Package ‘GenomicTuples’

October 14, 2021
Type Package

Title Representation and Manipulation of Genomic Tuples
Version 1.26.0

Date 2021-04-29

Encoding UTF-8

Description GenomicTuples defines general purpose containers for storing
genomic tuples. It aims to provide functionality for tuples of genomic
co-ordinates that are analogous to those available for genomic ranges in
the GenomicRanges Bioconductor package.

URL www.github.com/PeteHaitch/GenomicTuples

BugReports https://github.com/PeteHaitch/GenomicTuples/issues
biocViews Infrastructure, DataRepresentation, Sequencing
VignetteBuilder knitr

Depends R (>=4.0), GenomicRanges (>= 1.37.4), GenomelnfoDb (>=
1.15.2), S4Vectors (>= 0.17.25)

Imports methods, BiocGenerics (>= 0.21.2), Rcpp (>= 0.11.2), IRanges
(>=2.19.13), data.table, stats4, stats, utils

Suggests testthat, knitr, BiocStyle, rmarkdown
LinkingTo Rcpp
License Artistic-2.0

Collate 'AllGenerics.R' 'AllUtilities.R' 'GTuples-class.R'
'GTuples-comparison.R' 'GTuplesList-class.R' 'GenomicTuples.R'
'ReppExports.R' 'coverage-methods.R' 'findOverlaps-methods.R'
'inter-tuple-methods.R' 'intra-tuple-methods.R’
'nearest-methods.R' 'setops-methods.R' 'tile-methods.R' 'zzz.R'

RoxygenNote 7.1.0

git_url https://git.bioconductor.org/packages/GenomicTuples
git_branch RELEASE_3_13

git_last_commit c82b526

git_last_commit_date 2021-05-19

https://github.com/PeteHaitch/GenomicTuples/issues

GenomicTuples-package

Date/Publication 2021-10-14

Author Peter Hickey [aut, cre],
Marcin Cieslik [ctb],
Hervé Pages [ctb]

Maintainer Peter Hickey <peter.hickey@gmail.com>

R topics documented:

Index

GenomicTuples-package 2
findOverlaps-methods 3
GTuples-class o e 6
GTuples-comparison o e e e 12
GTuplesList-class o e 16
intra-tuple-methods L 20
nearest-methods 22
tUPIES-SQUECZETS e e e e e 25
Undefinedmethods 26

28

GenomicTuples-package Representation and manipulation of genomic tuples.

Description

GenomicTuples defines general purpose containers for storing genomic tuples. It aims to provide
functionality for tuples of genomic co-ordinates that are analogous to those available for genomic
ranges in the GenomicRanges Bioconductor package.

Details

Please refer to the vignettes to see how to use the GenomicTuples package.

References

Peter F Hickey (2016). Representation and Manipulation of Genomic Tuples in R. JOSS. URL
http://dx.doi.org/10.21105/joss. 00020

http://dx.doi.org/10.21105/joss.00020

findOverlaps-methods 3

findOverlaps-methods Finding overlapping genomic tuples

Description

Various methods for finding/counting overlaps between objects containing genomic tuples. This
man page describes the methods that operate on GTuples and GTuplesList objects.

NOTE: The ?findOverlaps generic function is defined and documented in the IRanges package.
The findOverlaps method for GenomicRanges and GRangesList objects are defined and docu-
mented in the GenomicRanges package.

GTuples and GTuplesList objects also support countOverlaps, overlapsAny, and subsetByOverlaps
thanks to the default methods defined in the TRanges package and to the findOverlaps and
countOverlaps methods defined in this package and documented below.

Usage

S4 method for signature 'GTuples,GTuples'
findOverlaps(query, subject,
maxgap = -1L, minoverlap = 0oL,
type = c("any"”, "start”, "end”, "within"”, "equal"),
select = c("all"”, "first"”, "last", "arbitrary"),
ignore.strand = FALSE)

S4 method for signature 'GTuples,GTuples'
countOverlaps(query, subject,
maxgap = -1L, minoverlap = 0oL,
type = c("any"”, "start”, "end”, "within", "equal"),
ignore.strand = FALSE)

Arguments

query, subject A GTuples or GTuplesList object.

type See details below.

maxgap, minoverlap
See ?findOverlaps in the IRanges package for a description of these argu-
ments.

select When select is "all” (the default), the results are returned as a Hits object.
Otherwise the returned value is an integer vector parallel to query (i.e. same
length) containing the first, last, or arbitrary overlapping interval in subject,
with NA indicating intervals that did not overlap any intervals in subject.

ignore.strand When set to TRUE, the strand information is ignored in the overlap calculations.

4 findOverlaps-methods

Details

The findOverlaps-based methods involving genomic tuples, either through GTuples or GTuplesList
objects, can search for tuple-tuple, tuple-range and range-tuple overlaps. Each of these are de-
scribed below, with attention paid to the important special case of finding "equal tuple-tuple over-
laps".

Equal tuple-tuple overlaps When the query and the subject are both GTuples objects and type
="equal”, findOverlaps uses the seqnames (seqnames), positions (tuples,GTuples-method)
and strand (strand) to determine which tuples from the query exactly match those in the

subject, where a strand value of "*" is treated as occurring on both the "+" and "-" strand.
An overlap is recorded when a tuple in the query and a tuple in the subject have the same se-
quence name, have a compatible pairing of strands (e.g. "+"/"+", "="/"=""x"["+" k1 ["="]

etc.), and have identical positions.
NOTE: Equal tuple-tuple overlaps can only be computed if size (query) is equal to size(subject).

Other tuple-tuple overlaps When the query and the subject are GTuples or GTuplesList ob-
jects and type = "any"”, "start”, "end” or "within", findOverlaps treats the tuples as if
they were ranges, with ranges given by [posi , pos.,| and where m is the size, GTuples-method
of the tuples. This is done via inheritance so that a GTuples (resp. GTuplesList) object is
treated as a GRanges (resp. GRangesList) and the appropriate findOverlaps method is dis-
patched upon.
NOTE: This is the only type of overlap finding available when either the query and subject
are GTuplesList objects. This is following the behaviour of findOverlaps,GRangesList,GRangesList-method

that allows type = "any”, "start”, "end"” or "within"” but does not allow type = "equal”.

tuple-range and range-tuple overlaps When one of the query and the subject is not a GTuples
or GTuplesList objects, findOverlaps treats the tuples as if they were ranges, with ranges
given by [posi, pos,,] and where m is the size,GTuples-method of the tuples. This is done
via inheritance so that a GTuples (resp. GTuplesList) object is treated as a GRanges (resp.
GRangesList) and the appropriate findOverlaps method is dispatched upon.

In the context of findOverlaps, a feature is a collection of tuples/ranges that are treated as a single
entity. For GTuples objects, a feature is a single tuple; while for GTuplesList objects, a feature is
a list element containing a set of tuples. In the results, the features are referred to by number, which
run from 1 to length(query)/length(subject).

Value

For findOverlaps, either a Hits object when select = "all” or an integer vector otherwise.
For countOverlaps, an integer vector containing the tabulated query overlap hits.

For overlapsAny alogical vector of length equal to the number of tuples/ranges in query indicating
those that overlap any of the tuples/ranges in subject.

For subsetByOverlaps an object of the same class as query containing the subset that overlapped
at least one entity in subject.

Author(s)

Peter Hickey for methods involving GTuples and GTuplesList. P. Aboyoun, S. Falcon, M. Lawrence,
N. Gopalakrishnan, H. Pages and H. Corrada Bravo for all the real work underlying the powerful
findOverlaps functionality.

findOverlaps-methods 5

See Also

* Please see the package vignette for an extended discussion of overlaps involving genomic tu-
ples, which is available by typing vignette(topic = 'GenomicTuplesIntroduction',package
= '"GenomicTuples') at the R prompt.

e findOverlaps
* findOverlaps
* Hits

* GTuples

* GTuplesList
* GRanges

* GRangeslList

Examples

GTuples object containing 3-tuples:
gt3 <- GTuples(segnames = c('chr1', 'chr1', 'chr1', 'chr1', 'chr2"),
tuples = matrix(c(1oL, 1L, 1oL, 10L, 10L, 20L, 20L, 20L, 25L,
20L, 3oL, 3oL, 35L, 3eL, 30L), ncol = 3),
strand = c('+', '=', "', '+ '+'))
GTuplesList object
gtl3 <- GTuplesList(A = gt3[1:3], B = gt3[4:5])

Find equal genomic tuples:

findOverlaps(gt3, gt3, type = 'equal')

Note that this is different to the results if the tuples are treated as
ranges since this ignores the "internal positions” (pos2):
findOverlaps(granges(gt3), granges(gt3), type = 'equal')

Scenarios where tuples are treated as ranges:
findOverlaps(gt3, gt3, type = 'any')
findOverlaps(gt3, gt3, type = 'start')
findOverlaps(gt3, gt3, type = 'end')
findOverlaps(gt3, gt3, type = 'within')

Overlapping a GTuples and a GTuplesList object (tuples treated as ranges):
table(!is.na(findOverlaps(gtl3, gt3, select="first")))

countOverlaps(gtl3, gt3)

findOverlaps(gtl3, gt3)

subsetByOverlaps(gtl3, gt3)

countOverlaps(gtl3, gt3, type = "start")

findOverlaps(gtl3, gt3, type = "start")

subsetByOverlaps(gtl3, gt3, type = "start”)

findOverlaps(gtl3, gt3, select = "first")

6 GTuples-class

GTuples-class GTuples objects

Description

The GTuples class is a container for the genomic tuples and their associated annotations.

Details

GTuples extends GRanges as a container for genomic tuples rather than genomic ranges. GTuples is
a vector of genomic locations and associated annotations. Each element in the vector is comprised
of a sequence name, a tuple, a strand, and optional metadata columns (e.g. score, GC content,
etc.). This information is stored in four components:

segnames a ’factor’ Rle object containing the sequence names.

tuples externally, a matrix-link object containing the tuples. Internally, an IRanges object storing
the first and last position of each tuple and, if required, a matrix storing the "internal" positions
of each tuple (see description of internalPos below).

strand aRle object containing the strand information.

mcols aDataFrame object containing the metadata columns. Columns cannot be named "segnames”

"non "nons "non "non non

"ranges", "tuples", "internalPos", "size", "strand", "seqlevels", "seqlengths", "isCircular",

non

"start", "end", "width", or "element".

seqinfo a DataFrame object containing information about the set of genomic sequences present
in the GTuples object.

Slots

Since the GTuples class extends the GRanges class it contains the seqnames, ranges, strand,
elementMetadata, seqinfo and metadata. The GTuples class also contains two additional slots,
size and internalPos.

size An integer. The size of the genomic tuples stored in the GTuples object.

internalPos If'the size of the genomic tuples is greater than 2, internalPos is an integer matrix
storing the "internal" positions of each genomic tuple. Otherwise internalPos is NULL.

Constructor

GTuples(segnames =Rle(), tuples =matrix(),strand =Rle("*",length(seqgnames)),...,seqlengths
=NULL, seginfo =NULL): Creates a GTuples object.
seqnames Rle object, character vector, or factor containing the sequence names.

tuples matrix object containing the positions of the tuples. The first column should refer to
posl, the second to pos2, etc.

strand Rle object, character vector, or factor containing the strand information.

. Optional metadata columns. These columns cannot be named "start", "end", "width",
or "element". A named integer vector "seqlength" can be used instead of seqginfo.

GTuples-class 7

seqlengths an integer vector named with the sequence names and containing the lengths (or
NA) for each level (seqnames).

seqinfo aDataFrame object containing allowed sequence names and lengths (or NA) for each
level (segnames).

Coercion
In the code snippets below, x is a GTuples object.

as.data.frame(x,row.names = NULL,optional = FALSE, ...): Creates a data.frame with columns
seqnames (factor), tuples (integer), strand (factor), as well as the additional metadata
columns stored in mcols(x). Pass an explicit stringsAsFactors=TRUE/FALSE argument
via ... to override the default conversions for the metadata columns in mcols(x).
as.character(x, ignore.strand=FALSE): Turn GTuples object x into a character vector where
each tuples in x is represented by a string in format chr1:100,109,115:+. If ignore.strand
is TRUE or if all the ranges in x are unstranded (i.e. their strand is set to *), then all the strings
in the output are in format chr1:100,109,115.
The names on x are propagated to the returned character vector. Its metadata (metadata(x))
and metadata columns (mcols(x)) are ignored.

as.factor(x): Equivalent to
factor(as.character(x), levels=as.character(sort(unique(x))))

as(x, "GRanges"), granges(x): Creates a GRanges object from a GTuples object. WARNING:
This is generally a destructive operation because all "internal" positions will be dropped.

Accessors
In the following code snippets, x is a GTuples object.

size(x): Get the size of the genomic tuples stored in Xx.
length(x): Get the number of elements.

seqnames(x), segnames (x) <-value: Get or set the sequence names. value can be an R1e object,
a character vector, or a factor.

tuples(x), tuples(x) <-value: Get the positions of the tuples, which are returned as an integer
matrix. value can be an integer matrix.

ranges(x,use.mcols = FALSE), ranges(x) <-value: Get or set the ranges in the form of a Com-
pressedIRangesList. value can be a IntegerRangesList object.
WARNING: The use of ranges with GTuples objects is strongly discouraged. It will only
get/set posy and pos,, of the tuples, where m is the size of the tuples, as these are what are
stored in the "ranges" slot of a GTuples object.

names(x), names(x) <-value: Get or set the names of the elements.

strand(x), strand(x) <-value: Get or set the strand. value can be an Rle object, character
vector, or factor.

mcols(x,use.names=FALSE), mcols(x) <-value: Get or set the metadata columns. If use.names=TRUE
and the metadata columns are not NULL, then the names of x are propagated as the row names
of the returned DataFrame object. When setting the metadata columns, the supplied value
must be NULL or a data.frame-like object (i.e. DataFrame or data.frame) object holding
element-wise metadata.

8 GTuples-class

elementMetadata(x), elementMetadata(x) <-value, values(x), values(x) <-value: Alter-
natives to mcols functions. Their use is discouraged.

seginfo(x), seqinfo(x) <-value: Get or set the information about the underlying sequences.
value must be a DataFrame object.

seglevels(x), seqlevels(x, force=FALSE) <-value: Get or set the sequence levels. seqlevels(x)

is equivalent to seqlevels(seqinfo(x)) or to levels(segnames(x)), those 2 expressions
being guaranteed to return identical character vectors on a GTuples object. value must be a
character vector with no NAs. See ?seqlevels for more information.

seqlengths(x), seqlengths(x) <-value: Get or set the sequence lengths. seqlengths(x) is
equivalent to seqlengths(seqinfo(x)). value can be a named non-negative integer or nu-
meric vector eventually with NAs.

isCircular(x), isCircular(x) <-value: Get or set the circularity flags. isCircular(x) is
equivalent to isCircular(seqinfo(x)). value must be a named logical vector eventually
with NAs.

genome(x), genome(x) <-value: Get or set the genome identifier or assembly name for each se-
quence. genome (x) is equivalent to genome (seginfo(x)). value must be a named character
vector eventually with NAs.

seqlevelsStyle(x), seqlevelsStyle(x) <-value: Get or set the seqname style for x. See the
seqlevelsStyle generic getter and setter in the GenomeInfoDb package for more informa-
tion.

score(x), score(x) <-value: Get or set the "score" column from the element metadata.

Tuples methods

In the following code snippets, x is a GTuples object. WARNING: The preferred setter is tuples(x)

<-value and the use of start(x) <-value, end(x) <-value andwidth(x) <-value is discouraged.

start(x), start(x) <-value: Get or set pos; of the tuples. WARNING: The use of width(x)
<-value is discouraged; instead, construct the tuples as the appropriate integer matrix, mvalue,
and use tuples(x) <-mvalue.

end(x), end(x) <-value: Get or set pos,, of the tuples, where m is the size of the tuples.
WARNING: The use of end(x) <-value is discouraged; instead, construct the tuples as the
appropriate integer matrix, mvalue, and use tuples(x) <-mvalue.

IPD(x): Get the intra-pair distances (IPD). IPD is only defined for tuples with size > 1. The IPD of
a tuple with size= m is the vector of intra-pair distances, (poss —posi, . . . , POS;y, —POSm—1)-

width(x), width(x) <-value: Get or set pos,, — pos; of the tuples, where m is the size of
the tuples. If using width(x) <-value, pos; is held fixed and pos,, is altered. WARNING:
The use of width(x) <-value is discouraged; instead, construct the tuples as the appropriate
integer matrix, mvalue, and use tuples(x) <-mvalue.

Splitting and Combining
In the following code snippets, X is a GTuples object.

append(x,values,after = length(x)): Inserts the values into x at the position given by after,
where x and values are of the same class.

GTuples-class 9

c(x,...): Combines x and the GTuples objects in ... together. Any object in ... must belong
to the same class as x, or to one of its subclasses, or must be NULL. The result is an object of
the same class as x.

c(X,...,ignore.mcols=FALSE) If the GTuples objects have metadata columns (represented
as one DataFrame per object), each such \codeDataFrame must have the same columns in
order to combine successfully. In order to circumvent this restraint, you can pass in an
ignore.mcols=TRUE argument which will combine all the objects into one and drop all of
their metadata columns.

split(x,f,drop=FALSE): Splits x according to f to create a GTuplesList object. If f is a list-like
object then drop isignored and f is treated as if it was rep(seq_len(length(f)), sapply(f,length)),
so the returned object has the same shape as f (it also receives the names of f). Otherwise, if
f is not a list-like object, empty list elements are removed from the returned object if drop is
TRUE.

Subsetting

In the following code snippets, x is a GTuples object.

x[i,3j], x[i,j] <-value: Get or set elements i with optional metadata columns mcols(x)[,j],
where i can be missing; an NA-free logical, numeric, or character vector; or a ’logical’ R1le
object.

x[i,j] <-value: Replaces elements i and optional metadata columns j with value.

head(x,n =6L): If n is non-negative, returns the first n elements of the GTuples object. If n is
negative, returns all but the last abs(n) elements of the GTuples object.

rep(x,times,length.out,each): Repeats the values in x through one of the following conven-
tions:

times Vector giving the number of times to repeat each element if of length length(x), or
to repeat the whole vector if of length 1.

length.out Non-negative integer. The desired length of the output vector.

each Non-negative integer. Each element of x is repeated each times.

subset(x, subset): Returns a new object of the same class as x made of the subset using logical
vector subset, where missing values are taken as FALSE.

tail(x,n=6L): If n is non-negative, returns the last n elements of the GTuples object. If n is
negative, returns all but the first abs(n) elements of the GTuples object.

window(x,start =NA,end =NA,width = NA, frequency =NULL,delta =NULL, .. .): Extracts the
subsequence window from the GTuples object using:
start, end, width The start, end, or width of the window. Two of the three are required.
frequency, delta Optional arguments that specify the sampling frequency and increment

within the window.

In general, this is more efficient than using "[" operator.

window(x,start = NA,end = NA,width = NA, keepLength = TRUE) <-value: Replaces the sub-
sequence window specified on the left (i.e. the subsequence in x specified by start, end and
width) by value. value must either be of class class(x), belong to a subclass of class(x),

be coercible to class(x), or be NULL. If keepLength is TRUE, the elements of value are
repeated to create a GTuples object with the same number of elements as the width of the

10 GTuples-class

subsequence window it is replacing. If keepLength is FALSE, this replacement method can
modify the length of x, depending on how the length of the left subsequence window compares
to the length of value.

x$name, x$name <-value: Shortcuts for mcols(x)$name and mcols(x)$name <-value, respec-
tively. Provided as a convenience, from \codeGRanges as the result of strong popular demand.
Note that those methods are not consistent with the other $ and $<- methods in the IRanges/
GenomicRanges infrastructure, and might confuse some users by making them believe that a
GRanges object can be manipulated as a data.frame-like object. Therefore we recommend us-
ing them only interactively, and we discourage their use in scripts or packages. For the latter,
use mcols(x)$name and mcols(x)$name <-value, instead of x$name and x$name <-value,
respectively.

Other methods

show(x): By default the show method displays 5 head and 5 tail elements. This can be changed by
setting the global options showHeadLines and showTaill ines. If the object length is less than
(or equal to) the sum of these 2 options plus 1, then the full object is displayed. Note that these
options also affect the display of GRanges objects (defined in the GenomicRanges package),
GAlignments and GAlignmentPairs objects (defined in the GenomicAlignments package),
as well as other objects defined in the IRanges and Biostrings packages (e.g. IRanges and
DNAStringSet objects).

Author(s)
Peter Hickey

See Also

GTuplesList-class, seqinfo, Vector, Rle, DataFrame, GRanges, intra-tuple-methods, findOverlaps-methods,
nearest-methods,

Examples

Create example 4-tuples
seginfo <- Seqinfo(paste@("chr”, 1:3), c(1000, 2000, 1500), NA, "mockl")
gt4 <- GTuples(segnames = Rle(c("chr1”, "chr2”, "chr1”, "chr3"),
c(1, 3, 2, 4)),
tuples = matrix(c(1:10, 2:11, 3:12, 4:13), ncol = 4),
strand = Rle(strand(c("-", "+", "x" "+" "-")}),
c(1, 2, 2, 3, 2),
score = 1:10, GC = seq(l1, @, length = 10), seginfo = seqginfo)

gt4

Summarizing elements
table(seqgnames(gt4))
sum(width(gt4))

summary (mcols(gt4)[, "score"])

Renaming the underlying sequences
seqlevels(gt4)
seqlevels(gt4) <- sub("chr”, "Chrom”, seqlevels(gt4))

GTuples-class

gt4
seqlevels(gt4) <- sub("Chrom”, "chr", seqlevels(gt4)) # revert

Combining objects
gt4_a <- GTuples(segnames = Rle(c("chr1”, "chr2", "chr1”, "chr3"),
C(1’ 3’ 2’ 4))7

tuples = matrix(c(1:10, 21:30, 31:40, 41:50), ncol = 4),

Rle(strand(c(”=", "+", "%", "+" "-")y,
c(1, 2, 2, 3, 2)),
score = 1:10, seqinfo = seqinfo)

strand

gt4_b <- GTuples(segnames = Rle(c("chr1”, "chr2", "chr1”, "chr3"),
c(1, 3, 2, 4)),

tuples = matrix(c(101:110, 121:130, 131:140, 141:150),

ncol = 4),
Stl"and = Rle(Stl"and(C("—“, II+1I, M*H’ H+II, N_II))’
c(1! 2! 2! 3! 2))?
score = 1:10, seqinfo = seqinfo)

some_gt4 <- c(gt4_a, gt4_b)

all_gt4 <- c(gt4, gtd_a, gtd_b) ## (This would fail)
all_gt4 <- c(gt4, gtd_a, gtd_b, ignore.mcols=TRUE)

The number of lines displayed in the 'show' method
are controlled with two global options.

options(”showHeadlLines"” = 7)
options(”showTaillLines” = 2)
all_gt4

Revert to default values
options(”showHeadlLines"”=NULL)
options(”showTaillLines"”=NULL)

Get the size of the tuples stored in the GTuples object
size(gt4)

Get the tuples
tuples(gt4)

Get the matrix of intra-pair distances (IPD)
IPD(all_gt4)

Can't combine genomic tuples of different sizes
gtl <- GTuples('chr1l', matrix(30:40))

gt

Not run:

Returns error

c(gt4, gt1)

End(Not run)

11

12 GTuples-comparison

GTuples-comparison Comparing and ordering genomic tuples

Description

Methods for comparing and ordering the elements in one or more GTuples objects.

Usage

duplicated()
e

S4 method for signature 'GTuples'
duplicated(x, incomparables = FALSE, fromLast = FALSE)

match() and selfmatch()
R

S4 method for signature 'GTuples,GTuples'

match(x, table, nomatch = NA_integer_,
incomparables = NULL, ignore.strand = FALSE)

S4 method for signature 'GTuples'

selfmatch(x, ignore.strand = FALSE, ...)

order() and related methods
e

S4 method for signature 'GTuples'
order(..., na.last = TRUE, decreasing = FALSE, method = c("auto", "shell”, "radix"))

S4 method for signature 'GTuples'
sort(x, decreasing = FALSE, ignore.strand = FALSE, by)

S4 method for signature 'GTuples'
rank(x, na.last = TRUE,
ties.method = c("average”, "first"”, "random”,

Hmaxl!’ Hminll)>
S4 method for signature 'GTuples'
is.unsorted(x, na.rm=FALSE, strictly=FALSE, ignore.strand = FALSE)

Generalized element-wise (aka "parallel”) comparison of 2 GTuples
objects
e

S4 method for signature 'GTuples,GTuples'
pcompare(x, y)

GTuples-comparison 13

Arguments

x, table, y GTuples objects.

incomparables Not supported.
fromLast, method, nomatch

See ?” GenomicRanges-comparison” in the GenomicRanges package for a de-
scription of these arguments.

ignore.strand Whether or not the strand should be ignored when comparing 2 genomic tuples.

One or more GTuples objects. The GTuples objects after the first one are used
to break ties

na.last Ignored.

decreasing TRUE or FALSE.

ties.method A character string specifying how ties are treated. Only "first" is supported
for now.

by An optional formula that is resolved against as. env(x); the resulting variables
are passed to order to generate the ordering permutation.

na.rm logical. Should missing values be removed before checking? WARNING: This
currently has no effect and is ignored.

strictly logical indicating if the check should be for strictly increasing values.

Details

Two elements of a GTuples object (i.e. two genomic tuples) are considered equal if and only
if they are on the same underlying sequence and strand, and have the same positions (tuples).
duplicated() and unique() on a GTuples object are conforming to this.

The "natural order" for the elements of a GTuples object is to order them (a) first by sequence level,
(b) then by strand, (c) then by posi,...,pos,,. This way, the space of genomic tuples is totally
ordered.

order(), sort(), is.unsorted(), and rank() on a GTuples object are using this "natural order".

Also ==, !=, <=, >=, < and > on GTuples objects are using this "natural order".

pcompare(x,y): Performs "generalized range-wise comparison" of x and vy, that is, returns an
integer vector where the i-th element is a code describing how the i-th element in x is qualita-
tively positioned relatively to the i-th element in y.
A code that is <@, =0, or > 0, corresponds to x[i] <y[i], x[i]==y[i], or x[i]1>y[i],
respectively.
WARNING: These predefined codes are not as detailed as those for IPosRanges-comparison.
Specifically, only the sign of the code matters, not the actual value.

match(x, table,nomatch = NA_integer_): Returns an integer vector of the length of x, contain-
ing the index of the first matching range in table (or nomatch if there is no matching range)
for each tuple in x.

duplicated(x, fromLast = FALSE,method = c("hash”, "base")): Determines which elements
of x are equal to elements with smaller subscripts, and returns a logical vector indicating
which elements are duplicates. See duplicated in the base package for more details.

14

GTuples-comparison

unique(x,fromLast = FALSE,method = c("hash”, "base")): Removes duplicate tuples from x.
See unique in the base package for more details.

X %in% table: A shortcut for finding the ranges in x that match any of the tuples in table. Returns
a logical vector of length equal to the number of tuples in x.

findMatches(x,table): An enhanced version of match that returns all the matches in a Hits
object.

countMatches(x, table): Returns an integer vector of the length of x containing the number of
matches in table for each element in x.

order(...): Returns a permutation which rearranges its first argument (a GTuples object) into
ascending order, breaking ties by further arguments. See order in the BiocGenerics package
for more information.

sort(x): Sorts x. See sort in the base package for more details.

n o n n o n

rank(x,na.last = TRUE, ties.method = c("average”,"first”,"random”,"max","min")): Re-
turns the sample ranks of the tuples in x. See rank in the base package for more details.

Value

For pcompare: see Details section above.
For selfmatch: an integer vector of the same length as x.

For duplicated, unique, and %in%: see ?BiocGenerics: :duplicated, ?BiocGenerics: :unique,
and ?”%in%".

For findMatches: a Hits object by default (i.e. if select="all").

For countMatches: an integer vector of the length of x containing the number of matches in table
for each element in x.

For sort: see ?BiocGenerics: :sort.

Author(s)

Peter Hickey

See Also

e The GTuples class.

* GenomicRanges-comparison in the GRanges package for comparing and ordering genomic
ranges.

* intra-tuple-methods for intra-tuple transformations.

¢ findOverlaps-methods for finding overlapping genomic ranges.

Examples

GTuples object containing 3-tuples:
gt3 <- GTuples(segnames = c('chr1', 'chr1', 'chr1', 'chr1', 'chr2'),
tuples = matrix(c(1oL, 1oL, 1oL, 1oL, 1oL, 2oL, 2oL, 2oL, 25L,
20L, 30L, 3oL, 35L, 3oL, 30L), ncol = 3),
strand = c('+', '="', "', T+t '+'))

GTuples-comparison

gt3 <- c(gt3, rev(gt3[3:5]))

oo
A. ELEMENT-WISE (AKA "PARALLEL") COMPARISON OF 2 GTuples OBJECTS

e e e e
gt3[2] == gt3[2] # TRUE

gt3[2] == gt3[5] # FALSE

gt3 == gt3[4]

gt3 >= gt3[3]

B o o
B. duplicated(), unique()

B — oo
duplicated(gt3)

unique(gt3)

HH -
C. match(), %in%

#H -
table <- gt3[2:5]

match(gt3, table)

match(gt3, table, ignore.strand = TRUE)

e
D. findMatches(), countMatches()
T
findMatches(gt3, table)

countMatches(gt3, table)

findMatches(gt3, table, ignore.strand = TRUE)
countMatches(gt3, table, ignore.strand = TRUE)

gt3_levels <- unique(gt3)
countMatches(gt3_levels, gt3)

#H# -
E. order() AND RELATED METHODS

-
is.unsorted(gt3)

order(gt3)

sort(gt3)

is.unsorted(sort(gt3))

is.unsorted(gt3, ignore.strand=TRUE)

gt3_2 <- sort(gt3, ignore.strand=TRUE)
is.unsorted(gt3_2) # TRUE

is.unsorted(gt3_2, ignore.strand=TRUE) # FALSE

TODO (TODO copied from GenomicRanges): Broken. Please fix!
#sort(gt3, by = ~ segnames + start + end) # equivalent to (but slower than) above

score(gt3) <- rev(seg_len(length(gt3)))

15

16 GTuplesList-class

TODO (TODO copied from GenomicRanges): Broken. Please fix!

#sort(gt3, by = ~ score)

rank(gt3)

B m o
F. GENERALIZED ELEMENT-WISE COMPARISON OF 2 GTuples OBJECTS
et G e E S

pcompare(gt3[3], gt3)

GTuplesList-class GTuplesList objects

Description

The GTuplesList class is a container for storing a collection of GTuples objects. It is derived from
GRangesList.

Constructor

GTuplesList(...): Creates a GTuplesList object using GTuples objects supplied in

Accessors

In the following code snippets, x is a GTuplesList object.

length(x): Get the number of list elements.
names(x), names(x) <-value: Get or set the names on x.
elementNROWS(x): Get the 1ength of each of the list elements.

isEmpty(x): Returns a logical indicating either if the GTuplesList has no elements or if all its
elements are empty.

seqnames(x), seqnames(x) <-value: Get or set the sequence names in the form of an RleList.
value can be an \codeRleList or CharacterList object.

tuples(x), tuples(x) <-value: Get or set the tuples in the form of a SimpleList of integer
matrices. value can be a a single integer matrix.

ranges(x,use.mcols = FALSE), ranges(x) <-value: Get or set the ranges in the form of a
CompressedIRangesList. value can be a IntegerRangesList object.

WARNING: The use of ranges with GTuplesList objects is strongly discouraged. It will
only get/set pos; and pos,, of the tuples, where m is the size of the tuples, as these are what
are stored in the "ranges" slot of the GTuples objects.

strand(x), strand(x) <-value: Get or set the strand in the form of an RleList. value can
be an RlelList, CharacterList or single character. value as a single character converts all
ranges in x to the same value; for selective strand conversion (i.e., mixed “+” and “-”) use
RleList or CharacterList.

GTuplesList-class 17

mcols(x,use.names=FALSE), mcols(x) <-value: Get or set the metadata columns. value can
be NULL, or a data.frame-like object (i.e. DataFrame or data.frame) holding element-wise
metadata.

elementMetadata(x), elementMetadata(x) <-value, values(x), values(x) <-value: Alter-
natives to mcols functions. Their use is discouraged.

seqinfo(x), seqinfo(x) <-value: Get or set the information about the underlying sequences.
value must be a Seqinfo object.

seqlevels(x), seqlevels(x, force=FALSE) <-value: Get or set the sequence levels. seqlevels(x)
is equivalent to seqlevels(seqinfo(x)) or to levels(segnames(x)), those 2 expressions
being guaranteed to return identical character vectors on a GTuplesList object. value must
be a character vector with no NAs. See ?seqlevels for more information.

seglengths(x), seqlengths(x) <-value: Get or set the sequence lengths. seqlengths(x) is
equivalent to seqlengths(seqinfo(x)). value can be a named non-negative integer or nu-
meric vector eventually with NAs.

isCircular(x), isCircular(x) <-value: Get or set the circularity flags. isCircular(x) is
equivalent to isCircular(seqinfo(x)). value must be a named logical vector eventually
with NAs.

genome (x), genome(x) <-value: Get or set the genome identifier or assembly name for each se-
quence. genome(x) is equivalent to genome (seqinfo(x)). value must be a named character
vector eventually with NAs.

seqlevelsStyle(x), seqlevelsStyle(x) <-value: Get or set the seqname style for x. See the
seqlevelsStyle generic getter and setter in the GenomelInfoDb package for more information.

score(x),score(x) <-value: Get or set the “score” metadata column.

Tuples methods

In the following code snippets, x is a GTuplesList object.

WARNING: The preferred setter is tuples(x) <-value and the use of start(x) <-value, end(x)
<-value and width(x) <-value is discouraged.

start(x), start(x) <-value: Get or set pos; of the tuples. WARNING: The use of start(x)
<-value is discouraged; instead, construct the tuples as the appropriate List of integer matri-
ces, mvalue, and use tuples(x) <-mvalue.

end(x), end(x) <-value: Get or set pos,, of the tuples, where m is the size of the tuples.
WARNING: The use of end(x) <-value is discouraged; instead, construct the tuples as the
appropriate List of integer matrices, mvalue, and use tuples(x) <-mvalue.

IPD(x): Get the intra-pair distances (IPD) in the form of a SimpleList of integer matrices. IPD
is only defined for tuples with size > 1. The IPD of a tuple with size= m is the vector of
intra-pair distances, (posa — pos1, . .., POSy — POSm—1)-

width(x), width(x) <-value: Get or set pos,, — posy of the tuples, where m is the size of
the tuples. If using width(x) <-value, pos; is held fixed and pos,, is altered. WARNING:
The use of width(x) <-value is discouraged; instead, instead, construct the tuples as the
appropriate List of integer matrices, mvalue, and use tuples(x) <-mvalue.

18 GTuplesList-class

Coercion

In the code snippets below, x is a GTuplesList object.

as.data.frame(x,row.names = NULL,optional = FALSE, ...,value.name = "value”,use.outer.mcols
= FALSE, group_name.as.factor = FALSE): Coerces x to a data.frame. See as.data.frame
on the List man page for details (?List).

as.list(x,use.names = TRUE): Creates a list containing the elements of x.

as(x, "GRangesList"): Creates a GRangesList object from a GTuplesList object. WARNING:
This is generally a destructive operation, as the original GTuplesList may not be re-creatable.

Subsetting

In the following code snippets, x is a GTuplesList object.

x[i,3]1, x[i,j] <-value: Get or set elements i with optional metadata columns mcols(x)[, j],
where i can be missing; an NA-free logical, numeric, or character vector; a ’logical’ Rle
object, or an AtomicList object.

x[[i1], x[[i1] <-value: Get or set element i, where i is a numeric or character vector of length
1.

x$name, x$name <-value: Get or set element name, where name is a name or character vector of
length 1.

head(x,n = 6L): If n is non-negative, returns the first n elements of the GTuplesList object. If n is
negative, returns all but the last abs(n) elements of the GTuplesList object.

rep(x,times,length.out,each): Repeats the values in x through one of the following conven-
tions:

times Vector giving the number of times to repeat each element if of length length(x), or
to repeat the whole vector if of length 1.

length.out Non-negative integer. The desired length of the output vector.

each Non-negative integer. Each element of x is repeated each times.

subset(x, subset): Returns a new object of the same class as x made of the subset using logical
vector subset, where missing values are taken as FALSE.

tail(x,n=6L): If n is non-negative, returns the last n elements of the GTuples object. If n is
negative, returns all but the first abs(n) elements of the GTuples object.

Combining

In the code snippets below, x is a GTuplesList object.

c(X,...): Combines x and the GTuplesList objects in ... together. Any object in ... must
belong to the same class as x, or to one of its subclasses, or must be NULL. The result is an
object of the same class as x.

append(x,values,after = length(x)): Inserts the values into x at the position given by after,
where x and values are of the same class.

unlist(x,recursive = TRUE,use.names = TRUE): Concatenates the elements of x into a single
GTuples object.

GTuplesList-class 19

Looping

In the code snippets below, x is a GTuplesList object.

endoapply(X,FUN, ...): Similar to lapply, but performs an endomorphism, i.e. returns an object
of class(X).

lapply (X, FUN, ...): Like the standard lapply function defined in the base package, the lapply
method for GTuplesList objects returns a list of the same length as X, with each element being
the result of applying FUN to the corresponding element of X.

Map(f,...): Applies a function to the corresponding elements of given GTuplesList objects.

mapply (FUN, ... ,MoreArgs = NULL,SIMPLIFY = TRUE,USE.NAMES = TRUE): Like the standard mapply
function defined in the base package, the mapply method for GTuplesList objects is a multi-
variate version of sapply.

mendoapply (FUN, ... ,MoreArgs = NULL): Similar to mapply, but performs an endomorphism
across multiple objects, i.e. returns an object of class(list(...)[[1]]1).

Reduce(f,x,init,right = FALSE,accumulate = FALSE): Uses a binary function to successively
combine the elements of x and a possibly given initial value.

f A binary argument function.
init An R object of the same kind as the elements of x.
right A logical indicating whether to proceed from left to right (default) or from right to left.

nomatch The value to be returned in the case when "no match" (no element satisfying the
predicate) is found.

sapply(X,FUN, ...,simplify=TRUE,USE.NAMES=TRUE): Like the standard sapply function de-
fined in the base package, the sapply method for GTuplesList objects is a user-friendly ver-
sion of lapply by default returning a vector or matrix if appropriate.

Author(s)

Peter Hickey for GTuplesList definition and methods. P. Aboyoun & H. Pages for all the real work
underlying the powerful GRangesList class and methods.

See Also

GTuples-class seqinfo, GRangesList, Vector, IntegerRangesList, RleList, DataFramelList,
findOverlaps-methods

Examples

Construction of GTuplesList of 4-tuples with GTuplesList():
seginfo <- Seqinfo(paste@("chr”, 1:3), c(1000, 2000, 1500), NA, "mockl")
gt4 <- GTuples(segnames = Rle(c("chr1”, "chr2", "chr1”, "chr3"),
c(1, 3, 2, 4),
tuples = matrix(c(1:10, 2:11, 3:12, 4:13), ncol = 4),
strand = Rle(strand(c("=", "+", "x" "+" "-")}),
c(1, 2, 2, 3, 2),
score = 1:10, GC = seq(l, @, length = 10), seqginfo = seqginfo)
gtl4 <- GTuplesList(A = gt4[1:4], B = gt4[5:10])
gtld

20 intra-tuple-methods

Summarizing elements:
elementNROWS (gtl4)
table(seqnames(gtl4))

Extracting subsets:
gtl4[seqnames(gtld) == "chr1”,]
gtl4[seqnames(gtld) == "chr1” & strand(gtld4) == "+",]

Renaming the underlying sequences:

seqlevels(gtl4d)

seqlevels(gtld) <- sub("chr”, "Chrom”, seqlevels(gtl4))
gtld

Coerce to GRangesList ("internal positions” information is lost):
as(gtl4, "GRangesList")

Get the size of the tuples stored in the GTuplesList object
size(gtl4)

Get the tuples
tuples(gtl4)

Get the matrix of intra-pair distances (IPD)
IPD(gtl4)

Can't combine genomic tuples of different sizes
gt1 <- GTuples('chrl', matrix(30:40))

gtl

Not run:

Returns error

GTuplesList(A = gt4, gt1)

End(Not run)

intra-tuple-methods Intra-tuple transformations of a GTuples or GTuplesLists object

Description

This man page documents intra-tuple transformations of a GTuples or a GTuplesList object.

WARNING: These are not exactly the same as the intra-range methods defined in the Genomi-
cRanges package (?GenomicRanges: : intra-range-methods) or in the IRanges package (?IRanges: : intra-range-meth

Usage

S4 method for signature 'GTuples'
shift(x, shift = @OL, use.names = TRUE)
S4 method for signature 'GTuplesList'

intra-tuple-methods 21

shift(x, shift = OL, use.names = TRUE)

S4 method for signature 'GTuples'
trim(x, use.names = TRUE)

Arguments

X A GTuples or GTuplesList object.
shift, use.names
See ?” intra-range-methods™.

Details

* shift behaves like the shift method for GRanges objects, except that any internalPos are
also shifted. See ?~ intra-range-methods™ for further details of the shift method.

* trim trims out-of-bound tuples located on non-circular sequences whose length is not NA.

Value

See Details section above.

Author(s)

Peter Hickey for methods involving GTuples and GTuplesList. P. Aboyoun and V. Obenchain
<vobencha@fhcrc.org> for all the real work underlying the powerful intra-range methods.

See Also

e GTuples and GTuplesList objects.

* The intra-range-methods man page in the GenomicRanges package.

Examples

#H -
A. ON A GTuples OBJECT
#H -
gt3 <- GTuples(segnames = c('chr1', 'chr1', 'chr1', 'chr1', 'chr2"),
tuples = matrix(c(1o0L, 1L, 1oL, 1oL, 10L, 20L, 20L, 20L, 25L,
20L, 3oL, 3eL, 35L, 30L, 30L), ncol = 3),

strand = c('+", '=', '%', '+ '+"))
gt3
shift(gt3, 10)
B
B. ON A GTuplesList OBJECT
$H =

gtl3 <- GRangesList(A = gt3, B = rev(gt3))
gtl3

22

shift(gtl3, IntegerList(10, 100))

nearest-methods

nearest-methods

Finding the nearest genomic tuple/range neighbour

Description

The nearest, precede, follow, distance and distanceToNearest methods for GTuples objects

and subclasses.

NOTE: These methods treat the tuples as if they were ranges, with ranges given by [pos1, pos,,|
and where m is the size,GTuples-method of the tuples. This is done via inheritance so that a
GTuples object is treated as a GRanges and the appropriate method is dispatched upon.

Usage

S4 method for signature 'GTuples,GTuples'

precede(x, subject, select = c("arbitrary”, "all"),
ignore.strand = FALSE, ...)

S4 method for signature 'GTuples,missing'

precede(x, subject, select = c("arbitrary”, "all"),
ignore.strand = FALSE, ...)

S4 method for signature 'GTuples,GTuples'

follow(x, subject, select = c("arbitrary”, "all"),
ignore.strand=FALSE, ...)

S4 method for signature 'GTuples,missing'’

follow(x, subject, select = c("arbitrary”, "all"),
ignore.strand = FALSE, ...)

S4 method for signature 'GTuples,GTuples'

nearest(x, subject, select = c("arbitrary”, "all"),
ignore.strand = FALSE, ...)

S4 method for signature 'GTuples,missing'

nearest(x, subject, select = c("arbitrary”, "all"),
ignore.strand = FALSE, ...)

S4 method for signature 'GTuples,GTuples'

distanceToNearest(x, subject, ignore.strand = FALSE,

)

S4 method for signature 'GTuples,missing'’

distanceToNearest(x, subject, ignore.strand = FALSE,

.2

S4 method for signature 'GTuples,GTuples'
distance(x, y, ignore.strand = FALSE, ...)

nearest-methods 23

Arguments

X The query GTuples instance.

subject The subject GTuples instance within which the nearest neighbours are found.
Can be missing, in which case x is also the subject.

y For the distance method, a GTuples or GRanges instance. Cannot be missing.
If x and y are not the same length, the shortest will be recycled to match the
length of the longest.

select Logic for handling ties. By default, all methods select a single tuple/range (ar-

bitrary for nearest, the first by order in subject for precede, and the last for
follow).

When select = "all” aHits object is returned with all matches for x. If x does
not have a match in subject the x is not included in the Hits object.

ignore.strand A logical indicating if the strand of the input tuples/ranges should be ignored.

Details

When TRUE, strand is setto '+"'.

Additional arguments for methods.

nearest: Performs conventional nearest neighbour finding. Returns an integer vector contain-
ing the index of the nearest neighbour tuple/range in subject for each range in x. If there is
no nearest neighbour NA is returned. For details of the algorithm see the man page in IRanges,
Tnearest.

precede: For each range in x, precede returns the index of the tuple/range in subject that
is directly preceded by the tuple/range in x. Overlapping tuples/ranges are excluded. NA is
returned when there are no qualifying tuples/ranges in subject.

follow: The opposite of precede, follow returns the index of the tuple/range in subject that
is directly followed by the tuple/range in x. Overlapping tuples/ranges are excluded. NA is
returned when there are no qualifying tuples/ranges in subject.

Orientation and Strand: The relevant orientation for precede and followis 5’ to 3, consistent
with the direction of translation. Because positional numbering along a chromosome is from
left to right and transcription takes place from 5 to 3’, precede and follow can appear to
have ‘opposite’ behaviour on the + and - strand. Using positions 5 and 6 as an example, 5
precedes 6 on the + strand but follows 6 on the - strand.

A tuple/range with strand * can be compared to tuples/ranges on either the + or - strand.
Below we outline the priority when tuples/ranges on multiple strands are compared. When
ignore.strand=TRUE all tuples/ranges are treated as if on the + strand.

— x on + strand can match to tuples/ranges on both + and * strands. In the case of a tie the
first tuple/range by order is chosen.

— x on - strand can match to tuples/ranges on both - and * strands. In the case of a tie the
first tuple/range by order is chosen.

— x on * strand can match to tuples/ranges on any of +, - or * strands. In the case of a tie
the first tuple/range by order is chosen.

distanceToNearest: Returns the distance for each tuple/range in x to its nearest neighbour in
the subject.

24 nearest-methods

* distance: Returns the distance for each tuple/range in x to the range in y. The behaviour of
distance has changed in Bioconductor 2.12. See the man page ?distance in IRanges for
details.

Value

For nearest, precede and follow, an integer vector of indices in subject, or aHits if select =
”a]-l”.

For distanceToNearest, a Hits object with a column for the query index (from), subject index
(to) and the distance between the pair.

For distance, an integer vector of distances between the tuples/ranges in x and y.

Author(s)

Peter Hickey for methods involving GTuples. P. Aboyoun and V. Obenchain <vobencha@thcrc.org>
for all the real work underlying the powerful nearest methods.

See Also

The GTuples and GRanges classes.

* GenomicRanges and GRanges classes in the GenomicRanges package.

TheIPosRanges class in the IRanges package.

The Hits class in the S4Vectors package.

* The nearest-methods man page in the GenomicRanges package.

findOverlaps-methods for finding just the overlapping ranges.

Examples

-
precede() and follow()
-
query <- GTuples("A", matrix(c(5L, 20L, 6L, 21L), ncol = 2), strand = "+"
subject <- GTuples("A", matrix(c(rep(c(10@L, 15L), 2), rep(c(11L, 16L), 2)),
ncol = 2),
strand = c("+", "+", "="] "="))
precede(query, subject)
follow(query, subject)
strand(query) <- "-"
precede(query, subject)
follow(query, subject)

ties choose first in order
query <- GTuples("A", matrix(c(1@L, 11L), ncol = 2), c("+", "=", "x"))
subject <- GTuples("A", matrix(c(rep(c(5L, 15L), each = 3),
rep(c(6L, 16L), each = 3)), ncol = 2),
rep(c("+", "=", "x"), 2))
precede(query, subject)
precede(query, rev(subject))

tuples-squeezers 25

ignore.strand = TRUE treats all ranges as '+'
precede(query[1], subject[4:6], select="all", ignore.strand = FALSE)
precede(query[1], subject[4:6], select="all"”, ignore.strand = TRUE)

-
nearest()

#H -
When multiple tuples overlap an "arbitrary” tuple is chosen
query <- GTuples("A", matrix(c(5L, 15L), ncol = 2))

subject <- GTuples("A", matrix(c(1L, 15L, 5L, 19L), ncol = 2))
nearest(query, subject)

select = "all” returns all hits
nearest(query, subject, select = "all")

Tuples in 'x' will self-select when 'subject' is present
query <- GTuples("A", matrix(c(1L, 10L, 6L, 15L), ncol = 2))
nearest(query, query)

Tuples in 'x' will not self-select when 'subject' is missing
nearest(query)

-

distance(), distanceToNearest()

o -

Adjacent, overlap, separated by 1

query <- GTuples("A", matrix(c(iL, 2L, 1oL, 5L, 8L, 11L), ncol = 2))
subject <- GTuples("A", matrix(c(6L, 5L, 13L, 10L, 10L, 15L), ncol = 2))
distance(query, subject)

recycling
distance(query[1], subject)

query <- GTuples(c("A", "B"), matrix(c(1L, 5L, 2L, 6L), ncol = 2))
distanceToNearest(query, subject)

tuples-squeezers Squeeze the tuples out of a tuples-based object

Description

S4 generic functions for squeezing the tuples out of a tuples-based object. Similar to the S4 generic
functions for squeezing the ranges out of a ranged-based object, see granges and grglist.

gtuples returns them as a GTuples object, and gtlist as a GTuplesList object.

Usage

gtuples(x, use.mcols=FALSE, ...)
gtlist(x, use.mcols=FALSE, ...)

26 Undefined methods

Arguments
X A tuples-based object.
use.mcols TRUE or FALSE (the default). Whether the metadata columns on x (accessible
with mcols(x)) should be propagated to the returned object or not.
Additional arguments, for use in specific methods.
Details

The MethylationTuples (https://github.com/PeteHaitch/MethylationTuples) package de-
fines and document methods for various types of tuples-based objects.

Other Bioconductor packages might as well.

Note that these functions can be seen as a specific kind of object getters as well as functions per-
forming coercion.

Value

A GTuples object for gtuples.
A GTuplesList object for gtlist.

If x is a vector-like object, the returned object is expected to be parallel to x, that is, the i-th element
in the output corresponds to the i-th element in the input. If x has names on it, they’re propagated
to the returned object. If use.mcols is TRUE and x has metadata columns on it (accessible with
mcols(x)), they’re propagated to the returned object.

Author(s)

Peter Hickey

See Also

* GTuples and GTuplesList objects.

Examples

See ?MethPat in the MethylationTuples package (GitHub-only package) for some
examples.

Undefined methods Undefined methods

Description

These are methods defined for GRanges and GRangesList objects that have no well-defined equiva-
lent for GTuples or GTuplesList. Therefore, I have explicitly written methods for these that return
errors when called.

https://github.com/PeteHaitch/MethylationTuples

Undefined methods

Examples

gt3 <- GTuples(segnames = c('chr1', 'chr1', 'chr1', 'chr1', 'chr2'),

tuples = matrix(c(10L, 1oL, 1oL, 1oL, 1oL, 20L, 20L, 20L, 25L,
20L, 3oL, 30L, 35L, 30L, 30L), ncol = 3),

strand = c('+', '=', '%', "+') '+'))
Not run:
Will return errors
narrow(gt3)
reduce(gt3)

End(Not run)

27

Index

+ methods
findOverlaps-methods, 3
GTuples-comparison, 12
intra-tuple-methods, 20
tuples-squeezers, 25
+ utilities
findOverlaps-methods, 3
intra-tuple-methods, 20
nearest-methods, 22
[,GTuples-method (GTuples-class), 6
[,GTuplesList,ANY-method
(GTuplesList-class), 16
[<-,GTuples-method (GTuples-class), 6
[<-,GTuplesList,ANY,ANY,ANY-method
(GTuplesList-class), 16
[[<-,GTuplesList,ANY,ANY, ANY-method
(GTuplesList-class), 16
$,GTuples-method (GTuples-class), 6
$<-,GTuples,numeric-method
(GTuples-class), 6
%in%, 14

as.character,GTuples-method
(GTuples-class), 6

as.data.frame,GTuples-method
(GTuples-class), 6

as.factor,GTuples-method
(GTuples-class), 6

c,GTuples-method (GTuples-class), 6
CharacterList, 16
class:GTuples (GTuples-class), 6
class:GTuplesList (GTuplesList-class),
16
coerce,GRanges,GTuples-method
(GTuples-class), 6
coerce,GTuplesList,data. frame-method
(GTuplesList-class), 16
coerce,GTuplesList,GRangesList-method
(GTuplesList-class), 16

28

coerce,GTupleslList,list-method
(GTuplesList-class), 16

CompressedIRangesList, /16

countOverlaps (findOverlaps-methods), 3

countOverlaps,GTuples,GTuples-method
(findOverlaps-methods), 3

coverage,GTuples-method (Undefined
methods), 26

coverage,GTuplesList-method (Undefined
methods), 26

data.frame, 7
DataFrame, 6-10, 17
DataFramelList, /9
disjoin,GTuples-method (Undefined
methods), 26
disjoin,GTuplesList-method (Undefined
methods), 26
disjointBins,GTuples-method (Undefined
methods), 26
distance,GTuples,GTuples-method
(nearest-methods), 22
distanceToNearest,GTuples,GTuples-method
(nearest-methods), 22
distanceToNearest,GTuples,missing-method
(nearest-methods), 22
DNAStringSet, 10
duplicated, 13, 14
duplicated,GTuples-method
(GTuples-comparison), 12
duplicated.GTuples
(GTuples-comparison), 12

elementMetadata,GTuplesList-method
(GTuplesList-class), 16

elementMetadata<-,GTuples-method
(GTuples-class), 6

elementMetadata<-,GTuplesList-method
(GTuplesList-class), 16

end, GTuples-method (GTuples-class), 6

INDEX

end,GTuplesList-method
(GTuplesList-class), 16

end<-,GTuples-method (GTuples-class), 6

end<-,GTuplesList-method
(GTuplesList-class), 16

findOverlaps, 3, 5
findOverlaps (findOverlaps-methods), 3
findOverlaps,GTuples,GTuples-method
(findOverlaps-methods), 3
findOverlaps-methods, 3, 14, 19, 24
flank,GTuples-method (Undefined
methods), 26
flank,GTuplesList-method (Undefined
methods), 26
follow,GTuples,GTuples-method
(nearest-methods), 22
follow,GTuples,missing-method
(nearest-methods), 22

GAlignmentPairs, 10
GAlignments, 10
gaps,GTuples-method (Undefined
methods), 26
GenomicRanges, 3, 10, 24
GenomicRanges-comparison, /4
GenomicTuples-package, 2
GRanges, 4-7, 10, 21, 22, 24, 26
granges, 25
granges,GTuples-method (GTuples-class),
6
GRangeslList, 3-5, 16, 18, 19, 26
grglist, 25
gtlist (tuples-squeezers), 25
GTuples, 3-5, 12-14, 16, 20-26
GTuples (GTuples-class), 6
gtuples (tuples-squeezers), 25
GTuples-class, 6, 19
GTuples-comparison, 12
GTupleslList, 3-5, 16, 20, 21, 25, 26
GTuplesList (GTuplesList-class), 16
GTuplesList-class, 16

Hits, 3-5, 14,23, 24

IntegerRangeslList, 16, 19

intersect,GTuples,GTuples-method
(Undefined methods), 26

intra-range-methods, 21/

29

intra-tuple-methods, /4, 20

IPD (GTuples-class), 6

IPD,GTuples-method (GTuples-class), 6

IPD,GTuplesList-method
(GTuplesList-class), 16

IPosRanges, 24

IRanges, 6, 10

is.unsorted,GTuples-method
(GTuples-comparison), 12

isDisjoint,GTuples-method (Undefined
methods), 26

isDisjoint,GTuplesList-method
(Undefined methods), 26

lapply, 19
length,GTuples-method (GTuples-class), 6

mapply, 19
match,GTuples, GTuples-method
(GTuples-comparison), 12

names,GTuples-method (GTuples-class), 6
names<-,GTuples-method (GTuples-class),
6
narrow (Undefined methods), 26
narrow,GTuples-method (Undefined
methods), 26
nearest,GTuples,GTuples-method
(nearest-methods), 22
nearest,GTuples,missing-method
(nearest-methods), 22
nearest-methods, 22, 24

Ops,GTuples, numeric-method (Undefined
methods), 26

order, 14

order,GTuples-method
(GTuples-comparison), 12

overlapsAny (findOverlaps-methods), 3

overlapsAny,GTuples,GTuples-method
(findOverlaps-methods), 3

pcompare,GTuples,GTuples-method
(GTuples-comparison), 12
pgap,GTuples,GTuples-method (Undefined
methods), 26
pintersect,GTuples,GTuples-method
(Undefined methods), 26
pintersect,GTuples,GTuplesList-method
(Undefined methods), 26

30

pintersect,GTuplesList,GTuples-method
(Undefined methods), 26

pintersect,GTuplesList,GTuplesList-method

(Undefined methods), 26
precede,GTuples,GTuples-method
(nearest-methods), 22
precede,GTuples,missing-method
(nearest-methods), 22
promoters,GTuples-method (Undefined
methods), 26
promoters,GTuplesList-method
(Undefined methods), 26
psetdiff,GTuples,GTuples-method
(Undefined methods), 26
psetdiff,GTuples,GTuplesList-method
(Undefined methods), 26
psetdiff,GTuplesList,GTuplesList-method
(Undefined methods), 26
punion,GTuples,GTuples-method
(Undefined methods), 26
punion,GTuples,GTuplesList-method
(Undefined methods), 26
punion,GTupleslList,GTuples-method
(Undefined methods), 26

range,GTuples-method (Undefined
methods), 26
range,GTuplesList-method (Undefined
methods), 26
ranges,GTuples-method (GTuples-class), 6
ranges,GTuplesList-method
(GTuplesList-class), 16
ranges<-,GTuples-method
(GTuples-class), 6
ranges<-,GTuplesList-method
(GTuplesList-class), 16
rank, /4
rank, GTuples-method
(GTuples-comparison), 12
reduce,GTuples-method (Undefined
methods), 26
reduce,GTuplesList-method (Undefined
methods), 26
relistToClass,GTuples-method
(GTuplesList-class), 16
replaceROWS,NULL-method (Undefined
methods), 26
resize,GTuples-method (Undefined
methods), 26

INDEX

resize,GTuplesList-method (Undefined
methods), 26

restrict,GTuplesList-method (Undefined
methods), 26

Rle, 6, 7,9, 10

RlelList, 16, 19

sapply, 19

score,GTuples-method (GTuples-class), 6

score,GTuplesList-method
(GTuplesList-class), 16

score<-,GTuples-method (GTuples-class),
6

score<-,GTuplesList-method
(GTuplesList-class), 16

selfmatch,GTuples-method
(GTuples-comparison), 12

Seqinfo, 17

seqinfo, 10, 19

seqinfo,GTuples-method (GTuples-class),
6

seqginfo,GTuplesList-method
(GTuplesList-class), 16

seqinfo<-,GTuples-method
(GTuples-class), 6

seqinfo<-,GTuplesList-method
(GTuplesList-class), 16

seqlevels, 8, 17

seqlevelsStyle, 8, 17

seqgnames, 4

seqgnames,GTuples-method
(GTuples-class), 6

seqgnames,GTuplesList-method
(GTuplesList-class), 16

segnames<-,GTuples-method
(GTuples-class), 6

seqnames<-,GTuplesList-method
(GTuplesList-class), 16

setdiff,GTuples,GTuples-method
(Undefined methods), 26

shift (intra-tuple-methods), 20

shift,GTuples-method
(intra-tuple-methods), 20

shift,GTuplesList-method
(intra-tuple-methods), 20

show,GTuples-method (GTuples-class), 6

Simplelist, 16, 17

size (GTuples-class), 6

size,GTuples-method (GTuples-class), 6

INDEX

size,GTuplesList-method
(GTuplesList-class), 16

sort, /4

sort,GTuples-method
(GTuples-comparison), 12

sort.GTuples (GTuples-comparison), 12

start,GTuples-method (GTuples-class), 6

start,GTuplesList-method
(GTuplesList-class), 16

start<-,GTuples-method (GTuples-class),
6

start<-,GTuplesList-method
(GTuplesList-class), 16

strand, 4, 6

strand, GTuples-method (GTuples-class), 6

strand,GTuplesList-method
(GTuplesList-class), 16

strand<-,GTuples-method
(GTuples-class), 6

strand<-,GTuplesList,ANY-method
(GTuplesList-class), 16

strand<-,GTuplesList,character-method
(GTuplesList-class), 16

subsetByOverlaps
(findOverlaps-methods), 3

subsetByOverlaps,GTuples,GTuples-method
(findOverlaps-methods), 3

tile,GTuples-method (Undefined
methods), 26
trim,GTuples-method
(intra-tuple-methods), 20
tuples, 13
tuples (GTuples-class), 6
tuples,GTuples-method (GTuples-class), 6
tuples,GTuplesList-method
(GTuplesList-class), 16
tuples-squeezers, 25
tuples<- (GTuples-class), 6
tuples<-,GTuples-method
(GTuples-class), 6
tuples<-,GTuplesList-method
(GTuplesList-class), 16

Undefined methods, 26
union,GTuples,GTuples-method

(Undefined methods), 26
unique, 14

31

updateObject,GTuplesList-method
(GTuplesList-class), 16

updateObject,GTupless-method
(GTuples-class), 6

Vector, 10, 19

width,GTuples-method (GTuples-class), 6

width,GTuplesList-method
(GTuplesList-class), 16

width<-,GTuples-method (GTuples-class),
6

width<-,GTuplesList-method
(GTuplesList-class), 16

window,GTuples-method (GTuples-class), 6

	GenomicTuples-package
	findOverlaps-methods
	GTuples-class
	GTuples-comparison
	GTuplesList-class
	intra-tuple-methods
	nearest-methods
	tuples-squeezers
	Undefined methods
	Index

