistical Models and Methods for Lifetime Data. 2nd ed. John Wiley Sons,
2003.

See Also

coveragePlot propPowerSampleSize

56 survPowerSampleSize1Arm

Examples

Load example CancerPanel object
data(cpObj)
Show the full design:
3 median survival times (MED1) against 1 historical value (MED0)
follow-up time at 24 months
survPowerSampleSize1Arm(cpObj

, var = NA
, MED1 = c(12 , 6 , 4)
, MED0 = 3
, fu = 18
, power = c(0.6 , 0.7 , 0.8 , 0.9)
)

Show the study design by tumor type:
3 hazard ratios and 4 power levels
The full design is weighted using tumor.freqs
The final sample size is composed by 90% luad and 10% brca
survPowerSampleSize1Arm(cpObj

, var = "tumor_type"
, MED1 = c(12 , 6 , 4)
, MED0 = 3
, fu = 18
, power=c(0.5 , 0.6 , 0.7 , 0.8 , 0.9)
, tumor.freqs = c(brca=0.1 , luad=0.9))

Index

∗ classes
CancerPanel-class, 4

∗ datasets
cpDesign, 18
cpObj, 22
cpObj2, 23
panelexample, 34

∗ package
PrecisionTrialDrawer-package, 2

appendRepo, 3
appendRepo,CancerPanel-method

(CancerPanel-class), 4

CancerPanel-class, 4
coocMutexPlot, 6
coocMutexPlot,CancerPanel-method

(CancerPanel-class), 4
coveragePlot, 9, 13, 14, 21, 40, 42, 43, 51, 55
coveragePlot,CancerPanel-method

(CancerPanel-class), 4
coverageStackPlot, 10, 11, 11, 21
coverageStackPlot,CancerPanel-method

(CancerPanel-class), 4
cpArguments, 14
cpArguments,CancerPanel-method

(CancerPanel-class), 4
cpData, 15, 15, 17
cpData,CancerPanel-method

(CancerPanel-class), 4
cpDataSubset, 15, 16, 17
cpDataSubset,CancerPanel-method

(CancerPanel-class), 4
cpDesign, 18
cpFreq, 19
cpFreq,CancerPanel-method

(CancerPanel-class), 4
cpObj, 22
cpObj2, 23

dataExtractor, 23
dataExtractor,CancerPanel-method

(CancerPanel-class), 4

entropy, 36

filterFusions, 25, 27
filterFusions,CancerPanel-method

(CancerPanel-class), 4
filterMutations, 26, 26
filterMutations,CancerPanel-method

(CancerPanel-class), 4

getAlterations, 4, 24, 26, 27, 28, 44, 45, 47
getAlterations,CancerPanel-method

(CancerPanel-class), 4

lmPlot, 36

newCancerPanel, 5, 29, 34, 47

panelDesigner, 32, 32
panelDesigner,CancerPanel-method

(CancerPanel-class), 4
panelexample, 30, 34
panelOptimizer, 35
panelOptimizer,CancerPanel-method

(CancerPanel-class), 4
PrecisionTrialDrawer

(PrecisionTrialDrawer-package),
2

PrecisionTrialDrawer-package, 2
propPowerSampleSize, 37, 51, 55
propPowerSampleSize,CancerPanel-method

(CancerPanel-class), 4

saturationPlot, 8, 11, 14, 41
saturationPlot,CancerPanel-method

(CancerPanel-class), 4
show,CancerPanel-method

(CancerPanel-class), 4

57

58 INDEX

showCancerStudy, 29, 44, 45
showTumorType, 29, 44, 45
subsetAlterations, 4, 24, 26, 27, 29, 46
subsetAlterations,CancerPanel-method

(CancerPanel-class), 4
survPowerSampleSize, 40, 47
survPowerSampleSize,CancerPanel-method

(CancerPanel-class), 4
survPowerSampleSize1Arm, 52
survPowerSampleSize1Arm,CancerPanel-method

(CancerPanel-class), 4

	PrecisionTrialDrawer-package
	appendRepo
	CancerPanel-class
	coocMutexPlot
	coveragePlot
	coverageStackPlot
	cpArguments
	cpData
	cpDataSubset
	cpDesign
	cpFreq
	cpObj
	cpObj2
	dataExtractor
	filterFusions
	filterMutations
	getAlterations
	newCancerPanel
	panelDesigner
	panelexample
	panelOptimizer
	propPowerSampleSize
	saturationPlot
	showCancerStudy
	showTumorType
	subsetAlterations
	survPowerSampleSize
	survPowerSampleSize1Arm
	Index

