Package 'IMMAN'

October 14, 2021

Title Interlog protein network reconstruction by Mapping and Mining ANalysis

Version 1.12.0

Description Reconstructing Interlog Protein Network (IPN) integrated from several Protein protein Interaction Networks (PPINs). Using this package, overlaying different PPINs to mine conserved common networks between diverse species will be applicable.

Author Minoo Ashtiani,

Payman Nickchi,

Abdollah Safari,

Mehdi Mirzaie,

Mohieddin Jafari

Maintainer Minoo Ashtiani <ashtiani.minoo@gmail.com>

biocViews SequenceMatching, Alignment, SystemsBiology, GraphAndNetwork, Network, Proteomics

RoxygenNote 7.1.0

License Artistic-2.0

Encoding UTF-8

LazyData true

Imports STRINGdb, Biostrings, igraph, graphics, utils, seqinr

Suggests knitr, rmarkdown, testthat

VignetteBuilder knitr

git_url https://git.bioconductor.org/packages/IMMAN

git_branch RELEASE_3_13

git_last_commit 9df3185

git_last_commit_date 2021-05-19

Date/Publication 2021-10-14

2 FruitFly

R topics documented:

Celegance	2
FruitFly	2
H.sapiens	3
IMMAN	3
R.norvegicus	6

Index

Celegance

Celegance

Description

A sample collection of 49 UNIPROT_AC of Celegance species.

Usage

```
data("Celegance")
```

Format

a character vector

References

http://www.uniprot.org/

Examples

```
data("Celegance")
print(Celegance)
```

FruitFly

Fruit Fly

Description

A sample collection of 56 UNIPROT_AC of Fruit Fly species.

Usage

```
data("FruitFly")
```

Format

a character vector

H.sapiens 3

References

http://www.uniprot.org/

Examples

```
data("FruitFly")
print(FruitFly)
```

H.sapiens

Homo sapiens (Human)

Description

A sample collection of 76 UNIPROT_AC of Homo sapiens species.

Usage

```
data("H.sapiens")
```

Format

a character vector

References

http://www.uniprot.org/

Examples

```
data("H.sapiens")
print(H.sapiens)
```

IMMAN

Interlog protein network reconstruction by Mapping and Mining ANalysis

Description

A function for reconstructing Interlog Protein Network (IPN) integrated from Protein-protein Interaction Networks (PPIN) from different species. Users can overlay different PPINs to mine conserved common network between diverse species. It helps to retrieve IPN with different degrees of conservation to have better protein function prediction and PPIN analysis.

4 IMMAN

Usage

```
IMMAN(
   ProteinLists,
   fileNames = NULL,
   Species_IDs,
   identityU,
   substitutionMatrix,
   gapOpening,
   gapExtension,
   BestHit,
   coverage,
   NetworkShrinkage,
   score_threshold,
   STRINGversion,
   InputDirectory = getwd()
)
```

Arguments

ProteinLists a list in which each element contains protein names of a species as a character

vector. If it was NULL then the protein lists file name should be addressed in

fileNames parameter.

fileNames a character vector, containing names of text files containing protein list for each

species. The protein list of each species must be in a column without header and rownames in seperate ".txt" files. The ProteinLists argument should be include at least two text file names addressing the protein list of each species which are

in UniProt accession IDs format.

Species_IDs a numeric vector; taxonomy ID for each organism which are provided in file-

Names

identityU numeric; value for selecting proteins whose alignment score is greater or equal

than identityU

substitutionMatrix

a scoring substitution matrix to be used for alignment setting.

gapOpening numeric; indicating the cost for opening a gap in the alignment

gapExtension The incremental cost incurred along the length of the gap in the alignment

BestHit logical; if TRUE describes a pair protein sequence among two different species

which is the reciprocal best hit in sequence similarity analysis, whilst, if it is

FALSE, indicates a nonreciprocal best hit

coverage Number of connected proteins pairs in each Ortholog Protein Set (OPS) pair

(termed as "coverage") to reconstruct an edge of OPS pair in the IPN (Interlog

Protein Network)

NetworkShrinkage

logical; if TRUE OPSs that are similar to each other would be merged.

score_threshold

numeric; STRINGdb score for protein protein interaction (PPI) selection in STRING database

IMMAN 5

STRINGversion character; indicating which version of STRING database should program search

in for the score of PPIs.

InputDirectory By default is getwd(). You can set this parameter to indicate where the down-

loaded file from STRING should be saved.

Value

a list containing four elements:

IPNEdges: data.frame; Edges of resulted interlog protein network.

IPNNodes: data.frame; Nodes of resulted interlog protein network. Each node represents an OPS

which is a set of ortholog proteins.

Network: list; Retrived PPINs of each input species.

maps: list; It includes data.frames indicating STRING_id data base matched to their corresponding

UNIPROT_AC. The number of data.frames is according to the the number of species.

IPN: an igraph object representing the interlog protein network.

Author(s)

Minoo Ashtiani, Payman Nickchi, Abdollah Safari, Mehdi Mirzaie, Mohieddin Jafari

See Also

```
pairwiseAlignment
```

Examples

```
data(FruitFly)
data(Celegance)
subFruitFly <- as.character(FruitFly$V1)[1:10]</pre>
subCelegance <- as.character(Celegance$V1)[1:10]</pre>
ProteinLists = list(subFruitFly, subCelegance)
List1_Species_ID = 7227 # taxonomy ID FruitFly
List2_Species_ID = 6239 # taxonomy ID Celegance
Species_IDs = c(List1_Species_ID, List2_Species_ID)
identityU = 30
substitutionMatrix = "BLOSUM62"
gapOpening = -8
gapExtension = -8
NetworkShrinkage = FALSE
coverage = 1
BestHit = TRUE
score_threshold = 400
STRINGversion="11"
```

R.norvegicus

R.norvegicus

output\$maps[[2]]

Rattus norvegicus (Rat)

Description

A sample collection of 70 UNIPROT_AC of Rattus norvegicus species.

Usage

```
data("R.norvegicus")
```

Format

a character vector

References

http://www.uniprot.org/

Examples

```
data("R.norvegicus")
print(R.norvegicus)
```

Index

```
* datasets
Celegance, 2
FruitFly, 2
H.sapiens, 3
R.norvegicus, 6

Celegance, 2

FruitFly, 2
H.sapiens, 3

IMMAN, 3

pairwiseAlignment, 5

R.norvegicus, 6
```