
Package ‘MsCoreUtils’
October 14, 2021

Title Core Utils for Mass Spectrometry Data

Version 1.4.0

Description MsCoreUtils defines low-level functions for mass
spectrometry data and is independent of any high-level data
structures. These functions include mass spectra processing
functions (noise estimation, smoothing, binning), quantitative
aggregation functions (median polish, robust summarisation, ...),
missing data imputation, data normalisation (quantiles, vsn, ...)
as well as misc helper functions, that are used across high-level
data structure within the R for Mass Spectrometry packages.

Depends R (>= 3.6.0)

Imports methods, S4Vectors, MASS, stats, clue

Suggests testthat, knitr, BiocStyle, rmarkdown, roxygen2, imputeLCMD,
impute, norm, pcaMethods, vsn, preprocessCore

License Artistic-2.0

Encoding UTF-8

VignetteBuilder knitr

LinkingTo Rcpp

BugReports https://github.com/RforMassSpectrometry/MsCoreUtils/issues

URL https://github.com/RforMassSpectrometry/MsCoreUtils

biocViews Infrastructure, Proteomics, MassSpectrometry, Metabolomics

Roxygen list(markdown=TRUE)

RoxygenNote 7.1.1

git_url https://git.bioconductor.org/packages/MsCoreUtils

git_branch RELEASE_3_13

git_last_commit edaca2a

git_last_commit_date 2021-05-19

Date/Publication 2021-10-14

1

https://github.com/RforMassSpectrometry/MsCoreUtils/issues
https://github.com/RforMassSpectrometry/MsCoreUtils

2 R topics documented:

Author RforMassSpectrometry Package Maintainer [cre],
Laurent Gatto [aut] (<https://orcid.org/0000-0002-1520-2268>),
Johannes Rainer [aut] (<https://orcid.org/0000-0002-6977-7147>),
Sebastian Gibb [aut] (<https://orcid.org/0000-0001-7406-4443>),
Adriaan Sticker [ctb],
Sigurdur Smarason [ctb],
Thomas Naake [ctb],
Josep Maria Badia Aparicio [ctb]
(<https://orcid.org/0000-0002-5704-1124>),
Michael Witting [ctb] (<https://orcid.org/0000-0002-1462-4426>)

Maintainer
RforMassSpectrometry Package Maintainer <maintainer@rformassspectrometry.org>

R topics documented:

aggregate_by_vector . 3
between . 4
bin . 5
closest . 6
coerce . 10
colCounts . 10
distance . 11
gnps . 13
group . 16
i2index . 17
impute_matrix . 18
isPeaksMatrix . 22
localMaxima . 23
medianPolish . 23
noise . 24
normalizeMethods . 25
ppm . 26
rbindFill . 27
refineCentroids . 28
rla . 29
robustSummary . 31
rt2numeric . 32
smooth . 33
validPeaksMatrix . 35
valleys . 36
vapply1c . 37

Index 39

https://orcid.org/0000-0002-1520-2268
https://orcid.org/0000-0002-6977-7147
https://orcid.org/0000-0001-7406-4443
https://orcid.org/0000-0002-5704-1124
https://orcid.org/0000-0002-1462-4426

aggregate_by_vector 3

aggregate_by_vector Aggreagate quantitative features.

Description

This function takes a matrix of quantitative features x and a factor (of length equal to nrow(x))
defining subsets, and applies a user-defined function to aggregate each subset into a vector of quan-
titative values.

User-defined functions must thus return a vector of length equal to ncol(x). Examples thereof are

• medianPolish() to fits an additive model (two way decomposition) using Tukey’s median
polish_ procedure using stats::medpolish();

• robustSummary() to calculate a robust aggregation using MASS::rlm();

• base::colMeans() to use the mean of each column;

• base::colSums() to use the sum of each column;

• matrixStats::colMedians() to use the median of each column.

Usage

aggregate_by_vector(x, INDEX, FUN, ...)

Arguments

x A matrix of mode numeric.

INDEX A factor of length nrow(x).

FUN A function to be applied to the subsets of x.

... Additional arguments passed to FUN.

Value

A new matrix of dimensions ncol(x) and length(INDEX) with dimnames equal to colnames(x)
and INDEX.

Author(s)

Laurent Gatto

See Also

Other Quantitative feature aggregation: colCounts(), medianPolish(), robustSummary()

4 between

Examples

x <- structure(c(10.3961935744407, 17.1663715212693, 14.1027587989326,
12.850349037785, 10.6379251053134, 7.52885076885599,
3.91816118984218, 11.1339832690524, 16.5321471730746,
14.1787908569268, 11.9422579479634, 11.5154097311056,
7.69906817878979, 3.97092153807337, 11.9394664781386,
15.3791100898935, 14.2409281956285, 11.2106867261254,
12.2958526883634, 9.00858488668671, 3.83120129974963,
12.9033445520186, 14.375814954807, 14.1617803596661,
10.1237981632645, 13.3390344671153, 9.75719265786117,
3.81046169359919),

.Dim = c(7L, 4L),

.Dimnames = list(c("X1", "X27", "X41", "X47", "X52",
"X53", "X55"),

c("iTRAQ4.114", "iTRAQ4.115",
"iTRAQ4.116", "iTRAQ4.117")))

x

k <- factor(c("B", "E", "X", "E", "B", "B", "E"))

aggregate_by_vector(x, k, colMeans)
aggregate_by_vector(x, k, robustSummary)
aggregate_by_vector(x, k, medianPolish)

between Range helper functions

Description

These functions help to work with numeric ranges.

Usage

between(x, range)

x %between% range

Arguments

x numeric, input values.

range numeric(2), range to compare against.

Value

logical vector of length length(x).

Author(s)

Sebastian Gibb

bin 5

See Also

Other helper functions for developers: isPeaksMatrix(), rbindFill(), validPeaksMatrix(),
vapply1c()

Examples

between(1:4, 2:3)
1:4 %between% 2:3

bin Binning

Description

Aggregate values in x for bins defined on y: all values in x for values in y falling into a bin (defined
on y) are aggregated with the provided function FUN.

Usage

bin(
x,
y,
size = 1,
breaks = seq(floor(min(y)), ceiling(max(y)), by = size),
FUN = max

)

Arguments

x numeric with the values that should be aggregated/binned.

y numeric with same length than x with values to be used for the binning.

size numeric(1) with the size of a bin.

breaks numeric defining the breaks (bins).

FUN function to be used to aggregate values of x falling into the bins defined by
breaks.

Value

list with elements x (aggregated values of x) and mids (the bin mid points).

Author(s)

Johannes Rainer, Sebastian Gibb

See Also

Other grouping/matching functions: closest(), gnps()

6 closest

Examples

Define example intensities and m/z values
ints <- abs(rnorm(20, mean = 40))
mz <- seq(1:length(ints)) + rnorm(length(ints), sd = 0.001)

Bin intensities by m/z bins with a bin size of 2
bin(ints, mz, size = 2)

Repeat but summing up intensities instead of taking the max
bin(ints, mz, size = 2, FUN = sum)

closest Relaxed Value Matching

Description

These functions offer relaxed matching of one vector in another. In contrast to the similar match()
and %in% functions they just accept numeric arguments but have an additional tolerance argument
that allows relaxed matching.

Usage

closest(
x,
table,
tolerance = Inf,
ppm = 0,
duplicates = c("keep", "closest", "remove"),
nomatch = NA_integer_,
.check = TRUE

)

common(
x,
table,
tolerance = Inf,
ppm = 0,
duplicates = c("keep", "closest", "remove"),
.check = TRUE

)

join(
x,
y,
tolerance = 0,
ppm = 0,
type = c("outer", "left", "right", "inner"),

closest 7

.check = TRUE,

...
)

Arguments

x numeric, the values to be matched. In contrast to match() x has to be sorted in
increasing order and must not contain any NA.

table numeric, the values to be matched against. In contrast to match() table has to
be sorted in increasing order and must not contain any NA.

tolerance numeric, accepted tolerance. Could be of length one or the same length as x.

ppm numeric(1) representing a relative, value-specific parts-per-million (PPM) tol-
erance that is added to tolerance.

duplicates character(1), how to handle duplicated matches. Has to be one of c("keep","closest","remove").
No abbreviations allowed.

nomatch integer(1), if the difference between the value in x and table is larger than
tolerance nomatch is returned.

.check logical(1) turn off checks for increasingly sorted x and y. This should just
be done if it is ensured by other methods that x and y are sorted, see also
closest().

y numeric, the values to be joined. Should be sorted.

type character(1), defines how x and y should be joined. See details for join.

... ignored.

Details

For closest/common the tolerance argument could be set to 0 to get the same results as for
match()/%in%. If it is set to Inf (default) the index of the closest values is returned without any
restriction.

It is not guaranteed that there is a one-to-one matching for neither the x to table nor the table to
x matching.

If multiple elements in x match a single element in table all their corresponding indices are
returned if duplicates="keep" is set (default). This behaviour is identical to match(). For
duplicates="closest" just the closest element in x gets the corresponding index in table and
for duplicates="remove" all elements in x that match to the same element in table are set to
nomatch.

If a single element in x matches multiple elements in table the closest is returned for duplicates="keep"
or duplicates="closest" (keeping multiple matches isn’t possible in this case because the return
value should be of the same length as x). If the differences between x and the corresponding matches
in table are identical the lower index (the smaller element in table) is returned. There is one ex-
ception: if the lower index is already returned for another x with a smaller difference to this index
the higher one is returned for duplicates = "closer" (but only if there is no other x that is closer
to the higher one). For duplicates="remove" all multiple matches are returned as nomatch as
above.

8 closest

.checks = TRUE tests among other input validation checks for increasingly sorted x and table
arguments that are mandatory assumptions for the closest algorithm. These checks require to loop
through both vectors and compare each element against its precursor. Depending on the length and
distribution of x and table these checks take equal/more time than the whole closest algorithm. If
it is ensured by other methods that both arguments x and table are sorted the tests could be skipped
by .check = FALSE. In the case that .check = FALSE is used and one of x and table is not sorted
(or decreasingly sorted) the output would be incorrect in the best case and result in infinity loop in
the average and worst case.

join: joins two numeric vectors by mapping values in x with values in y and vice versa if they are
similar enough (provided the tolerance and ppm specified). The function returns a matrix with
the indices of mapped values in x and y. Parameter type allows to define how the vectors will be
joined: type = "left": values in x will be mapped to values in y, elements in y not matching any
value in x will be discarded. type = "right": same as type = "left" but for y. type = "outer":
return matches for all values in x and in y. type = "inner": report only indices of values that could
be mapped.

Value

closest returns an integer vector of the same length as x giving the closest position in table of
the first match or nomatch if there is no match.

common returns a logical vector of length x that is TRUE if the element in x was found in table. It
is similar to %in%.

join returns a matrix with two columns, namely x and y, representing the index of the values in x
matching the corresponding value in y (or NA if the value does not match).

Note

join is based on closest(x,y,tolerance,duplicates = "closest"). That means for multiple
matches just the closest one is reported.

Author(s)

Sebastian Gibb, Johannes Rainer

See Also

match()

%in%

Other grouping/matching functions: bin(), gnps()

Examples

Define two vectors to match
x <- c(1, 3, 5)
y <- 1:10

Compare match and closest
match(x, y)
closest(x, y)

closest 9

If there is no exact match
x <- x + 0.1
match(x, y) # no match
closest(x, y)

Some new values
x <- c(1.11, 45.02, 556.45)
y <- c(3.01, 34.12, 45.021, 46.1, 556.449)

Using a single tolerance value
closest(x, y, tolerance = 0.01)

Using a value-specific tolerance accepting differences of 20 ppm
closest(x, y, ppm = 20)

Same using 50 ppm
closest(x, y, ppm = 50)

Sometimes multiple elements in `x` match to `table`
x <- c(1.6, 1.75, 1.8)
y <- 1:2
closest(x, y, tolerance = 0.5)
closest(x, y, tolerance = 0.5, duplicates = "closest")
closest(x, y, tolerance = 0.5, duplicates = "remove")

Are there any common values?
x <- c(1.6, 1.75, 1.8)
y <- 1:2
common(x, y, tolerance = 0.5)
common(x, y, tolerance = 0.5, duplicates = "closest")
common(x, y, tolerance = 0.5, duplicates = "remove")

Join two vectors
x <- c(1, 2, 3, 6)
y <- c(3, 4, 5, 6, 7)

jo <- join(x, y, type = "outer")
jo
x[jo$x]
y[jo$y]

jl <- join(x, y, type = "left")
jl
x[jl$x]
y[jl$y]

jr <- join(x, y, type = "right")
jr
x[jr$x]
y[jr$y]

ji <- join(x, y, type = "inner")

10 colCounts

ji
x[ji$x]
y[ji$y]

coerce Coerce functions

Description

• asInteger: convert x to an integer and throw an error if x is not a numeric.

Usage

asInteger(x)

Arguments

x input argument.

Author(s)

Johannes Rainer

Examples

Convert numeric to integer
asInteger(3.4)

asInteger(3)

colCounts Counts the number of features

Description

Returns the number of non-NA features in a features by sample matrix.

Usage

colCounts(x, ...)

Arguments

x A matrix of mode numeric.

... Currently ignored.

distance 11

Value

A numeric vector of length identical to ncol(x).

Author(s)

Laurent Gatto

See Also

Other Quantitative feature aggregation: aggregate_by_vector(), medianPolish(), robustSummary()

Examples

m <- matrix(c(1, NA, 2, 3, NA, NA, 4, 5, 6),
nrow = 3)

colCounts(m)
m <- matrix(rnorm(30), nrow = 3)
colCounts(m)

distance Spectra Distance/Similarity Measurements

Description

These functions provide different normalized similariy/distance measurements.

Usage

ndotproduct(x, y, m = 0L, n = 0.5, na.rm = TRUE, ...)

dotproduct(x, y, m = 0L, n = 0.5, na.rm = TRUE, ...)

neuclidean(x, y, m = 0L, n = 0.5, na.rm = TRUE, ...)

navdist(x, y, m = 0L, n = 0.5, na.rm = TRUE, ...)

nspectraangle(x, y, m = 0L, n = 0.5, na.rm = TRUE, ...)

Arguments

x matrix, two-columns e.g. m/z, intensity

y matrix, two-columns e.g. m/z, intensity

m numeric, weighting for the first column of x and y (e.g. "mz"), default: 0 means
don’t weight by the first column. For more details see the ndotproduct details
section.

12 distance

n numeric, weighting for the second column of x and y (e.g. "intensity"), default:
0.5 means effectly using sqrt(x[,2]) and sqrt(y[,2]). For more details see
the ndotproduct details section.

na.rm logical(1), should NA be removed prior to calculation (default TRUE).

... ignored.

Details

All functions that calculate normalized similarity/distance measurements are prefixed with a n.

ndotproduct: the normalized dot product is described in Stein and Scott 1994 as: NDP =∑
(W1W2)

2∑
(W1)2

∑
(W2)2

; where Wi = xm ∗ yn, where x and y are the m/z and intensity values, respec-

tively. Please note also that NDP = NCos2; where NCos is the cosine value (i.e. the orthodox
normalized dot product) of the intensity vectors as described in Yilmaz et al. 2017. Stein and Scott
1994 empirically determined the optimal exponents as m = 3 and n = 0.6 by analyzing ca. 12000
EI-MS data of 8000 organic compounds in the NIST Mass Spectral Library. MassBank (Horai et
al. 2010) uses m = 2 and n = 0.5 for small compounds. In general with increasing values for m, high
m/z values will be taken more into account for similarity calculation. Especially when working
with small molecules, a value n > 0 can be set to give a weight on the m/z values to accommodate
that shared fragments with higher m/z are less likely and will mean that molecules might be more
similar. Increasing n will result in a higher importance of the intensity values. Most commonly m =
0 and n = 0.5 are used.

neuclidean: the normalized euclidean distance is described in Stein and Scott 1994 as: NED =

(1 +

∑
((W1−W2)

2)

sum((W2)2)
)−1; where Wi = xm ∗ yn, where x and y are the m/z and intensity values,

respectively. See the details section about ndotproduct for an explanation how to set m and n.

navdist: the normalized absolute values distance is described in Stein and Scott 1994 as: NED =

(1 +

∑
(|W1−W2|)
sum((W2))

)−1; where Wi = xm ∗ yn, where x and y are the m/z and intensity values,
respectively. See the details section about ndotproduct for an explanation how to set m and n.

nspectraangle: the normalized spectra angle is described in Toprak et al 2014 as: NSA = 1 −
2∗cos−1(W1·W2)

π ; where Wi = xm ∗yn, where x and y are the m/z and intensity values, respectively.
The weighting was not originally proposed by Toprak et al. 2014. See the details section about
ndotproduct for an explanation how to set m and n.

Value

double(1) value between 0:1, where 0 is completely different and 1 identically.

Note

These methods are implemented as described in Stein and Scott 1994 (navdist, ndotproduct,
neuclidean) and Toprak et al. 2014 (nspectraangle) but because there is no reference imple-
mentation available we are unable to guarantee that the results are identical. Note that the Stein
and Scott 1994 normalized dot product method (and by extension ndotproduct) corresponds to the
square of the orthodox normalized dot product (or cosine distance) used also commonly as spec-
trum similarity measure (Yilmaz et al. 2017). Please see also the corresponding discussion at the
github pull request linked below. If you find any problems or reference implementation please open
an issue at https://github.com/rformassspectrometry/MsCoreUtils/issues.

https://github.com/rformassspectrometry/MsCoreUtils/issues

gnps 13

Author(s)

navdist, neuclidean, nspectraangle: Sebastian Gibb

ndotproduct: Sebastian Gibb and Thomas Naake, <thomasnaake@googlemail.com>

References

Stein, S. E., and Scott, D. R. (1994). Optimization and testing of mass spectral library search
algorithms for compound identification. Journal of the American Society for Mass Spectrometry,
5(9), 859–866. doi: 10.1016/10440305(94)870098.

Yilmaz, S., Vandermarliere, E., and Lennart Martens (2017). Methods to Calculate Spectrum Sim-
ilarity. In S. Keerthikumar and S. Mathivanan (eds.), Proteome Bioinformatics: Methods in Molec-
ular Biology, vol. 1549 (pp. 81). doi: 10.1007/9781493967407_7.

Horai et al. (2010). MassBank: a public repository for sharing mass spectral data for life sciences.
Journal of mass spectrometry, 45(7), 703–714. doi: 10.1002/jms.1777.

Toprak et al. (2014). Conserved peptide fragmentation as a benchmarking tool for mass spectrome-
ters and a discriminating feature for targeted proteomics. Molecular & Cellular Proteomics : MCP,
13(8), 2056–2071. doi: 10.1074/mcp.O113.036475.

Pull Request for these distance/similarity measurements: https://github.com/rformassspectrometry/
MsCoreUtils/pull/33

See Also

Other distance/similarity functions: gnps()

Examples

x <- matrix(c(1:5, 1:5), ncol = 2, dimnames = list(c(), c("mz", "intensity")))
y <- matrix(c(1:5, 5:1), ncol = 2, dimnames = list(c(), c("mz", "intensity")))

ndotproduct(x, y)
ndotproduct(x, y, m = 2, n = 0.5)
ndotproduct(x, y, m = 3, n = 0.6)

neuclidean(x, y)

navdist(x, y)

nspectraangle(x, y)

gnps GNPS spectrum similarity scores

https://doi.org/10.1016/1044-0305(94)87009-8
https://doi.org/10.1007/978-1-4939-6740-7_7
https://doi.org/10.1002/jms.1777
https://doi.org/10.1074/mcp.O113.036475
https://github.com/rformassspectrometry/MsCoreUtils/pull/33
https://github.com/rformassspectrometry/MsCoreUtils/pull/33

14 gnps

Description

The join_gnps and gnps functions allow to calculate spectra similarity scores as used in GNPS.
The approach matches first peaks between the two spectra directly using a user-defined ppm and/or
tolerance as well as using a fixed delta m/z (considering the same ppm and tolerance) that is defined
by the difference of the two spectras’ precursor m/z values. For peaks that match multiple peaks in
the other spectrum only the matching peak pair with the higher value/similarity is considered in the
final similarity score calculation. Note that GNPS similarity scores are calculated only if the two
functions are used together.

• join_gnps: matches/maps peaks between spectra with the same approach as in GNPS: peaks
are considered matching if a) the difference in their m/z values is smaller than defined by
tolerance and ppm (this is the same as joinPeaks) and b) the difference of their m/z adjusted
for the difference of the spectras’ precursor is smaller than defined by tolerance and ppm.
Based on this definition, peaks in x can match up to two peaks in y hence returned peak indices
might be duplicated. Note that if one of xPrecursorMz or yPrecursorMz are NA or if both are
the same, the results are the same as with join(). The function returns a list of two integer
vectors with the indices of the peaks matching peaks in the other spectrum or NA otherwise.

• gnps: calculates the GNPS similarity score on peak matrices’ previously aligned (matched)
with join_gnps. For multi-mapping peaks the pair with the higher similarity are considered
in the final score calculation.

Usage

gnps(x, y, ...)

join_gnps(
x,
y,
xPrecursorMz = NA_real_,
yPrecursorMz = NA_real_,
tolerance = 0,
ppm = 0,
type = "outer",
...

)

Arguments

x for join_gnps: numeric with m/z values from a spectrum. For gnps: matrix
with two columns "mz" and "intensity" containing the peaks aligned with
peaks in y (with join_gnps).

y for join_gnps: numeric with m/z values from a spectrum. For gnps: matrix
with two columns "mz" and "intensity" containing the peaks aligned with
peaks in x (with join_gnps).

... for join_gnps: optional parameters passed to the join() function. For gnps:
ignored.

xPrecursorMz for join_gnps: numeric(1) with the precursor m/z of the spectrum x.

https://gnps.ucsd.edu/

gnps 15

yPrecursorMz for join_gnps: numeric(1) with the precursor m/z of the spectrum y.

tolerance for join_gnps: numeric(1) defining a constant maximal accepted difference
between m/z values of peaks from the two spectra to be matched/mapped.

ppm for join_gnps: numeric(1) defining a relative, m/z-dependent, maximal ac-
cepted difference between m/z values of peaks from the two spectra to be matched/mapped.

type for join_gnps: character(1) specifying the type of join that should be per-
formed. See join() for details and options. Defaults to type = "outer".

Details

The implementation of gnps bases on the R code from the publication listed in the references.

Value

See function definition in the description section.

Author(s)

Johannes Rainer, Michael Witting, based on the code from Xing et al. (2020).

References

Xing S, Hu Y, Yin Z, Liu M, Tang X, Fang M, Huan T. Retrieving and Utilizing Hypothetical Neu-
tral Losses from Tandem Mass Spectra for Spectral Similarity Analysis and Unknown Metabolite
Annotation. Anal Chem. 2020 Nov 3;92(21):14476-14483. doi: 10.1021/acs.analchem.0c02521.

See Also

Other grouping/matching functions: bin(), closest()

Other distance/similarity functions: distance

Examples

Define spectra
x <- cbind(mz = c(10, 36, 63, 91, 93), intensity = c(14, 15, 999, 650, 1))
y <- cbind(mz = c(10, 12, 50, 63, 105), intensity = c(35, 5, 16, 999, 450))
The precursor m/z
pmz_x <- 91
pmz_y <- 105

Plain join identifies only 2 matching peaks
join(x[, 1], y[, 1])

join_gnps finds 4 matches
join_gnps(x[, 1], y[, 1], pmz_x, pmz_y)

with one of the two precursor m/z being NA, the result are the same as
with join.
join_gnps(x[, 1], y[, 1], pmz_x, yPrecursorMz = NA)

https://doi.org/10.1021/acs.analchem.0c02521

16 group

Calculate GNPS similarity score:
map <- join_gnps(x[, 1], y[, 1], pmz_x, pmz_y)
gnps(x[map[[1]],], y[map[[2]],])

group Grouping of numeric values by similarity

Description

The group function groups numeric values by first ordering and then putting all values into the
same group if their difference is smaller defined by parameters tolerance (a constant value) and
ppm (a value-specific relative value expressed in parts-per-million).

Usage

group(x, tolerance = 0, ppm = 0)

Arguments

x increasingly ordered numeric with the values to be grouped.

tolerance numeric(1) with the maximal accepted difference between values in x to be
grouped into the same entity.

ppm numeric(1) defining a value-dependent maximal accepted difference between
values in x expressed in parts-per-million.

Value

integer of length equal to x with the groups.

Note

Since grouping is performed on pairwise differences between consecutive values (after ordering x),
the difference between the smallest and largest value in a group can be larger than tolerance and
ppm.

Author(s)

Johannes Rainer, Sebastin Gibb

Examples

Define a (sorted) numeric vector
x <- c(34, 35, 35, 35 + ppm(35, 10), 56, 56.05, 56.1)

With `ppm = 0` and `tolerance = 0` only identical values are grouped
group(x)

With `tolerance = 0.05`

i2index 17

group(x, tolerance = 0.05)

Also values 56, 56.05 and 56.1 were grouped into a single group,
although the difference between the smallest 56 and largest value in
this group (56.1) is 0.1. The (pairwise) difference between the ordered
values is however 0.05.

With ppm
group(x, ppm = 10)

Same on an unsorted vector
x <- c(65, 34, 65.1, 35, 66, 65.2)
group(x, tolerance = 0.1)

Values 65, 65.1 and 65.2 have been grouped into the same group.

i2index Input parameter check for subsetting operations

Description

i2index is a simple helper function to be used in subsetting functions. It checks and converts the
parameter i, which can be of type integer, logical or character to integer vector that can be
used as index for subsetting.

Usage

i2index(i, length = length(i), names = NULL)

Arguments

i character logical or integer used in [i] for subsetting.

length integer representing the length of the object to be subsetted.

names character with the names (rownames or similar) of the object. This is only
required if i is of type character.

Value

integer with the indices

Author(s)

Johannes Rainer

18 impute_matrix

Examples

With `i` being an `integer`
i2index(c(4, 1, 3), length = 10)

With `i` being a `logical`
i2index(c(TRUE, FALSE, FALSE, TRUE, FALSE), length = 5)

With `i` being a `character`
i2index(c("b", "a", "d"), length = 5, names = c("a", "b", "c", "d", "e"))

impute_matrix Quantitative mass spectrometry data imputation

Description

The impute_matrix function performs data imputation on matrix objects instance using a variety
of methods (see below).

Users should proceed with care when imputing data and take precautions to assure that the impu-
tation produce valid results, in particular with naive imputations such as replacing missing values
with 0.

Usage

impute_matrix(x, method, FUN, ...)

imputeMethods()

impute_neighbour_average(x, k = min(x, na.rm = TRUE))

impute_knn(x, ...)

impute_mle(x, ...)

impute_bpca(x, ...)

impute_mixed(x, randna, mar, mnar, ...)

impute_min(x)

impute_zero(x)

impute_with(x, val)

impute_fun(x, FUN, ...)

impute_matrix 19

Arguments

x A matrix with missing values to be imputed.

method character(1) defining the imputation method. See imputeMethods() for avail-
able ones.

FUN A user-provided function that takes a matrix as input and returns an imputed
matrix of identical dimensions.

... Additional parameters passed to the inner imputation function.

k numeric(1) providing the imputation value used for the first and last samples if
they contain an NA. The default is to use the smallest value in the data.

randna logical of length equal to nrow(object) defining which rows are missing at
random. The other ones are considered missing not at random. Only relevant
when methods is mixed.

mar Imputation method for values missing at random. See method above.

mnar Imputation method for values missing not at random. See method above.

val numeric(1) used to replace all missing values.

Details

There are two types of mechanisms resulting in missing values in LC/MSMS experiments.

• Missing values resulting from absence of detection of a feature, despite ions being present
at detectable concentrations. For example in the case of ion suppression or as a result from
the stochastic, data-dependent nature of the MS acquisition method. These missing value are
expected to be randomly distributed in the data and are defined as missing at random (MAR)
or missing completely at random (MCAR).

• Biologically relevant missing values resulting from the absence of the low abundance of ions
(below the limit of detection of the instrument). These missing values are not expected to be
randomly distributed in the data and are defined as missing not at random (MNAR).

MNAR features should ideally be imputed with a left-censor method, such as QRILC below. Con-
versely, it is recommended to use host deck methods such nearest neighbours, Bayesian missing
value imputation or maximum likelihood methods when values are missing at random.

Currently, the following imputation methods are available.

• MLE: Maximum likelihood-based imputation method using the EM algorithm. Implemented
in the norm::imp.norm(). function. See norm::imp.norm() for details and additional pa-
rameters. Note that here, ... are passed to the [norm::em.norm()function, rather to the ac-
tual imputation functionimp.norm‘.

• bpca: Bayesian missing value imputation are available, as implemented in the pcaMethods::pca()
function. See pcaMethods::pca() for details and additional parameters.

• knn: Nearest neighbour averaging, as implemented in the impute::impute.knn function. See
impute::impute.knn()] for details and additional parameters.

• QRILC: A missing data imputation method that performs the imputation of left-censored miss-
ing data using random draws from a truncated distribution with parameters estimated using
quantile regression. Implemented in the imputeLCMD::impute.QRILC function. imputeLCMD::impute.QRILC()
for details and additional parameters.

20 impute_matrix

• MinDet: Performs the imputation of left-censored missing data using a deterministic mini-
mal value approach. Considering a expression data with n samples and p features, for each
sample, the missing entries are replaced with a minimal value observed in that sample. The
minimal value observed is estimated as being the q-th quantile (default q = 0.01) of the ob-
served values in that sample. Implemented in the imputeLCMD::impute.MinDet function.
See imputeLCMD::impute.MinDet() for details and additional parameters.

• MinProb: Performs the imputation of left-censored missing data by random draws from a
Gaussian distribution centred to a minimal value. Considering an expression data matrix with
n samples and p features, for each sample, the mean value of the Gaussian distribution is set to
a minimal observed value in that sample. The minimal value observed is estimated as being the
q-th quantile (default q = 0.01) of the observed values in that sample. The standard deviation
is estimated as the median of the feature standard deviations. Note that when estimating the
standard deviation of the Gaussian distribution, only the peptides/proteins which present more
than 50\ are considered. Implemented in the imputeLCMD::impute.MinProb function. See
imputeLCMD::impute.MinProb() for details and additional parameters.

• min: Replaces the missing values with the smallest non-missing value in the data.

• zero: Replaces the missing values with 0.

• mixed: A mixed imputation applying two methods (to be defined by the user as mar for val-
ues missing at random and mnar for values missing not at random, see example) on two
MCAR/MNAR subsets of the data (as defined by the user by a randna logical, of length
equal to nrow(object)).

• nbavg: Average neighbour imputation for fractions collected along a fractionation/separation
gradient, such as sub-cellular fractions. The method assumes that the fraction are ordered
along the gradient and is invalid otherwise.
Continuous sets NA value at the beginning and the end of the quantitation vectors are set to the
lowest observed value in the data or to a user defined value passed as argument k. Then, when
a missing value is flanked by two non-missing neighbouring values, it is imputed by the mean
of its direct neighbours.

• with: Replaces all missing values with a user-provided value.

• none: No imputation is performed and the missing values are left untouched. Implemented
in case one wants to only impute value missing at random or not at random with the mixed
method.

The imputeMethods() function returns a vector with valid imputation method arguments.

Author(s)

Laurent Gatto

References

Olga Troyanskaya, Michael Cantor, Gavin Sherlock, Pat Brown, Trevor Hastie, Robert Tibshirani,
David Botstein and Russ B. Altman, Missing value estimation methods for DNA microarrays Bioin-
formatics (2001) 17 (6): 520-525.

Oba et al., A Bayesian missing value estimation method for gene expression profile data, Bioinfor-
matics (2003) 19 (16): 2088-2096.

impute_matrix 21

Cosmin Lazar (2015). imputeLCMD: A collection of methods for left-censored missing data impu-
tation. R package version 2.0. http://CRAN.R-project.org/package=imputeLCMD.

Lazar C, Gatto L, Ferro M, Bruley C, Burger T. Accounting for the Multiple Natures of Missing Val-
ues in Label-Free Quantitative Proteomics Data Sets to Compare Imputation Strategies. J Proteome
Res. 2016 Apr 1;15(4):1116-25. doi: 10.1021/acs.jproteome.5b00981. PubMed PMID:26906401.

Examples

test data
set.seed(42)
m <- matrix(rlnorm(60), 10)
dimnames(m) <- list(letters[1:10], LETTERS[1:6])
m[sample(60, 10)] <- NA

available methods
imputeMethods()

impute_matrix(m, method = "zero")

impute_matrix(m, method = "min")

impute_matrix(m, method = "knn")

same as impute_zero
impute_matrix(m, method = "with", val = 0)

impute with half of the smalles value
impute_matrix(m, method = "with",

val = min(m, na.rm = TRUE) * 0.5)

all but third and fourth features' missing values
are the result of random missing values
randna <- rep(TRUE, 10)
randna[c(3, 9)] <- FALSE

impute_matrix(m, method = "mixed",
randna = randna,
mar = "knn",
mnar = "min")

user provided (random) imputation function
random_imp <- function(x) {

m <- mean(x, na.rm = TRUE)
sdev <- sd(x, na.rm = TRUE)
n <- sum(is.na(x))
x[is.na(x)] <- rnorm(n, mean = m, sd = sdev)
x

}

impute_matrix(m, FUN = random_imp)

http://CRAN.R-project.org/package=imputeLCMD

22 isPeaksMatrix

isPeaksMatrix Check functions

Description

These functions are used to check input arguments.

Usage

isPeaksMatrix(x)

Arguments

x object to test.

Details

isPeaksMatrix: test for a numeric matrix with two columns named "mz" and "intensity". The
"mz" column has to be sorted increasingly.

Value

logical(1), TRUE if checks are successful otherwise FALSE.

Author(s)

Sebastian Gibb

See Also

Other helper functions for developers: between(), rbindFill(), validPeaksMatrix(), vapply1c()

Examples

isPeaksMatrix(1:2)
isPeaksMatrix(cbind(mz = 2:1, intensity = 1:2))
isPeaksMatrix(cbind(mz = 1:2, intensity = 1:2))

localMaxima 23

localMaxima Local Maxima

Description

This function finds local maxima in a numeric vector. A local maximum is defined as maximum in
a window of the current index +/- hws.

Usage

localMaxima(x, hws = 1L)

Arguments

x numeric, vector that should be searched for local maxima.

hws integer(1), half window size, the resulting window reaches from (i -hws):(i
+ hws).

Value

A logical of the same length as x that is TRUE for each local maxima.

Author(s)

Sebastian Gibb

See Also

Other extreme value functions: .peakRegionMask(), refineCentroids(), valleys()

Examples

x <- c(1:5, 4:1, 1:10, 9:1, 1:5, 4:1)
localMaxima(x)
localMaxima(x, hws = 10)

medianPolish Return the Median Polish (Robust Twoway Decomposition) of a matrix

Description

Fits an additive model (two way decomposition) using Tukey’s median polish procedure using
stats::medpolish().

Usage

medianPolish(x, verbose = FALSE, ...)

24 noise

Arguments

x A matrix of mode numeric.

verbose Default is FALSE.

... Additional arguments passed to stats::medpolish().

Value

A numeric vector of length identical to ncol(x).

Author(s)

Laurent Gatto

See Also

Other Quantitative feature aggregation: aggregate_by_vector(), colCounts(), robustSummary()

Examples

x <- matrix(rnorm(30), nrow = 3)
medianPolish(x)

noise Noise Estimation

Description

This functions estimate the noise in the data.

Usage

noise(x, y, method = c("MAD", "SuperSmoother"), ...)

Arguments

x numeric, x values for noise estimation (e.g. mz)

y numeric, y values for noise estimation (e.g. intensity)

method character(1) used method. Currently MAD (median absolute deviation) and
Friedman’s SuperSmoother are supported.

... further arguments passed to method.

Value

A numeric of the same length as x with the estimated noise.

normalizeMethods 25

Author(s)

Sebastian Gibb

See Also

stats::mad(), stats::supsmu()

Other noise estimation and smoothing functions: smooth()

Examples

x <- 1:20
y <- c(1:10, 10:1)
noise(x, y)
noise(x, y, method = "SuperSmoother", span = 1 / 3)

normalizeMethods Quantitative data normalisation

Description

Function to normalise a matrix of quantitative omics data. The nature of the normalisation is con-
trolled by the method argument, described below.

Usage

normalizeMethods()

normalize_matrix(x, method, ...)

Arguments

x A matrix to be normalised.

method character(1) defining the normalisation method. See normalizeMethods()
for available ones.

... Additional parameters passed to the inner normalisation function.

Details

The method parameter can be one of "sum", "max", "center.mean", "center.median", "div.mean",
"div.median", "diff.meda", "quantiles", "quantiles.robust" or "vsn". The normalizeMethods()
function returns a vector of available normalisation methods.

• For "sum" and "max", each feature’s intensity is divided by the maximum or the sum of the
feature respectively. These two methods are applied along the features (rows).

• "center.mean" and "center.median" center the respective sample (column) intensities by
subtracting the respective column means or medians. "div.mean" and "div.median" divide
by the column means or medians.

26 ppm

• "diff.median" centers all samples (columns) so that they all match the grand median by
subtracting the respective columns medians differences to the grand median.

• Using "quantiles" or "quantiles.robust" applies (robust) quantile normalisation, as im-
plemented in preprocessCore::normalize.quantiles() and preprocessCore::normalize.quantiles.robust().
"vsn" uses the vsn::vsn2() function. Note that the latter also glog-transforms the intensities.
See respective manuals for more details and function arguments.

Value

A normalised matrix of dimensions dim(x).

Author(s)

Laurent Gatto

See Also

The scale() function that centers (like center.mean above) and scales.

Examples

normalizeMethods()

test data
set.seed(42)
m <- matrix(rlnorm(60), 10)

normalize_matrix(m, method = "sum")

normalize_matrix(m, method = "max")

normalize_matrix(m, method = "quantiles")

normalize_matrix(m, method = "center.mean")

ppm PPM - Parts per Million

Description

ppm is a small helper function to determine the parts-per-million for a user-provided value and ppm.

Usage

ppm(x, ppm)

Arguments

x numeric, value(s) used for ppm calculation, e.g. mz value(s).
ppm numeric, parts-per-million (ppm) value(s).

rbindFill 27

Value

numeric: parts-per-million of x

Author(s)

Sebastian Gibb

Examples

ppm(c(1000, 2000), 5)

rbindFill Combine R Objects by Row

Description

This function combines instances of matrix, data.frame or DataFrame objects into a single in-
stance adding eventually missing columns (filling them with NAs).

Usage

rbindFill(...)

Arguments

... 2 or more: matrix, data.frame or DataFrame.

Value

Depending on the input a single matrix, data.frame or DataFrame.

Note

rbindFill might not work if one of the columns contains S4 classes.

Author(s)

Johannes Rainer, Sebastian Gibb

See Also

Other helper functions for developers: between(), isPeaksMatrix(), validPeaksMatrix(), vapply1c()

28 refineCentroids

Examples

Combine matrices
a <- matrix(1:9, nrow = 3, ncol = 3)
colnames(a) <- c("a", "b", "c")
b <- matrix(1:12, nrow = 3, ncol = 4)
colnames(b) <- c("b", "a", "d", "e")
rbindFill(a, b)
rbindFill(b, a, b)

refineCentroids Refine Peak Centroids

Description

This function refines the centroided values of a peak by weighting the y values in the neighbourhood
that belong most likely to the same peak.

Usage

refineCentroids(x, y, p, k = 2L, threshold = 0.33, descending = FALSE)

Arguments

x numeric, i.e. m/z values.

y numeric, i.e. intensity values.

p integer, indices of identified peaks/local maxima.

k integer(1), number of values left and right of the peak that should be consid-
ered in the weighted mean calculation.

threshold double(1), proportion of the maximal peak intensity. Just values above are
used for the weighted mean calclulation.

descending logical, if TRUE just values between the nearest valleys around the peak cen-
troids are used.

Details

For descending = FALSE the function looks for the k nearest neighbouring data points and use their
x for weighted mean with their corresponding y values as weights for calculation of the new peak
centroid. If k are chosen too large it could result in skewed peak centroids, see example below. If
descending = TRUE is used the k should be general larger because it is trimmed automatically to
the nearest valleys on both sides of the peak so the problem with skewed centroids is rare.

Author(s)

Sebastian Gibb, Johannes Rainer

rla 29

See Also

Other extreme value functions: .peakRegionMask(), localMaxima(), valleys()

Examples

ints <- c(5, 8, 12, 7, 4, 9, 15, 16, 11, 8, 3, 2, 3, 9, 12, 14, 13, 8, 3)
mzs <- seq_along(ints)

plot(mzs, ints, type = "h")

pidx <- as.integer(c(3, 8, 16))
points(mzs[pidx], ints[pidx], pch = 16)

Use the weighted average considering the adjacent mz
mzs1 <- refineCentroids(mzs, ints, pidx,

k = 2L, descending = FALSE, threshold = 0)
mzs2 <- refineCentroids(mzs, ints, pidx,

k = 5L, descending = FALSE, threshold = 0)
mzs3 <- refineCentroids(mzs, ints, pidx,

k = 5L, descending = TRUE, threshold = 0)
points(mzs1, ints[pidx], col = "red", type = "h")
please recognize the artificial moved centroids of the first peak caused
by a too large k, here
points(mzs2, ints[pidx], col = "blue", type = "h")
points(mzs3, ints[pidx], col = "green", type = "h")
legend("topright",

legend = paste0("k = ", c(2, 5, 5),
", descending =", c("FALSE", "FALSE", "TRUE")),

col = c("red", "blue", "green"), lwd = 1)

rla Calculate relative log abundances rla calculates the relative log
abundances (RLA, see reference) on a numeric vector. rowRla per-
forms row-wise RLA calculations on a numeric matrix.

Description

Calculate relative log abundances

rla calculates the relative log abundances (RLA, see reference) on a numeric vector. rowRla
performs row-wise RLA calculations on a numeric matrix.

Usage

rla(
x,
f = rep_len(1, length(x)),
transform = c("log2", "log10", "identity"),
na.rm = TRUE

30 rla

)

rowRla(x, f = rep_len(1, ncol(x)), transform = c("log2", "log10", "identity"))

Arguments

x numeric (for rla) or matrix (for rowRla) with the abundances (in natural scale)
on which the RLA should be calculated.

f factor, numeric or character with the same length than x (or, for rowRla
equal to the number of columns of x) allowing to define the grouping of values
in x. If omitted all values are considered to be from the same group.

transform character(1) defining the function to transform x. Defaults to transform =
"log2" which log2 transforms x prior to calculation. If x is already in log scale
use transform = "identity" to avoid transformation of the values.

na.rm logical(1) whether NA values should be removed prior to calculation of the
group-wise medians.

Details

The RLA is defined as the (log2) abundance of an analyte relative to the median across all abun-
dances of that analyte in samples of the same group. The grouping of values can be defined with
parameter f.

Value

numeric with the relative log abundances (in log2 scale) with the same length than x (for rla) or
matrix with the same dimensions than x (for rowRla).

Author(s)

Johannes Rainer

References

De Livera AM, Dias DA, De Souza D, Rupasinghe T, Pyke J, Tull D, Roessner U, McConville M,
Speed TP. Normalizing and integrating metabolomics data. Anal Chem 2012 Dec 18;84(24):10768-
76.

Examples

x <- c(3, 4, 5, 1, 2, 3, 7, 8, 9)

grp <- c(1, 1, 1, 2, 2, 2, 3, 3, 3)

rla(x, grp)

x <- rbind(c(324, 4542, 3422, 3232, 5432, 6535, 3321, 1121),
c(12, 3341, 3034, 6540, 34, 4532, 56, 1221))

grp <- c("a", "b", "b", "b", "a", "b", "a", "b")

robustSummary 31

row-wise RLA values
rowRla(x, grp)

robustSummary Return the Robust Expression Summary of a matrix

Description

This function calculates the robust summarisation for each feature (protein). Note that the function
assumes that the intensities in input e are already log-transformed.

Usage

robustSummary(x, ...)

Arguments

x A feature by sample matrix containing quantitative data with mandatory colnames
and rownames.

... Additional arguments passed to MASS::rlm().

Value

numeric() vector of length ncol(x) with robust summarised values.

Author(s)

Adriaan Sticker, Sebastian Gibb and Laurent Gatto

See Also

Other Quantitative feature aggregation: aggregate_by_vector(), colCounts(), medianPolish()

Examples

x <- matrix(rnorm(30), nrow = 3)
colnames(x) <- letters[1:10]
rownames(x) <- LETTERS[1:3]
robustSummary(x)

32 rt2numeric

rt2numeric Format Retention Time

Description

These vectorised functions convert retention times from a numeric in seconds to/from a character
as "mm:ss". rt2character() performs the numeric to character conversion while rt2numeric()
performs the character to numeric conversion. formatRt() does one of the other depending on the
input type.

Usage

rt2numeric(rt)

rt2character(rt)

formatRt(rt)

Arguments

rt A vector of retention times of length > 1. Either a numeric() in seconds or a
character() as "mm:ss" depending on the function.

Value

A reformatted retention time.

Author(s)

Laurent Gatto

Examples

rt2numeric

rt2numeric("25:24")
rt2numeric(c("25:24", "25:25", "25:26"))

rt2character

rt2character(1524)
rt2character(1)
rt2character(1:10)

formatRt

formatRt(1524)
formatRt(1)
formatRt(1:10)

smooth 33

formatRt("25:24")
formatRt(c("25:24", "25:25", "25:26"))

smooth Smoothing

Description

This function smoothes a numeric vector.

Usage

smooth(x, cf)

coefMA(hws)

coefWMA(hws)

coefSG(hws, k = 3L)

Arguments

x numeric, i.e. m/z values.

cf matrix, a coefficient matrix generated by coefMA, coefWMA or coefSG.

hws integer(1), half window size, the resulting window reaches from (i -hws):(i
+ hws).

k integer(1), set the order of the polynomial used to calculate the coefficients.

Details

For the Savitzky-Golay-Filter the hws should be smaller than FWHM of the peaks (full width at half
maximum; please find details in Bromba and Ziegler 1981).

In general the hws for the (weighted) moving average (coefMA/coefWMA) has to bemuch smaller
than for the Savitzky-Golay-Filter to conserve the peak shape.

Value

smooth: A numeric of the same length as x.

coefMA: A matrix with coefficients for a simple moving average.

coefWMA: A matrix with coefficients for a weighted moving average.

coefSG: A matrix with Savitzky-Golay-Filter coefficients.

34 smooth

Functions

• coefMA: Simple Moving Average
This function calculates the coefficients for a simple moving average.

• coefWMA: Weighted Moving Average
This function calculates the coefficients for a weighted moving average with weights depend-
ing on the distance from the center calculated as 1/2^abs(-hws:hws) with the sum of all
weigths normalized to 1.

• coefSG: Savitzky-Golay-Filter
This function calculates the Savitzky-Golay-Coefficients. The additional argument k controls
the order of the used polynomial. If k is set to zero it yield a simple moving average.

Note

The hws depends on the used method ((weighted) moving average/Savitzky-Golay).

Author(s)

Sebastian Gibb, Sigurdur Smarason (weighted moving average)

References

A. Savitzky and M. J. Golay. 1964. Smoothing and differentiation of data by simplified least squares
procedures. Analytical chemistry, 36(8), 1627-1639.

M. U. Bromba and H. Ziegler. 1981. Application hints for Savitzky-Golay digital smoothing filters.
Analytical Chemistry, 53(11), 1583-1586.

Implementation based on: Steinier, J., Termonia, Y., & Deltour, J. (1972). Comments on Smoothing
and differentiation of data by simplified least square procedure. Analytical Chemistry, 44(11), 1906-
1909.

See Also

Other noise estimation and smoothing functions: noise()

Examples

x <- c(1:10, 9:1)
plot(x, type = "b", pch = 20)
cf <- list(MovingAverage = coefMA(2),

WeightedMovingAverage = coefWMA(2),
SavitzkyGolay = coefSG(2))

for (i in seq_along(cf)) {
lines(smooth(x, cf[[i]]), col = i + 1, pch = 20, type = "b")

}
legend("bottom", legend = c("x", names(cf)), pch = 20,

col = seq_len(length(cf) + 1))

validPeaksMatrix 35

validPeaksMatrix Validation functions

Description

These functions are used to validate input arguments. In general they are just wrapper around their
corresponding is* function with an error message.

Usage

validPeaksMatrix(x)

Arguments

x object to test.

Details

validPeaksMatrix: see isPeaksMatrix.

Value

logical(1), TRUE if validation are successful otherwise an error is thrown.

Author(s)

Sebastian Gibb

See Also

Other helper functions for developers: between(), isPeaksMatrix(), rbindFill(), vapply1c()

Examples

try(validPeaksMatrix(1:2))
validPeaksMatrix(cbind(mz = 1:2, intensity = 1:2))

36 valleys

valleys Find Peak Valleys

Description

This function finds the valleys around peaks.

Usage

valleys(x, p)

Arguments

x numeric, e.g. intensity values.

p integer, indices of identified peaks/local maxima.

Value

A matrix with three columns representing the index of the left valley, the peak centroid, and the
right valley.

Note

The detection of the valleys is based on localMaxima. It returns the first occurence of a local
maximum (in this specific case the minimum). For plateaus, e.g. c(0,0,0,1:3,2:1,0) this results
in a wrongly reported left valley index of 1 (instead of 3, see the example section as well). In
real data this should not be a real problem. x[x == min(x)] <-Inf could be used before running
valleys to circumvent this specific problem but it is not really tested and could cause different
problems.

Author(s)

Sebastian Gibb

See Also

Other extreme value functions: .peakRegionMask(), localMaxima(), refineCentroids()

Examples

ints <- c(5, 8, 12, 7, 4, 9, 15, 16, 11, 8, 3, 2, 3, 2, 9, 12, 14, 13, 8, 3)
mzs <- seq_along(ints)
peaks <- which(localMaxima(ints, hws = 3))
cols <- seq_along(peaks) + 1

plot(mzs, ints, type = "h", ylim = c(0, 16))
points(mzs[peaks], ints[peaks], col = cols, pch = 20)

vapply1c 37

v <- valleys(ints, peaks)
segments(mzs[v[, "left"]], 0, mzs[v[, "right"]], col = cols, lwd = 2)

Known limitations for plateaus
y <- c(0, 0, 0, 0, 0, 1:5, 4:1, 0)
valleys(y, 10L) # left should be 5 here but is 1

a possible workaround that may cause other problems
y[min(y) == y] <- Inf
valleys(y, 10L)

vapply1c vapply wrappers

Description

These functions are short wrappers around typical vapply calls for easier development.

Usage

vapply1c(X, FUN, ..., USE.NAMES = FALSE)

vapply1d(X, FUN, ..., USE.NAMES = FALSE)

vapply1l(X, FUN, ..., USE.NAMES = FALSE)

Arguments

X a vector (atomic or list).

FUN the function to be applied to each element of X.

... optional arguments to FUN.

USE.NAMES logical, should the return value be named.

Value

vapply1c returns a vector of characters of length X.

vapply1d returns a vector of doubles of length X.

vapply1l returns a vector of logicals of length X.

Author(s)

Sebastian Gibb

See Also

Other helper functions for developers: between(), isPeaksMatrix(), rbindFill(), validPeaksMatrix()

38 vapply1c

Examples

l <- list(a=1:3, b=4:6)
vapply1d(l, sum)

Index

∗ Quantitative feature aggregation
aggregate_by_vector, 3
colCounts, 10
medianPolish, 23
robustSummary, 31

∗ coerce functions
coerce, 10

∗ distance/similarity functions
distance, 11
gnps, 13

∗ extreme value functions
localMaxima, 23
refineCentroids, 28
valleys, 36

∗ grouping/matching functions
bin, 5
closest, 6
gnps, 13

∗ helper functions for developers
between, 4
isPeaksMatrix, 22
rbindFill, 27
validPeaksMatrix, 35
vapply1c, 37

∗ helper functions for users
ppm, 26

∗ noise estimation and smoothing functions
noise, 24
smooth, 33

.peakRegionMask, 23, 29, 36
%between% (between), 4
%in%, 6–8

aggregate_by_vector, 3, 11, 24, 31
asInteger (coerce), 10

base::colMeans(), 3
base::colSums(), 3
between, 4, 22, 27, 35, 37
bin, 5, 8, 15

C, 20
closest, 5, 6, 15
closest(), 7
coefMA (smooth), 33
coefSG (smooth), 33
coefWMA (smooth), 33
coerce, 10
colCounts, 3, 10, 24, 31
common (closest), 6

distance, 11, 15
dotproduct (distance), 11

formatRt (rt2numeric), 32

gnps, 5, 8, 13, 13
group, 16

i2index, 17
impute::impute.knn(), 19
impute_bpca (impute_matrix), 18
impute_fun (impute_matrix), 18
impute_knn (impute_matrix), 18
impute_matrix, 18
impute_min (impute_matrix), 18
impute_mixed (impute_matrix), 18
impute_mle (impute_matrix), 18
impute_neighbour_average

(impute_matrix), 18
impute_with (impute_matrix), 18
impute_zero (impute_matrix), 18
imputeLCMD::impute.MinDet(), 20
imputeLCMD::impute.MinProb(), 20
imputeLCMD::impute.QRILC(), 19
imputeMethods (impute_matrix), 18
isPeaksMatrix, 5, 22, 27, 35, 37

join (closest), 6
join(), 14, 15
join_gnps (gnps), 13

39

40 INDEX

localMaxima, 23, 29, 36

MASS::rlm(), 3, 31
match(), 6–8
matrixStats::colMedians(), 3
medianPolish, 3, 11, 23, 31
medianPolish(), 3

navdist (distance), 11
ndotproduct (distance), 11
neuclidean (distance), 11
noise, 24, 34
norm::imp.norm(), 19
normalize_matrix (normalizeMethods), 25
normalizeMethods, 25
nspectraangle (distance), 11

pcaMethods::pca(), 19
ppm, 26
preprocessCore::normalize.quantiles(),

26
preprocessCore::normalize.quantiles.robust(),

26

rbindFill, 5, 22, 27, 35, 37
refineCentroids, 23, 28, 36
rla, 29
robustSummary, 3, 11, 24, 31
robustSummary(), 3
rowRla (rla), 29
rt2character (rt2numeric), 32
rt2numeric, 32

scale(), 26
smooth, 25, 33
stats::mad(), 25
stats::medpolish(), 3, 23, 24
stats::supsmu(), 25

validPeaksMatrix, 5, 22, 27, 35, 37
valleys, 23, 29, 36
vapply1c, 5, 22, 27, 35, 37
vapply1d (vapply1c), 37
vapply1l (vapply1c), 37
vsn::vsn2(), 26

	aggregate_by_vector
	between
	bin
	closest
	coerce
	colCounts
	distance
	gnps
	group
	i2index
	impute_matrix
	isPeaksMatrix
	localMaxima
	medianPolish
	noise
	normalizeMethods
	ppm
	rbindFill
	refineCentroids
	rla
	robustSummary
	rt2numeric
	smooth
	validPeaksMatrix
	valleys
	vapply1c
	Index

